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Abstract. We extend the Multi-lane Spatial Logic MLSL, introduced
in previous work for proving the safety (collision freedom) of traffic ma-
neuvers on a multi-lane highway, by length measurement and dynamic
modalities. We investigate the proof theory of this extension, called
EMLSL. To this end, we prove the undecidability of EMLSL but never-
theless present a sound proof system which allows for reasoning about
the safety of traffic situations. We illustrate the latter by giving a formal
proof for a lemma we could only prove informally before.

Keywords. Spatial logic, undecidability, labelled natural deduction.

1 Introduction

In our previous work [I] we proposed a multi-dimensional spatial logic MLSL
inspired by Moszkowski’s interval temporal logic (ITL) [2], Zhou, Hoare and
Ravn’s Duration Calculus (DC) [3] and Schifer’s Shape Calculus [4] for formu-
lating the purely spatial aspects of safety of traffic maneuvers on highways. In
MLSL we modeled the highway as one continuous dimension, i.e., in the direction
along the lanes and one discrete dimension, the different lanes. We illustrated
MLSL’s usefulness by proving safety of two variants of lane change maneuvers
on highways. The safety proof establishes that the braking distances of no two
cars intersecting is an inductive invariant of a transition system capturing the
dynamics of cars and controllers.

In this paper we introduce EMLSL which extends MLSL by length measure-
ment and dynamic modalities. In comparison to MLSL, where we are only able
to reason about qualitative spatial properties, i.e., topological relations between
cars, EMLSL also allows for quantitative reasoning, e.g., on braking distances.
To further the practicality of EMLSL, we define a proof system based on ideas
of Basin et al. [5], who presented systems of labelled natural deduction for a vast
class of typical modal logics. Rasmussen [6] refined their work to interval logics
with binary chopping modalities. Since EMLSL incorporates both unary as well
as chopping modalities, our proof system is strongly related to both approaches.

Besides providing a higher expressiveness, extending MLSL enables us to
formulate and prove the invariance of the spatial safety property inside EMLSL
and its deductive proof system. We demonstrate this by conducting a formal
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proof of the so called reservation lemma [1], which informally states that no car
changes lanes without having set the turn signal beforehand.

Further on, we show undecidability of a subset of EMLSL. We adapt the
proof of Zhou et al. [7] for DC and reduce the halting problem of two counter
machines to satisfiability of EMLSL formulas. Due to the restricted set of pred-
icates EMLSL provides, this is non-trivial.

The contributions of this paper are as follows:

— we extend MLSL with lengths measurements and dynamic modalities (Sec. ;
— we show the spatial fragment of EMLSL to be undecidable (Sec. ;
— we present a suited proof system and derive the reservation lemma (Sec. .

2 Extended MLSL Syntax and Semantics

The purpose of EMLSL is to reason about highway situations. To this end,
we first present the formal model of a traffic snapshot capturing the position
and speed of every car on the highway at a given point in time. In addition a
traffic snapshot comprises the lane a given car is driving on, which we call a
reservation. Every car usually holds one reservation, i.e., drives on one lane, but
may, during lane change maneuvers, hold up to two reservations on adjacent
lanes. Furthermore, we capture the indication that a given car wants to change
to a adjacent lane by the notion of a claim which is an abstraction of setting the
turn signal. Every car may only hold claims while not engaged in a lane change.

To formally define a traffic snapshot, we assume a countably infinite set of
globally unique car identifiers I and an arbitrary but fixed set of lanes L. =
{0,..., N}, for some N > 1. Throughout this paper we will furthermore make
use of the notation P(X) for the powerset of X, and the override notation & from
Z for function updates [g], i.e., f & {z — y}(z) =y if = z and f(z) otherwise.

Definition 1 (Traffic snapshot). A traffic snapshot TS is a structure TS =
(res, clm, pos, spd, acc), where res, clm, pos, spd, acc are functions

res: 1 — P(L) such that res(C) is the set of lanes the car C reserves,
cdm : T — P(L) such that clm(C) is the set of lanes the car C claims,
pos : I — R such that pos(C) is the position of the car C' along the lanes,
spd : I — R such that spd(C) is the current speed of the car C,

acc : T — R such that acc(C) is the current acceleration of the car C.

Furthermore, we require the following sanity conditions to hold for all C € 1.

res(C)Nelm(C) =0

1< |res(C)| <2

0 < |elm(C)| < 1

1 < |res(C)| + |edm(C)| < 2

cdm(C) # 0 implies In € Lo res(C)Ucm(C) = {n,n + 1}
|res(C)| =2 or |clm(C)| = 1 holds only for finitely many C € 1.

S G Co do =

We denote the set of all traffic snapshots by TS.
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The kinds of transitions are twofold. First, we have discrete transitions defin-
ing the possibilities to create, mutate and remove claims and reservations. The
other type of transitions handles abstractions of the dynamics of cars, i.e., they
allow for instantaneous changes of accelerations and for the passing of time,
during which the cars move according to a simple model of motion. For the
results presented subsequently, we only require the changes of positions to be
continuous.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot TS = (res, clm, pos, spd, acc).

TSMTS’ =3 TS' = (res,clm’, pos, spd, acc)
Aledm(C)] =0 A Jres(C)] =1
Ares(C)N{n+1,n—1}#0
Aelm! = clm & {C — {n}} (1)
TSMTS’ & TS = (res,clm/, pos, spd, acc)
Aelm! = cm & {C — 0} (2)
7818 o TS = (res’, clm’, pos, spd, acc)
Aelm! = cm & {C — 0}
Ares' =res® {C > res(C)Uclm(C)} (3)
TSM)TS’ & TS = (res’, clm, pos, spd, acc)
Ares' =res® {C+— {n}}
An € res(C) A |res(C)| =2 (4)
TSLTS < TS = (res, clm, pos’, spd’, acc)
AVC € I: pos'(C) = pos(C) + spd(C) - t + Sacc(C) - t*
AVC € 1: spd'(C) = spd(C) + acc(C) - t (5)
TSMTS' & TS = (res,clm, pos, spd, acc’)

Aacc’ = acc & {C + a} (6)

We also combine passing of time and changes of accelerations to evolutions.

acc(Co,ap) acc(Chp,an
_—

TS TS & TS =TSSTS, T S TS = TS,

where t =37 t;, a;, € Rand C; € I forall 0 <i < n.
The transitions preserve the sanity conditions in Def. [T}

Lemma 1 (Preservation of Sanity). Let TS be a snapshot satisfying the
constraints given in Def. . Then, each structure TS reachable by a transition
is again a traffic snapshot satisfying Def. [1]

EMLSL restricts the parts of the motorway perceived by each car to so called
views. Each view comprises a set of lanes and a real-valued interval, its length.
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Definition 3 (View). For a given traffic snapshot TS with a set of lanes L, a
view V' is defined as a structure V.= (L, X, E), where

— L=[l,n] CL is an interval of lanes that are visible in the view,
— X =[r,t] CR is the extension that is visible in the view,
— FE €1 is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V' = (L', X, E) and Vx: =
(L, X', E), where L' and X' are subintervals of L and X, respectively.

Sensor Function. Subsequently we will use a car dependent sensor function
g : I x TS — Ry which, given a car identifier and a traffic snapshot, provides
the length of the corresponding car, as perceived by FE.

Abbreviations For a given view V = (L, X, E) and a traffic snapshot 7S =
(res, clm, pos, spd, acc) we use the following abbreviations:

resy : I — P(L) with C + res(C)NL (7)
cdmy : 1 — P(L) with C +— cm(C)N L (8)
leny : T — P(X) with C — [pos(C), pos(C) + 2r(C,TS)|N X 9)

The functions and are restrictions of their counterparts in 7S to the
sets of lanes considered in this view. The function @D gives us the part of the
view occupied by a car C E|

Definition [] formalizes the partitioning of discrete intervals. We need this
slightly intricate notion to have a clearly defined chopping operation, even on
the empty set of lanes.

Definition 4 (Chopping discrete intervals). Let Ip be a discrete interval,
i.e., Ip = [l,n] for some l,n € L or Ip = 0. Then Ip = I} & I3 if and only if
ILUI3 =1Ip, I, NI% =0, and both I}, and I% are discrete convex intervals,
which implies max(I}) + 1 = min(I3) or I, =0 or I3 = 0.

We define the following relations on views to have a consistent description of
vertical and horizontal chopping operations.

Definition 5 (Relations of Views). Let Vi, V5 and V be views of a snapshot
TS. Then V =V, & Vy if and only if V = (L,X,E), L = L, © Ly, V; = V1
and Vo = VI2. Furthermore, V.= Vi © Va if and only if V = (L,[r,t],E) and
there is an s € [r,t] such that Vi =V}, o and Vo = Vs 4.

! This presentation differs slightly from our previous work in two ways. First, we do not
restrict the set of identifiers anymore to the cars “visible” to E. Since the functions
for the reservations, claims or length return the empty set for cars outside of V', such
cars cannot satisfy the corresponding atomic formulas. The definition of resy and
clmy was altered due to a technical mistake in the previous form.
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To abstract from the borders of intervals during the definition of the seman-
tics, we define the following norm giving the length of an interval. This notion
coincides with the length measurement of DC [3].

Definition 6 (Measure of a real-valued interval). Let Ir = [r,t] be a real-
valued interval, i.e. r,t € R. The measure of Ir is the norm ||Ig| =t —r.

We employ three sorts of variables. The set of variables ranging over car
identifiers is denoted by CVar, with typical elements ¢ and d. For referring to
lengths and quantities of lanes, we use the sorts RVar and LVar ranging over real
numbers and elements of the set of lanes L, respectively. The set of all variables
is denoted by Var. To refer to the car owning the current view, we use the special
constant ego. Furthermore we use the syntax ¢ for the length of a view, i.e., the
length of the extension of the view and w for the width, i.e., the number of
lanes. For simplicity, we only allow for addition between correctly sorted terms.
However, it is straightforward to augment the definition with further arithmetic
operations.

Definition 7 (Syntax). We use the following definition of terms.
O:=n|rlego|ul|l|w]|b +0s

where n € L, r € R and u € Var and 6; are both of the same sort, and not
elements of CVar U {ego}. We denote the set of terms with ©. The syntax of the
extended multi-lane spatial logic EMLSL is given as follows.

pu=L]0=05|re(c) ]| cllc) | d1 — b2 | Vz @ Py |¢1’\¢2|$i | Mo

where M € {Oy (), Oc(ey, Owd c(e)s Dwd r(e), O}, ¢ € CVar U {ego}, z € Var, and
01,02 € O are of the same sort. We denote the set of all EMLSL formulas by ®.

Definition 8 (Valuation and Modification). A valuation is a function

v: VarU{ego} — TURUL. We silently assume valuations and their modifications
to respect the sorts of variables. For a view V = (L, X, E), we lift v to a function
vy evaluating terms, where variables and ego are interpreted as in v, and vy (¢) =
IX|| and vy (w) = |L|. The function + is interpreted as addition.

Definition 9 (Semantics). In the following, let 0; be terms of the same sort,
¢ € CVar U {ego} and z € Var. The satisfaction of formulas with respect to a
traffic snapshot TS, a viewV = (L, X, E) and a valuation v with v(ego) = FE is
defined inductively as follows:

TS, Vv e L for all TS, V,v
TS,‘/Y,Z/|: 91 :92 =4 yv(91) :Vv(eg)
TS, V,v = re(c) < |L|=1 and || X]|| > 0 and

resy(v(c)) = L and X = leny (v(c))
TS, V,v = ) < |L|=1 and || X]|| > 0 and
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cdmy(v(c)) =L and X = leny (v(c))
TS, VivEdr = ¢a o TS, Vv ¢y implies TS, Vv |= ¢
TS, Vivi=EVze ¢ VacIURULeTS, Vv {z— a} =¢
TS, V,v = ¢1 ~ o IV, VooV =V,0Vs and

TS, Vi,vE¢1 and TS, Va,v = ¢

t ¢

i

TS,V,V|:¢T IV, VooV =V, & Vs and

TS’ Vla v ': (bl and 7—87 V27 v ': (7752
VTS e Tsﬂfrs’ implies TS',V,v = ¢

VTS ,neTS—"% TS’ implies TS, V,v = ¢
VTS e TSMYTS implies TS, V,v = ¢
VTS n e TS WM o mplies TS Vv = ¢

VTS teTS = TS implies TS, V,v = ¢

TS Viv b= Oy
TS, Vv E D)9
TS, Vv E Duwd (09
TS, Vv | Oud v(0)®
TS Vv =0,

c(v(c),n

A

In addition to the standard abbreviations of the remaining Boolean operators
and the existential quantifier, we use T = —L. An important derived modality
of our previous work [I] is the somewhere modality

T

=T~ o|~T
0

Further, we use its dual operator everywhere. We abbreviate the modality
somewhere along the extension of the view with the operator ¢y, similar to the
on some subinterval modality of DC.

[Bl=-(=¢)  Cp=T~op~T  Op =00

Likewise, abbreviations can be defined to express the modality on some lane.
Furthermore, we define the diamond modalities for the transitions as usual, i.e.,
Oup = 0.—¢, where x € {r(c),c(c),wd r(c),wd c(c), 7}.

In the first definition of MLSL, we included the atom free to denote free space
on the road, i.e., space which is neither occupied by a reservation nor by a claim.
It was not possible to derive this atom from the others, since we were unable to
express the existence of exactly one lane and a non-zero extension in the view.
However, in the current presentation, free can be defined within EMLSL. Observe
that a view of non-zero extension can be characterized by £ > 0 = —(¢ = 0).

free=€>0Aw=1AVYceOy(=cl(c) A—re(c))

Furthermore, we can define £ < r = (¢ = r~T) and use the superscript ¢"
to abbreviate the schema ¢ A ¢ = r. For reasons of clarity, we will not always use
this abbreviation and write out the formula instead, to emphasize the restriction.
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As an example, the following formula defines the behavior of a safe distance
controller, i.e., as long as the car starts in a situation with free space in front of
it, the formula demands that after an arbitrary time, there is still free space left.

w=x w=2x
Vr,ye Qs | re(ego) ~free | — 0O, | Qo | re(ego) ~ free
w=y w=y

We have to relate the lane in both the antecedent and the conclusion by the
atoms w = x and w = y respectively. If we simply used (re(ego) ~ free), it would
be possible for the reservations to be on different lanes, and hence, we would not
ensure that free space is in front of each of ego’s reservations at every point in
time. However, the formula does not constrain how the situations may change,
whenever reservations or claims are created or withdrawn.

Observe that it is crucial to combine acceleration and time transitions into
a single modality [J.. Let ego drive on lane m with a velocity of v. If we only
allowed for the passing of time, this formula would require all cars on m in front
of ego to have a velocity vy > v, while all cars behind ego had to drive with
vp < v. Hence the evolutions allow for more complex behavior in the underlying
model.

Like for ITL [2] or DC [3], we call a formula flexible whenever its satisfaction
is dependent on the current traffic snapshot and view. Otherwise the formula
is rigid. However, since the spatial dimensions of EMLSL are not directly in-
terrelated, we also distinguish horizontally rigid and vertically rigid formulas.
The satisfaction of the former is independent of the extension of views, while for
the latter, the amount of lanes in a view is of no influence. If a formula is only
independent of the current traffic snapshot, we call it dynamically rigid.

Definition 10 (Types of Rigidity). Let ¢ be a formula of EMLSL. We call ¢
dynamically rigid, if it does not contain any spatial atom, i.e., re(c) or cl(c) as
a subformula. Furthermore, we call ¢ horizontally rigid, if it is dynamically rigid
and in addition does not contain £ as a term. Similarly, ¢ is vertically rigid, if
it 1s dynamically rigid and does not contain w as a term. If ¢ is both vertically
and horizontally rigid, it is simply rigid.

Lemma 2. Let ¢ by dynamically rigid and ¢g (dv ) be horizontally (vertically)
rigid. Then for all traffic snapshots TS, TS', views V, Vi, Vo and valuations v,

LTS Vvl ¢ iff TS, Vv = o
2. Let V=Vi,OVa. Then TS, V,v =y ff TS,Vi,v = ou (forie {1,2}).
3. LetV=V16V,. Then TS,V,v = ov iff TS, Vi, v = oy (forie {1,2}).

Proof. By induction on the structure of EMLSL formulas.

3 Undecidability of pure MLSL

In this section we give an undecidability result for the spatial fragment of
EMLSL, i.e., we do not need the modalities for the discrete state changes of the
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model or the evolutions. We will call this fragment spatial MLSL, subsequently.
We reduce the halting problem of two-counter machines, which is known to be
undecidable [9], to satisfaction of spatial MLSL formulas.

Intuitively, a two counter machine executes a branching program which ma-
nipulates a (control) state and increments and decrements two different coun-
ters ¢; and cy. Formally, two counter machines consist of a set of states Q =
{qo,...,qm}, distinguished initial and final states qo,qs, € Q and a set of in-
structions I of the form shown in Tab. [1| (the instructions for the counter ¢y are
analogous). The instructions mutate configurations of the form s = (g;, ¢1, c2),
where ¢; € (Q and cq, c2 € N into new configurations:

Table 1. Instructions for counter c¢; of a two-counter machine

s Instruction|s’

ct
(q7 61762) q‘—l—ﬂl] (qj761 + 1,C2)

(q7 07 62) qéq]? qn (q]7 07 02)

-
(gc+1,e2)|g—q5,qn |(gn,c, c2)

An run from the initial configuration of a two-counter machine (Q, go, ¢fin, )

is a sequence of configurations (gg,0,0)-2 . .. Z—p>(qp+1,cp+1,c;+1), where each
i; is an instance of an instruction within I. If ¢,41 = qfn, the run is halting.

We follow the approach of Zhou et al. [7] for DC. They encode the config-
urations in recurring patterns of length 4k, where the first part constitutes the
current state, followed by the contents of the first counter. The third part is filled
with a marker to distinguish the counters, and is finally followed by the contents
of the second counter. Each of these parts is exactly of length k.

Zhou et al. could use distinct observables for the state of the machine, coun-
ters and separating delimiters, since DC allows for the definition of arbitrary
many observable variables. We have to modify this encoding since within spatial
MLSL we are restricted to two predicates for reservations and claims, and the
derived predicate for free space, respectively. Furthermore, due to the constraints
on EMLSL models in Def. [1} we cannot use multiple occurrences of reservations
of a unique car to stand, e.g., for the values of one counter. Hence we have to ex-
istentially quantify all mentions of reservations and claims. We will never reach
an upper limit of existing cars, since we assume I to be countably infinite.

The current state of the machine g; is encoded by the number of lanes below
the current configuration, the states of the counters is described by a sequence
of reservations, separated by a single claim. To safely refer to the start of a
configuration, we also use an additional marker consisting of a claim, an adjacent
reservation and again a claim. Each part of the configurations is assumed to have
length k. Free space separates the reservations within one counter from each other
and from the delimiters. Intuitively, a configuration is encoded as follows:
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marker free, re cl free, re cl

5k

To enhance the readability of our encoding, we use the abbreviation marker =
e e cl(c) ~Icere(c) ~Ice cl(c) to denote the start of a configuration.

Like Zhou et al., we ensure that reservations and claims are mutually exclu-
sive. We do not have to consider free, since it is already defined as the absence of
both reservations and claims. Observe that we use the square brackets to denote
the everywhere modality (cf. Section [2)).

mutex = Ve, d o [cl(c) = —re(d)) A (re(c) — —cl(d)] .
The initial marking (qo, 0,0) is then defined by the following formula.

[—3c e cl(c)]
init = [ marker® ~ free® ~ (3ce cl(c))* ~ free” ~(Fce cl(c))* | ~T
w=0

We have to ensure that the configurations occur periodically after every 5k
spatial units. Therefore, we use the following schema Per(D). Observe that we
only require that the lanes surrounding the formula D do not contain claims. This
ensures on the one hand that no configuration lies in parallel with the formula
D, since well-defined configurations have to include claims. On the other hand,
it allows for satisfiability of the formula, since we do not forbid the occurrence
of reservations, which are needed for the claims within the configurations.

[-3c e cl(c)] [-3c e cl(c)]
Per(D) = D ~L=5k | = | L=5k~ D
[-3c e cl(c)] [—3c e cl(c)]

Note that we did not constrain on which lane the periodic behavior occurs.
This will be defined by the encoding of the operations.

Now we may define the periodicity of the delimiters and the counters. Here
we also have to slightly deviate from Zhou et al.: we are not able to express the
statement “almost everywhere free or re(c) holds,” directly. We have to encode
it by ensuring that on every subinterval with a length greater than zero, we can
find another subinterval which satisfies free or re(c). This expresses in particular,
that no claim may occur, due to the mutual exclusion property.

periodic = Per((0y(£ >0 — T ~ (free VIcere(c)) ~T) Aw = 1)¥)
A Per((3c e cl(c))*) A Per(marker®)

+
We turn to the encoding of the operation g; a, qj, i.e., the machine goes
from g; to ¢; and increments the first counter by one. Similar to Zhou et al.,
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we use encodings of the form —(D; ~—D5), meaning “whenever the beginning of
the view satisfies Dy, the next part satisfies Ds.”

The formula F; copies the reservations of counter one of state ¢; to the
corresponding places in counter one in state g;.

T
=~ marker® ~¢ < k~3cere(c) ~((3cere(c) ~T)AL=D5k) | ~
w=1
T
| £=0V (Jcere(c)~T)
w=]

We use a similar formula Flf,c. to copy the free space before the reservations.

The formulas F5 and F3 handle the addition of another reservation to the
counter. We have to distinguish between an empty counter and one already
containing reservations.

T T
Fy = | marker® ~free® ~0 =5k | = | T ~(free ~3cere(c) free)*
w=1 w=]
T
Fy = | marker®c~¢ < k~3cere(c) ~(free ~Icecl(c) ~T)ANL =6k | —
w=1
T
T ~ (free ~Ic @ re(c) ~ free ~3c o cl(c))*
w=7j

In addition, we need formulas which copy of contents of the second counter
to the new configuration, similar to F7.

Let I be the set of the machine’s instructions and F'(7) be the conjunction
of the formulas encoding operation ¢ and gy, its final state. Then

T
halt(C') = init A periodic A mutex A /\ OeF () AQe [ Teocle)
iclco w = fin

If and only if halt(C) is satisfiable, the machine contains a halting run. This
holds since only configurations may contain claims (as defined in the formaliza-
tion of periodicity), and whenever the machine reaches its final state, it halts.
Hence the halting problem of two counter machines with empty initial configu-
ration reduces to satisfiability of spatial MLSL formulas.

Proposition 1. Let C' be a two counter machine. Then C has a halting run if
and only if halt(C) is satisfiable.

The main theorem of this section is a corollary of Prop.
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Theorem 1. The satisfiability problem of spatial MLSL is undecidable.

Even though we used the full power of spatial MLSL in the proof, i.e., we
used both ¢ and w, the proof would be possible without using the latter. For
that, we would not be able to encode the state of the configuration in the lanes,
but by a similar way to the markers in the formulas. For example, the formula
(3ce cl(c) ~3cere(c) ~Ice cl(c))* would denote the state gg, and with another
iteration of re(c), it would denote ¢; and so on. If we remove the references to
more than one lane in each of the formulas above, the reservations and claims
would already imply that only one lane exists, and hence, the use of w within
the abbreviation free could be omitted. This shows that spatial MLSL is already
undecidable even if we only use /.

4 Labelled Natural Deduction for EMLSL

Despite the negative decidability result of the previous section, we define a sys-
tem of labelled natural deduction [TOBIIT] for the full logic EMLSL. That is,
the rules of the deduction system do not operate on formulas ¢, but on labelled
formulas w: ¢, where w is a term of a labelling algebra and ¢ is a formula of
EMLSL. They may connect the derivations of formulas and relations between
the terms w to allow for a tighter relationship between both. The labelling alge-
bra is more involved than for standard modal logics, since EMLSL is in essence a
multi-dimensional logic, where the modalities are not interdefinable. Obviously,
the spatial modalities can not be defined by the dynamic modalities and vice
versa. Furthermore, neither can the dynamic modalities be defined by each other
in general. Consider, e.g., the modalities Uy, and (). Both of these modal-
ities rely on different transitions between the models, which are only indirectly
related.

The labels of the algebra consist of tuples 7S,V , where similar to the se-
mantics, 7S is the name of a traffic snapshot and V' a view. The algebra is
then twofold. The relations of the form V = V; © Vo and V = V] & V5 define
ternary reachability relations between views for the spatial modalities. Relations

c
between snapshots, e.g., TS QTS/ describe the behavior of transitions. The
relations within the labelling algebra for traffic snapshots directly correspond

c
to the dynamic modalities. For example, we have TS Qﬂ’S’, whenever there

exists an n € N such that TS 78",

We do not give a deduction system for the transitions between snapshots,
since the conditions needed to hold between them are of a very complex na-
ture, i.e., they are definable only with the power of full first-order logic with
functions, identity and arithmetic. Hence we would not achieve a system with a
nice distinction between the relational deductions and the deductions of labelled
formulas [BITT]. Instead we simply assume the existence of the relations between
snapshots whenever needed. That is, we will often have, e.g., the existence of a
transition in our set of assumptions. However, we give simple rules defining that
chopping of a view into two subviews is always possible.
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Definition 11 (Labelled Formulas and Relational Formulas). Let TS be
a name for a traffic snapshot, V' a name for a view and ¢ a formula according
to Definition[] Then TS,V : ¢ is a labelled formula of EMLSL. Furthermore,
we call TSSTS', V=V, 0Vy and V = V; © Vs relational formulas, where —
1s a relation of the labelling algebra.

To have a meaningful soundness result of the calculus, we give the relation
of the semantics of labelled formulas and normal formulas. Observe that we do
not define a completely independent notion of models, but only use a valuation
for this purpose. This is due to the semantic information which is still comprised
within the views and traffic snapshots.

Definition 12 (Satisfaction of Labelled Formulas). We say that a valua-
tion v satisfies a labelled formula TS,V : ¢, written v =TS,V : ¢ if and only if
TS,V,v | ¢. Furthermore,

r(e) r(¥(9)

v T8 TS, o 785 DTS,

v E TS s, & TneTs W I Tg,
v T8 Ts, & IneTs; MM s,

v E T8 Ts, & T8I s,

vE TS 5TS, & TeTS TS,

The relational formulas V.=V, © Vo and V = Vi &V, are independent of
the valuation at hand, and hence are satisfied whenever Vi and Vo combined
according to Definition [5 result in V.

Definition 13 (Derivation). A derivation of a labelled formula TS,V : ¢ from
a set of labelled formulas I' and a set of relational formulas A is a tree, where
the root is TS,V : ¢, each leaf is an element of I' or A and each node within
the tree is a result of an application of one of the rules defined subsequently. We
denote the existence of such a derivation by I'' A+ TS,V : ¢.

Following Rasmussen [6], we define predicates for chop-freeness of formu-
las and rigidity of terms and formulas. To increase the deducible theorems, we
differentiate between wvertical and horizontal chop-freeness and rigidity. These
properties are especially important for the correct instantiation of terms, i.e., for
the elimination of universal quantifiers.

FEzxzample 1. Consider the formula

Vwo(gzxﬁﬁzx),
(==
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which is a theorem of MLSL, since the length of a view is not changed by chopping
vertically. If we use classical universal quantifier instantiation and substitute the
vertically flexible term w for z, then we would get

i — z S l=w. (10)
Now let V' be a view satisfying the antecedent of . Then V' can be vertically
chopped such that its length equals its width on both subviews. Now let ¢ = c.
Then also w = ¢ for both subviews. Since V' consists of both these subviews, V'
satisfies w = 2¢. But the conclusion of states that V should satisfy w = ¢ = c.
However, we could of course substitute x by the vertically rigid term ¢.

We denote vertical (horizontal) chop-freeness by the predicate vef (hef) and
vertical (horizontal) rigidity by vri (hri). The rules for the definition of all four
predicates are straightforward, since both rigidity and chop-freeness are syntactic
properties. All atomic formulas are vertically and horizontally chop-free. For @
being a Boolean operator or the horizontal chop ~ , the following rules give
vertical chop-freeness.

—vcf(qb) vef(¥) vef 01 vet(¢ @) vef © B 7\7&(([) °Y) vef @ E

vef (¢ 0 ) vef(¢) vef(¥)

The rules for quantifiers and the horizontal rules are defined similarly.

For terms, ¢ is vertically rigid and w is horizontally rigid. The spatial atoms
re(c), cl(c) and free are neither horizontally nor vertically rigid, since they require
the view to possess an extension greater than zero and exactly one lane. Equality
is both vertically and horizontally rigid, as long as both compared terms are rigid.
Below, we show some exemplary rules, where ® is an arbitrary binary operator.

hri(¢) hri(v) i@ hri(¢p ® ) hri ® E hri(¢p ® )

hri(¢ ® 1) hri(¢) hri()) brigF

We have only two simple rules for
the relations between views. First, we

EV V'V =V & V") VDec state that each view V is decompos-

able into two subviews. This is true,

V=V since we allow for the empty view,

. i.e., the view without lanes or with

BV, V/(V = V' o V") 7’S7i/3: P a point-like extension. We use E to
TS Vs: EE  denote existential quantification over

views. To use the relations between

views, we have to be able to instan-
tiate views, i.e., we have to introduce a rule for elimination of existential quan-
tifiers over views. As a side condition for this elimination rule, we require that
TS, Vs: ¢ is not dependent on any assumption including V3 or V5 as a label,
except for V.= V; © V5. The rule itself is a straightforward adaptation of the
classical rule. Again, we only show the case for the vertical relations.
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The intuition of rigidity is formalized in the following rules. Whenever a for-
mula is horizontally rigid, the formula holds on all views horizontally reachable
from the current view. Observe that the traffic snapshot may change arbitrar-
ily, since horizontally rigid formulas are also dynamically rigid. The rules for
vertically rigidity are similar.

TS, V:¢ hri(¢) V=VioW TS, V:¢ hri(¢) V=VioV,

7 Ry 7
TS Vi o TS Va0

Ry

TSVizg i)  V=VioV . TSV:¢ i) V=Vioh
TS Vi o TS Vi

For the first-order operators, we use the typical definitions of labelled nat-
ural deduction rules [5]. The only difference lies in the rules for quantification.
We may instantiate an universally quantified variable with a horizontally (ver-
tically) rigid, if the formula is vertically (horizontally) chop-free. If the formula
is completely chop-free, we may instantiate the variable with an arbitrary term.
Similarly, rigid terms may instantiate z in arbitrary formulas. In all cases, a side
condition for the instantiation is that s respects the sort of z.

TS, V:Vzeg hef(¢)  vri(s) TS, V:Vred vef(¢)  hri(s)
TS, V: plx — s] vE TS, V: ¢lz > s] vE

Ry

TS, V:Vreg hef(¢p)  vef(¢) VE TS, V:Vreg hri(s) vri(s)

TS, V: oz 5] TS, V: oz 5] vE

The elimination and introduc-

TS, Vi: ¢ TS, Va: ) V=1l 1 tion rules for the chop modalities
TS, Vg are adopted from Rasmussen [0],

and resemble the rules for existen-

[T5.Va: ¢l tial quantification. We only show

(TS, Ve: ¢l the case for the horizontal chop, the

[V=VioV)] rules for vertical chopping are ob-

: tained straightforwardly, by replac-

TS, V:dni 7—3/7"//: \ ing horizontal modalities and rela-
TS V' x ~E tions by the vertical ones.

The chopping of intervals is not
ambiguous, i.e., there is a unique view of a certain length at the beginning of a
view. This is the single decomposition property [12] of interval logics and captured
in the following rules. Hence when there are two vertical chops of a view, and
the upper parts are of equal width, we can derive that the same formulas hold
on the lower parts. Even though we only show the vertical set of rules, similar
rules hold for the horizontal chopping of views.

TS, Vi: ¢ TS Varw=s TS Vi:w=s vii(s) V=VieV V=V/aeV]
TS, Vo

VD

TS, Va: ¢ TSViiw=s TS V/iw=s vii(s) V=Vel V=VoV]
TS, Vi: ¢

VD
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The additivity of length and width can be formalized by the following rules.
TS Vi:w=s TS, Vo:w=t vri(s) wvri(t) V=V10V;

TS, Viw=s+t Vil
TS, Vi:w=s5s]
TS, Va: w=1]
[V=WoV]
S, Viw= t i( ¢ i(t SV
TS, Viw=s+ vri(s) vri(t) T @ V4E

TS, V': ¢
The dynamic modalities are defined along

the lines of Basin et al. [5]. If a transition from

TSSTS TS,V:0,0 . the current snapshot is possible, the box modal-

TS V:é ities may be eliminated and if we can prove that
under the assumption of a transition *, ¢ holds
[TSETS on the now reachable snapshot, [, ¢ holds.

: Finally, we have to define how the spatial
;- atoms behave with respect to occurring transi-
TS V:¢ . .
—————0, tions. There are two types of rules in general,
TS, V:0Okp . 2 o
stability rules and activity rules. Stability rules
define which atoms stay true after a snapshot changes according to a certain
transition. The truth of all reservation and claims of cars not involved in the
transition are unchanged. Only one stability rule for creating reservations in-
cludes the car which is the source of the transition. We will show this rule and
one example for typical stability. The activity rules state how the reservations
and claims of cars will change according to the transitions.
The following stability rules show that whenever a car creates a new claim,
the reservations and claims of other cars are unchanged. We have similar stability
rules for the other types of transitions.

TS Veele) TSYLTS  TS,V:e#d

<)
TS, V:clle) —S

TS, Vire(e) TSYhTS  TSVietd ©
TS, V:re(c) —8

The activity rule for c(c) implies two properties. First, a claim may only
be created when only one reservation exists. Second, the newly created claim
resides on one side of the existing reservation. Observe that the negations in the
antecedent would allow for empty views on both sides of the reservation, but
this case is prohibited by the antecedent that the view V is two lanes wide.

=(re(c) V cl(c))
TS, V: re(e) 78Ts TS Vie=d TS,V:iw=2
=(re(c) V cl(c))

c(c)
—A
;. re(e)  clle)
TS,V: cl(c)
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Rules for the creation of reservations in between traffic snapshots are:

TS, Veele) TSTS TS Vie=d o

TS, V:re(c) —A
TS, V:re(e) 78 T8 TS, Vie=d o)
TS, V:re(c) —8

The following activity rules define the withdrawal of reservations and claims.

TS,V: :Eg T8M s TS Vie=d
wd r(c)
TS V- re(c) y —re(c) A
7 are(e) T ore(e)
TS, Viee) TS™UUTS TS Vie=d "
TS, V:=clc) A

We also have rules for “backwards” reasoning, i.e., if our current snapshot is
reachable from another, we may draw conclusions about the originating snapshot.
Again, we differentiate between activity and stability rules (omitted here).

TS Vire(e) TSUTS  TSVie=d

TS, V: re(c) V cl(c) <A
TS Viode  TSYTs  TSVie=d
TS, V: =cl(c) <A

Observe that we can not reason backwards along withdrawal transitions, since
these may be taken without changing any reservations and claims (cf. Def. .

Theorem 2. The calculus of labelled natural deduction for EMLSL is sound.

As an example, we derive a variant of the reservation lemmma, which we proved
informally in our previous work [I].

Lemma 3 (Reservation). A reservation of a car ¢ observed directly after c
created it, was either already present or is due to a previously existing claim.

Le., assuming ’TSﬁ)TS’, the formula (re(c)V cl(c)) <> Oycyre(c) holds. Hence

(TSELTS Y E TSV (re(e) V el(c)) DOy re(c).

Proof. The existence of the transition is of major importance for the elimination
of the box modality in the proof using the backwards reasoning rule. For reasons
of simplicity, we use a variant of the stability rules and activity rules, where d
in the transition has been replaced by ¢, and hence we do not need the extra
assumption of 7S, V: ¢ = d. We use two auxiliary derivations, which allow us
to infer the existence of a reservation on the snapshot after taking a transition.
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s TS.Vire()h 78 %78, T TSVl 78 %78,
TS, V: re(c) TS, V: re(c)

Derivation of = TS, V: (re(c) V cl(c)) = Oyeyre(c).

IIg IIp
VE TS, V: re(c) TS, V: re(c) [TS,V:re(e) Vel(e)s
! TS, V: re(c)

——————— Ol
TS,V:Oygyre(c)

TS,V (re(c) Vcl(c)) = Oyeyre(c)

Derivation of {TSL(—C)—W'S’} FTS,V:Oere(c) = (re(e) V cl(c)).

(TS,V:Oygre(@);  TSLLTS

/ P 2 DY(L)E
TS, V:re(e)

T8 TS

r(e)
TS, V:re(e)V cl(c) N

TS, V:Oygre(c) — (re(c) V cl(c))

-1
O

Since models of EMLSL are based on the real numbers, we cannot hope for
a complete deduction system.

5 Related and Future Work

Most related work on spatial logics is focused on purely qualitative spatial reason-
ing [13], e.g., the expressible properties concern topological relations [14]. Logics
expressing quantitative spatial properties are rare, an example is Schiifer’s Shape
Calculus (SC) [4], which is a very general extension of DC. Contrasting SC, the
focus of EMLSL lies on a restricted field of application, i.e., highway traffic.
EMLSL is an instance of a multi-dimensional and multi-modal logic [15], since it
consists of various different modal operators, which are not interdefinable. It is
also a combination of binary modalities, i.e., the chopping operations, and unary
box-like modalities, i.e., the dynamic modal operators. Labelled natural deduc-
tion for (multi-)modal logics has been studied intensely recently. E.g., when the
rules for relational formulas can be defined with horn clauses as antecedents, nice
meta-theoretical properties like normalization of proofs can be established [BIIT].
In intuitionistic modal logic, similar results are obtained, when the relational the-
ory is defined using only geometric sequents [16]. Unfortunately, even with our
restricted set of rules for view relations, these results do not carry over to our
setting, since we made use of existential quantification on views. Still we would
like to explore how rules for the manipulation of traffic snapshots could blend
in. However, due to the complex internal structure of traffic snapshots, we do
not expect such rules to be definable by horn clauses. Rasga et al. investigated
the fibring [I7] of labelled deductive systems [18]. We assume that the deduction
system of Sec. [4] is an instance of such a fibring, where the Boolean operators
are shared between all deduction systems involved. A further classification of
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EMLSL (or a suitable subset) and its proof system within the framework of
fibring and multi-dimensional logics would be of interest in order to use preser-
vation results concerning, e.g., decidability. Finally, an implementation within a
general theorem prover like Isabelle [I9] similar to implementations for modal or
interval logics [BUTTI6] would increase the usefulness of the proof system.
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