
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

CONTROLLER PROGRAM SYNTHESIS
FOR INDUSTRIAL MACHINES

by

Hans-J̈org Peter

A diploma thesis in the

DEPARTMENT 6.2 - COMPUTERSCIENCE

ADVISORS

Prof. Bernd Finkbeiner, PhD
Prof. Dr.-Ing. habil. Hartmut Janocha

SAARLAND UNIVERSITY, GERMANY

November 2005

Erkl ärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und unter
ausschließlicher Verwendung der angegebenen Hilfsmittelangefertigt habe.

Saarbrücken, im November 2005

i

This work is dedicated to my grandparents Hannelore and Nikolaus Peter

ii

Abstract

In this thesis, a new synthesis algorithm for industrial controller programs is presented.
Verification and synthesis are the two basic approaches to guarantee that a system is

correct. While verification requires the programmer to provide both the specification and
the implementation, synthesis automatically transforms the specification into an implemen-
tation that is correct by construction.

The presented approach includes a new specification language that is geared towards
usability in an industrial set-up. Specifications consist of two parts: a generic description
of the machine components that is reused for different programs, and a description of the
production goals that is specific to each program. The behaviour of the machine compo-
nents is described by timed automata, while the production goals are captured by safety and
bounded liveness properties.

The advantage of this approach is that the description of thegoals, and thus of the
behaviour of the overall system, is decoupled from the technical details of the machine
components. This results in a high degree of re-usability, adaptivity, and maintainability.
The specification of the machine components can be reused fordifferent programs, and a
reconfiguration of the machine no longer requires a time-consuming re-implementation.

The synthesis problem is solved by finding a memory-less strategy in a safety game.
A winning strategy is transformed into an intermediate controller program, which controls
the machine such that the production aims are met. The intermediate program is improved
in several optimisation steps before it is cross-compiled for a machine controller.

The approach is illustrated with a prototype implementation that includes a cross-
compiler for IEC 1131-3 assembler code. The implementationhas been applied in several
case studies using the Siemens S7-300 programmable logic controller, which is the current
industrial standard.

Acknowledgements

First of all, thanks a lot to Prof. Bernd Finkbeiner, JoachimFox, and Sven Schewe for
giving me suggestions and valuable hints. In particular thediscussions with Sven about
safe and unsafe programs, as well as with Joachim about whether solving a problem by
straight programming is easier than giving a formal specification, revealed some major
issues that found their way into the thesis. Thanks to Prof. Hartmut Janocha for supporting
me with technical equipment that made a real world application of the developed synthesis
tool possible.

Furthermore, thanks to Martin Bauer for the helpful discussions and especially Lea
Pfeifer for her patience and support, as well as to my parentsGertrud and Michael Peter.

Contents

1 Introduction 1
1.1 Motivation. 1
1.2 Correct Programs. 2
1.3 Overview . 4
1.4 Related Work. 7

2 Preliminaries 9
2.1 Infinite Games. 9

2.1.1 Game Arena . 9
2.1.2 Safety Games. 10
2.1.3 Solving a Safety Game. 10

2.2 Timed Automata . 11
2.2.1 Infinite State Transition Graph. 13
2.2.2 Clock Zones . 14
2.2.3 Difference Bound Matrices. 17
2.2.4 Complexity Considerations. 19

3 Computational Models 20
3.1 Timed Game Automata. 20
3.2 Plan Automata . 21
3.3 Parallel Composition. 22
3.4 Combined State Space. 23

4 Specification Language 25
4.1 Plant Definition . 25

4.1.1 Automaton Component. 26
4.1.2 Hardware Component. 27
4.1.3 Operator Component. 28
4.1.4 Assertions. 29
4.1.5 Dependencies. 30

4.2 Production Goals. 31
4.2.1 State Guards. 32
4.2.2 Plans . 33

iii

CONTENTS iv

4.3 Semantics. 35
4.3.1 Automaton Component. 35
4.3.2 Hardware Component. 36
4.3.3 Operator Component. 37
4.3.4 Assertions. 38
4.3.5 Dependencies. 38
4.3.6 State Guards. 38
4.3.7 Plans . 39

5 Game Solving 40
5.1 Zenoness . 40
5.2 Precomputation. 41

5.2.1 Clock Usage Analysis. 42
5.2.2 Unique Choice Intervals. 42

5.3 Winning Controller State Space. 45
5.3.1 Basic Functions and Operators. 46
5.3.2 Forward Exploration. 47
5.3.3 Reverse Fail State Removal. 50
5.3.4 Special ”Guarded State” Transition Type. 52

6 Code Generation 54
6.1 Intermediate Controller Language. 54
6.2 Basic Functions and Operators. 57
6.3 From Strategies to Controller Programs. 59
6.4 Selection of Controllable Transitions. 59
6.5 Intermediate Code Generation. 61
6.6 Post Optimisations. 63

6.6.1 WAITUNTIL-replacement. 65
6.6.2 Inlining . 65
6.6.3 Reference-inlining. 65
6.6.4 Unreachable command-block removal. 66
6.6.5 Redundant GOTO removal. 66
6.6.6 Redundant IF removal. 66

6.7 Assembler Code Generation. 70
6.7.1 Target System. 70
6.7.2 IEC 1131-3 Code Compilation. 70

7 Practical Experience 73
7.1 Tool Implementation . 73
7.2 Real World Examples. 73

7.2.1 Lamp . 73
7.2.2 Gear Checking Machine. 75
7.2.3 Round Table . 78

7.3 Benchmarks. 81

CONTENTS v

8 Conclusions and Outlook 82
8.1 Conclusions. 82
8.2 Outlook . 83

8.2.1 Language. 83
8.2.2 Computational Models. 83
8.2.3 State Space Exploration. 84
8.2.4 Code Generation. 84

Appendix 85

A Round Table 85

Chapter 1

Introduction

1.1 Motivation

When writing a controller program for an industrial machine, the programmer has to be
aware of two things:

1. Safety: some machine-operations may lead to undesired behaviour or even crashes.

2. Bounded Liveness: Within a certain amount of time, the production goals of the
machine must be reached.

So, the programmer has to implement a program that regards the safety properties while
trying to reach the goals quickly enough. The basic motivation for this thesis raised upon
the following consideration: When specifying both safety properties and bounded liveness
independently from each other, is it possible to generate the actual program completely
automatically?

The following example illustrates this approach: Figure1.1shows two concurring robot
armsA andB. A loads workpieces to the processing stationP in the middle, whileB
unloads them to an outtake. Both can be controlled independently from each other.

The production goal is given by the bounded liveness criterion: ”At least every 22
seconds, a new workpiece must be processed”. On the other hand, if A andB would move
simultaneously to the processing station, they would crash. So, the safety criterion is: ”It is
not allowed thatA andB are simultaneously at the processing station”. Or, more formally:
¬(APROCESS ∧ BPROCESS). The loading and unloading operation take four seconds
each. The processing operation takes six seconds. Since it was specified that 22 seconds as
an overall cycle time are enough, a valid program could be:

1. MoveA to the processing station in order to load a new workpiece (4s)

2. Process the workpiece (6s)

3. MoveA back to its initial position (4s)

4. MoveB to the processing station and grab the processed workpiece (4s)

1

CHAPTER 1. INTRODUCTION 2

Outtake

Intake

PA B

Figure 1.1: Two concurring robot arms

5. MoveB to the outtake in order to unload the workpiece (4s)

6. Goto 1

Obviously, this is not the most time-optimal solution. Thus, specifying a stricter upper time
bound, say 14 seconds, yields a more compact result:

1. MoveA to the processing station in order to load a new workpiece (4s)

2. Do in parallel:

Process the workpiece (6s)

MoveA back to its initial position (4s)

MoveB to the processing station (4s)

3. Grab the processed workpiece and moveB to the outtake in order to unload that
workpiece (4s)

4. Goto 1

Now, the synthesis algorithm is forced to exploit parallelism, since this is the only chance
of solving the problem within the desired time. However, a time-bound that lies below
14 seconds is actually unrealisable. In this case, the synthesis algorithm indicates this by
returning an empty program.

1.2 Correct Programs

Machine programs are a high sensitive field of software development. Small programming
failures may result in a great financial disaster or could even be dangerous for human be-
ings. Therefore, machine programs must provide a high degree of correctness under all
circumstances.

CHAPTER 1. INTRODUCTION 3

Computer Aided Verification (CAV) has become a widely used technique in order to
proof correctness of complex systems. Especially asynchronous setups lead to state spaces,
which can only be exhaustively verified using automated methods. CAV works as follows:
a specification is given and a programmer has to create a program, which inhibits that spec-
ification. Then, a model-checker (e.g. [16, 6, 7]) checks if the program satisfies the given
specification. The disadvantage of this method is that a program must be givenmanually.
The model-checker only gives feedback about the correctness of that program: either the
specification is satisfied or else a counter-example is provided. The actual error in the pro-
gram must be found and removed manually.

The approach presented in this thesis in order to get correctprograms is the so called
Controller Synthesis. Here, the user gives only a specification and the actual program
generation works completelyautomatically. From the practical point of view, one can
easily see that the synthesis approach needs significantly less user interaction than CAV
does, since only the specification must be given manually (see figure1.2).

Model-checking

Counter-example

Empty?
Remove

errors

Create
program

Specification

Program

No

Correct program

Yes

Verification

Synthesis

Program

Empty?

Specification

Yes

Correct program

No

Unrealisable
specification

Synthesis

Figure 1.2: Verification vs. Synthesis

The gain in maintainability is also evident. Consider a machine that changes its be-
haviour (e.g. due to wear or parts exchange). Then, the controller program must be par-

CHAPTER 1. INTRODUCTION 4

tially rewritten or at least anew verified. This results often in a waste of valuable production
time due to the lack of automated methods. Using synthesis, one must only change the
specification, which is, practically seen, a lot easier thanreprogramming.

Specifying instead of programming means transforming the difficult task of creating
a controller program into the rather easy task of describinga machines hardware and its
production goals. Typically, when an industrial machine isplanned the requirement speci-
fications are defined. This is done by the customer together with the constructing engineer.
The engineer decides which components should be used in sucha way that the wishes of
the customer are satisfied. Depending on those wishes, this task can be very difficult; con-
sider running time requirements such as ”The overall cycle time must not be greater than
15 seconds”. Now, the engineer has to choose the (cheapest) components, which allow the
programmer to write a program that inhibits the running timerequirement.

Obviously, the complexer the machine, the better must be theengineer. With the clas-
sical method, the question whether a specification is realisable or not cannot be answered
until the end of the programming phase, actually. Because first then, there exists a verifiable
controller program. However, a fundamental change of the specification at this time due to
planning failures, can have a major financial impact. On the other hand with the synthe-
sis approach, both customer and engineer can easily check whether their specification can
be realised. Thus, synthesis can be seen as a verification of the specification, where the
concrete controller program is just a by-product of that analysis.

1.3 Overview

Essentially with this approach, the specification is a formal description of the system that
has to be controlled, called plant, along with a definition ofthe production goals, called
plans. Typically, a machine (plant) is constructed by combining multiple asynchronous
hardware components with each other. So, the definition of the plant is given as a set of
components. Becausereal-timeis a major characteristic, one computational model for those
components are Timed Automata. On the other hand, industrial machines are reactive. This
means that the components may receive orders sent by a controller and respond with plant-
messages by their own. The orders are calledcontrollableevents, while the plant-messages
are calleduncontrollableevents. The occurrence of the latter are basically unpredictable for
the controller. The computational model that copes with such a non-deterministic behaviour
are Two Player Games. Combining both models, one gets Timed Game Automata, which
form the computational basis for representing the plant components. Also part of the plant
definition are state-assertions represented by first order formulas. The conjunction of those
assertions is a safety predicate function. Along with the components, this safety predicate
spans a Safety Game.

The production goals (plans) are timed automata that run in parallel with the plant com-
ponents. They guarantee that within a finite amount of time, certain goals (key events) are
achieved. If not, they enter a fail state. The plans can be seen as straightforward programs
that describe a rough skeleton of the program that should be generated. Synthesising a
valid program that matches the specification means finding a winning strategy for the given

CHAPTER 1. INTRODUCTION 5

safety game.
Figure1.3 shows the approach as a flowchart: First of all, based on the definition of

the plant and the production goals, the timed game automata are constructed. Because the
standard timed automata semantics implies implicit temporal behaviour, a preprocessing
step that converts each implicit timed automaton into an explicit one is applied first. Then,
the spanned safety game is solved by computing the winning control state space. This is
done by an on-the-fly algorithm that explores the reachable states forwardly and removes
the encountered fail states backwardly. The resulting winning strategy is non-deterministic,
since in some states there might be multiple controller requests. A heuristic selects the
optimal requests such that in each state there is at most onlyone possible decision for the
controller. Then, that deterministic strategy is compiledinto an intermediate controller
program. In order to reduce the code-size, several post-optimisations are applied. Here,
the dependencies that are defined in the specification are used to remove redundant testing
commands. Finally, the concrete assembler program will be compiled from the optimised
intermediate program. The language of the synthesised assembler code complies with IEC
1131-3. This gives the opportunity to test the programs on real hardware.

Chapter2 describes the preliminaries of the computational models described in chapter
3. Those form the basis of the actual synthesis algorithm presented in chapter5. In chap-
ter 4, the specification language is formally defined and illustrated with some examples.
Chapter6 describes the code generation algorithms. Finally in chapter 7, some real world
examples are shown that illustrate approaches for modelling common engineering problem
tasks. Also, the developed tool and the generated code are presented.

CHAPTER 1. INTRODUCTION 6

Deterministic
Strategy

Assertions

Dependencies

Non-optimised
Intermediate Program

Optimised
Intermediate Program

Assembler
Program

Non-deterministic
Strategy

Implicit
Timed Automata

Timed Plan
Automata

Environment

Plans

Explicit
Timed Automata

Figure 1.3: Synthesis algorithm overview

CHAPTER 1. INTRODUCTION 7

1.4 Related Work

There are two major directions in the broad field of program synthesis:data-intensive (or
deductive) andcontrol-intensive (or automata-theoretic) synthesis. With the data-intensive
approach, one tries to generate programs based on proofs and, therefore, user interaction
is necessarily needed [23, 20, 14]. Control-intensive approaches do not contain any form
of data-type. Hence, the field of application is fairly restricted to theoretical problem tasks
[13].

Real-time synthesis, which is the aim of this thesis, is based on automata to model
the control states of the machine components. On the other hand, an infinite data-type,
continuous real-time, is included. So one can say that real-time synthesis is a combination
of data- and control-intensive synthesis.

Seen from the point of view of the controller, machine components may show an un-
predictable behaviour. Thus, a non-deterministic computational model must be assumed.
The standard for modelling real-time systems areTimed Automata[4]. Based on that, the
authors of [19, 12] introduced theTimed Controller Synthesis Problemand formulated a
solution as finding a winning strategy for an infinite game. They showed methods such as
a fixed-point computation on the space of states and clock configurations.

Similar to them, the synthesis approach in this thesis baseson timed safety games. But
in contrast to a pure backward propagation from the fail states on, a forward exploration
combined with a backward fail state removal from the initialstate on is used to find a
winning strategy. Hereby, difference bound matrices [11] that represent clock zones [3] are
used to symbolise the continuous part of the state space efficiently. The standard model-
checking tool [6] has already shown that this technique works very well even for industrial
setups.

In [5], based on timed automata extended by real-time tasks, a synthesis approach for
the Lego Mindstorms system was developed. They generate C-code using the TIMES tool
for checking reachability and schedulability of such automata. In contrast, for the target
systems of this thesis, programmable logic controllers, a scheduling approach is not suffi-
cient to deal with unpredictable plant behaviour.

n0
C <= 4

n1

C>2

u

n2
c

Figure 1.4: Standard simulation graph

CHAPTER 1. INTRODUCTION 8

In [1], it was shown why the standard simulation graph of a timed automaton cannot
be used in a straightforward manner for solving timed games.It was proposed to build
a quotient graph of the dense time transition system as a precomputational step. In this
quotient graph, some transitions may only change their enabled-state by taking explicit
delay-transitions, while in the simulation graph, this state can change while staying in a
location and letting time pass. Applying that implicit-to-explicit conversion to the complete
product transition system would be very expensive. However, since in this thesis the plant
is defined in a modular manner, i.e. that each component is modelled as an independent
automaton, the precomputation can be applied to each automaton independently. Because
the clocks of the various automata do not overlap, the generation of the individual quotient
graphs can be done in a local fashion. Thus, the increase of complexity is negligible,
since the running time of this precomputation depends only on the number of the locations,
edges, and clocks of the components, which are, by the way, rather tiny compared with the
complete product state space.

In figure 1.4, there are two transitions: an uncontrollable transitionu from n0 to n1

and a controllablec from n0 to n2. While c is always enabled,u becomes firstly enabled
if two time units pass by. Obviously, the controller has the opportunity to avoid a possible
occurrence ofu by executingc within the first two time units. Therefore, in this case,
u must be regarded as controllable. Figure1.5 shows the corresponding quotient graph.
Here, the nodes are split up according to their explicit decision-intervals. This yields a
correct controllable/uncontrollable classification of all transitions.

n0/0
C <= 2

n0/1
2<C<=4

Delay

n1
u

n2
c

c

Figure 1.5: Time abstracted quotient graph

Independently to this thesis, a truly on-the-fly algorithm,i.e., without any precompu-
tation, for solving games based on timed game automata was proposed by [8]. It extends
the on-the-fly algorithm suggested by [18] for linear-time model-checking of finite-state
systems. It is an interleaved combination of forward computation of the simulation graph
together with back-propagation of information of winning states. Hereby, the winning sta-
tus of an individual state can change, which causes a reevaluation of the predecessor states.
However, due to an overlap of regions it is possible that somestates are evaluated several
times, implying the disadvantage that the complexity is notlinear in the region graph. In
contrast, the game solving algorithm in this thesis is linear in the size of the product graph.

Chapter 2

Preliminaries

In this chapter, the theoretical foundations of the two major computational models of this
thesis are introduced. On the one hand, the behaviour of a machine is non-deterministic,
i.e. that in a certain state, there can be many uncontrollable reactions that all have to be
considered. [19] has shown that infinite games can be used to tackle the problem of a non-
deterministic environment. On the other hand, it is needed to introduce an infinite time
domain. The concept of Timed Automata by [4] is introduced to deal with continuous real-
time. Both models are decidable and represent the theoretical foundations of the actual
synthesis algorithm.

2.1 Infinite Games

The essence of each controller program is to handle unpredictable behaviour of the con-
trolled machine components. In contrast to schedule-synthesis, it is not appropriate to
create a static rule in which order some requests should be send to the plant such that a
flawless cycle is always ensured. Handling such a reactive problem setup is the main topic
of this section.

2.1.1 Game Arena

Thegame arenasets up the structure in which the controller plays against the non-deterministic
plant. All controllable requests are denoted with a question mark (?) and all uncontrollable
reactions are denoted with an exclamation mark (!)1.

Formally, a game arena (or game structure) is a tripleG = (Q,Σ,∆) whereQ is a finite
set of states,Σ is a finite message alphabet, and∆ ⊆ Q × {?, !} × Σ × Q is a transition
relation, which defines thegame movesfor each side. Note that in contrast to the classical
theory [19], where there are two types of states, namely controller andplant states, here,
the information whether an action belongs to the controlleror the plant is modelled within
the transitions.

1The symbols are chosen that way because the plant is modelledfrom the point of view of the components

9

CHAPTER 2. PRELIMINARIES 10

Thesuccessor functionδ : 2Q → 2Q is implied by a game arena and returns for a given
set of states all successor states that are reachable by taking one move. It is defined as

δ(Q′) := {t | ∃s ∈ Q′ : (s, τ,m, t) ∈ ∆}

The functionreach : Q→ 2Q returns the set of all reachable states from a given origin
state. It can be described by a least fixed-point formula:

reach(s0) := µR
(

{s0} ∪ δ(R)
)

2.1.2 Safety Games

A safety gameis tripleS = (G,A, I) whereG is a game arena,A : Q→ {false, true} is
a safety predicate function, andI ∈ Q is an initial state. The safety predicate identifies the
game states as safe or unsafe (allowed or undesired, respectively). The set offail statesis
implicitly defined as

fail(Q) := {s ∈ Q | A(s) = false}

Playing a safety game means that the plant must reach a fail state and the controller
must prevent that in order to win the game. As already mentioned in the introduction, some
goals should be reached while playing the game. Not reachingthese goals within a finite
amount of time is an undesired behaviour and is therefore classified as a fail state. So just
letting the plant do nothing, or remaining in a cycle foreverwhere no goals are achieved, is
undesired.

An often quoted example for a safety game is a robber, representing the plant, who
wants to escape from a building. A policeman (the controller) must hold him off. The
building (the game arena) consists of several corridors that are linked directly or by lockable
doors with each other. The robber runs through the corridorsin order to find a way that leads
outside. In the approach that is shown here, the policeman prevents the robber from fleeing
by locking some doors (removing controllable transitions).

2.1.3 Solving a Safety Game

Of course, it is always desired that the controller will win.The main task in solving a
safety game is to find a winning strategy for the controller. This strategy is the basis for
any synthesised program. If there is no winning strategy forthe controller, then there can
not be any valid controller program as well. Anyway, a safetygame is alwaysdetermined
such that one side, either the plant or the controller, is theclear winner (i.e. that there is no
draw).

A set of winning statesW ⊆ Q describes a sub-graph of the original game arena such
that the plant is unable to win withinW . In order to determineW , theattractor setL of
the fail states (i.e., all losing-states) must be computed.This can be done by evaluating the
following least fixed-point expression:

µL
(

fail(Q) ∪ {s | ∃(s, !,m, t) ∈ ∆ : t ∈ L} ∪ {s | ∀(s, τ,m, t) ∈ ∆ : t ∈ L}
)

CHAPTER 2. PRELIMINARIES 11

Algorithm 1 shows the explicit computational steps. Note that states having only uncon-
trollable outgoing edges are regarded as valid. As we can seelater in chapter6, such states
are interpreted as ”wait until any of the uncontrollable events occurs”.

Input : A priori known fail statesfail(Q).
Output : Controller losing statesL.

L ← fail(Q)1

repeat2

L′ ← L3

L ← L′ ∪ {s | ∃(s, !,m, t) ∈ ∆ : t ∈ L} ∪ {s | ∀(s, τ,m, t) ∈ ∆ : t ∈ L}4

until L = L′5

return L6

Algorithm 1 : Computing the controller losing states

The set of the winning statesW is the intersection of all reachable states from the initial
stateI with the inverse set of the losing statesL:

W := reach(I) ∩ L

There exists a controller winning strategy iffI ∈W .

2.2 Timed Automata

One approach to include time in the specification is to assumetime to bediscrete. When
time is modeled in this manner, possible clock values are nonnegative integers and events
can only occur at integer time values. This type of model is appropriate forsynchronous
systems, where all of the components are synchronised by a single global clock. The dura-
tion between successive clock ticks is chosen as the basic unit for measuring time. Since
this thesis is assuming unsynchronised components, this approach is inappropriate.

Continuous time, on the other hand, is the natural model forasynchronous systems,
because the separation of events can be arbitrarily small. This ability is desirable for repre-
senting causally independent events in an asynchronous system. Moreover, no assumptions
need to be made about the speed of the plant when this model of time is assumed.

In order to model asynchronous systems using discrete time,it is necessary to discretise
time by choosing some fixed time quantum so that the delay between any two events will
be a multiple of this time quantum. This is difficult to doa priori, and may limit the
accuracy with which systems can be modeled. Also, the choiceof a sufficiently small time
quantum to model an asynchronous system accurately may blowup the state space so that
an exhaustive exploration is no longer feasible.

The timed automaton modelof Alur, Courcoubetis, and Dill [4] has become the stan-
dard. Most on the research on continuous-time model-checking and synthesis is based on
this model. In this chapter, the properties of timed automata are presented and the major

CHAPTER 2. PRELIMINARIES 12

techniques how to solve thereachabilityproblem for such automata are explained.

The following definitions are taken from [9].

A timed automatonis a finite automaton augmented with a finite set of real-valued
clocks. We assume that transitions are instantaneous. However, time can elapse when the
automaton is in a node. When a transition occurs, some of the clocks may be resetted. At
any instant, the reading of a clock is equal to the time that has elapsed since the clock was
resetted. We assume that time passes at the same rate for all clocks.

A clock constraint, called aguard, is associated with each transition. The transition
can be taken only if the current values of the clocks satisfy the clock constraint. A clock
constraint is also associated with each node of the automaton. This constraint is called the
invariant of the node. Time can elapse in the node as long as the invariant of the node is
true.

C1 <= 5
C1 <= 10
C2 <= 8

a

C1 >= 3 C1 := 0

b

C1 >= 4 AND C2 >= 6

C2 := 0
q0 q1

Figure 2.1: An example timed automaton

An example of a timed automaton is shown in Figure2.1. The automaton consists of
two nodesn0 andn1, two clocksC1 andC2, ana transition fromq0 to q1, and ab transition
from q1 to q0. The two clocksC1 andC2 start with value 0 and advance synchronously in
time. The execution of the automaton starts at nodeq0 where it can remain as long as the
invariant ofq0 is satisfied, i.e. thatC1 ≤ 5. Meanwhile, ifC1 ≥ 3, one can make ana
transition to the nodeq1, resetting the clockC1 back to 0. In q1, the execution can remain
until eitherC1 > 10 or C2 > 8. If C1 ≥ 4 andC2 ≥ 6, a b transition back toq0 becomes
enabled that resetsC2.

The clock constraints are defined as follows: LetX be a set ofclock variablesand
C(X) := (X → R+

0) → {false, true}. Then, the functionϕ ⊆ C(X) describesclock
constraintson X. Let v : X → R+

0 be aclock assignment, which maps each clock in
X to a nonnegative real value, thenϕ(v) returnstrue if the clock-values, indicated byv,
inhibit the constraints orfalse if not. ϕ is the conjunction of a finite number of inequalities
{c1(v), ..., cn(v)}:

ϕ(v) :=
n
∧

i=1

ci(v)

Each inequalityci(v) can have one of the following forms:

• ci(v) = true

CHAPTER 2. PRELIMINARIES 13

• ci(v) = cj ≺ v(xi)

• ci(v) = v(xi) ≺ cj

where≺ is either< or ≤, xi ∈ X, andcj ∈ Q+
0 . Note that ifX containsk clocks, then

each clock constraint is a convex subset ofk-dimensional Euclidean space. Thus, if two
points satisfy a clock constraint, then all of the points lined up in-between do satisfy the
clock constraint.

Formally, a timed automaton is a 6-tupleA = (Q,Σ,∆, q0,X, I) such that

• Q is a finite set of nodes (also called locations).

• Σ is a finite input alphabet containing all controllable and uncontrollable messages.

• q0 ∈ Q is the initial node.

• X is a finite set of continuous clocks.

• I : Q → C(X) is a function that associates nodes with clock constraints,called the
node invariants.

• ∆ ⊆ Q × (Σ × C(X) × 2X) × Q is a set of transitions. The 3-tuple(q, e, q′)
corresponds to a transition from nodeq to nodeq′ labeled with the evente. The triple
〈α,ϕ, λ〉 denotes an event with messageα, a constraintϕ that specifies when the
transition is enabled, and a set of clocksλ ⊆ X that are resetted when the transition
is executed.

We will require that time be allowed to progress to infinity, that is, at each node the
upper bound imposed on the clocks be either infinity, or smaller than the maximum bound
imposed by the invariant and by the transitions outgoing from the node. In other words, it
is possible to stay at a node forever, or the invariant will force the automaton to leave the
node. If in the latter case no transition is enabled, atimeout-edge(T) is implicitly generated
that leads the execution to a global timeout node.

2.2.1 Infinite State Transition Graph

A model for a timed automatonA is aninfinite state transition graphT (A) = (S,Σ, R, s0).
Each state inS is a pair(q, v) whereq ∈ Q is a node, andv : X → R+

0 is a clock
assignment, mapping each clock to a nonnegative real value.The initial states0 is given by
(q0, v0) where∀x ∈ X : v0(x) = 0.

In order to define the state transition relation forT (A), we must first introduce some
notation. Forλ ⊆ X, we will define theclock resettingoperator as follows:

v[λ← 0] : x 7→

{

0 : x ∈ λ
v(x) : x /∈ λ

Ford ∈ R, thetime addingoperator is defined as: Letv′ = v + d, then

∀x ∈ X : v′(x) = v(x) + d

CHAPTER 2. PRELIMINARIES 14

From the brief discussion in the beginning, we know that a timed automaton has two
basic types of transitions:

• Delay transitionscorrespond to the elapsing of time while staying at some node. We

write (q, v)
d
−→ (q, v + d), whered ∈ R+, provided that for every0 ≤ e ≤ d, the

invariantI(q) holds forv + e.

• Message transitionscorrespond to the execution of a transition from∆. We write
(q, v)

a
−→ (q′, v′), wherea ∈ Σ, provided that there is a transition(q, 〈a, ϕ, λ〉, q′)

such thatv satisfiesϕ andv′ = v[λ← 0].

The transition relationR of T (A) is obtained by combining the delay and message
transitions. We will write(q, v) R (q′, v′) or (q, v)

a
=⇒ (q′, v′) if there exists a(q, v′′) such

that(q, v)
d
−→ (q, v′′)

a
−→ (q′, v′) for somed ∈ R.

Now, our goal is to solve thereachability problemfor T (A): Given an initial states0,
we show how to compute the set of all statess ∈ S that are reachable froms0 by transitions
in R. This problem is non-trivial becauseT (A) has an infinite number of states. In order to
accomplish this goal, it is necessary to use a finite representation for the infinite state space
of T (A). Developing such representations is the main topic of the following sections.

2.2.2 Clock Zones

An efficient way to obtain a finite representation for the infinite state spaceT (A) is to
defineclock zones[3], which also represent sets of clock assignments. A clock zone is a
conjunction of inequalities that compare either a clock value or the difference between two
clock values to an integer. We allow inequalities of the following types:

x ≺ c, c ≺ x, x − y ≺ c,

where≺ is< or≤.
By introducing a special clockx0 that is always 0, it is possible to obtain a more uniform

notation for clock zones. Since the value of a clock is alwaysnonnegative, we will assume
that constraints involving only one clock have the form

−c0,i ≺ xi ≺ ci,0,

where−c0,i andci,0 are both nonnegative. Using the special clockx0, we will replace this
constraint by the conjunction of two inequalities

x0 − xi ≺ c0,i ∧ xi − x0 ≺ ci,0.

Thus, the general form of a clock zone is

x0 = 0 ∧
∧

0≤i6=j≤n

xi − xj ≺ ci,j.

CHAPTER 2. PRELIMINARIES 15

The following operations will be used to construct more complicated clock zones from
simpler ones [3]. Let ϕ be a clock zone. Ifλ ⊆ X is a set of clocks, then defineϕ[λ ← 0]
to be the set of all clock assignments such that

∀v ∈ ϕ : ∀x ∈ λ : v(x) = 0.

If d ∈ R+, then we defineϕ+ d to be the set of all clock assignmentsv + d wherev ∈ ϕ.
The setϕ− d is defined similarly.

Let ϕ be a clock zone expressed in terms of clocks inX. The conjunctionϕ will
represent a set of assignments to the clocks inX. If X containsk elements, thenϕ will
be a convex subset of k-dimensional Euclidean space. The following lemma shows that the
projection of a clock zone onto a lower dimensional subspaceis also a clock zone.

Lemma 2.2.1 If ϕ is a clock zone with free clock variablex, then∃x[ϕ] is also a clock
zone.

This lemma turns out to be quite valuable in working with clock zones. A proof is given in
[9].

Note that the assignment of values to the clocks in an initialstate of timed automaton
A is easily expressed as a clock zone sincev(x) = 0 for every clockx ∈ X. Moreover,
every clock constraint used in the invariant of an automatonlocation or in the guard of a
transition is a clock zone. Because of the observation, clock zones can be used as the basis
for various state reachability analysis algorithms for timed automata. These algorithms are
usually expressed in terms of three operations on clock zones [3].

Intersection

If ϕ andψ are two clock zones, then the intersectionϕ ∧ ψ is a clock zone. This is easy
to see. Becauseϕ andψ are clock zones, they can be expressed as conjunctions of clock
constraints. Hence,ϕ ∧ ψ is also a conjunction of clock constraints and, therefore, aclock
zone.

Clock Reset

If ϕ is a clock zone andλ is a set of clocks, thenϕ[λ ← 0] is a clock zone. We will show
that this is true whenλ contains a single clock. In this case,ϕ[λ ← 0] is equivalent to
∃[ϕ∧ x = 0], and the result follows immediately by Lemma2.2.1. The result can easily be
extended to sets with more than one clock by induction.

Elapsing of Time

Geometrically seen, a clock zoneϕ is represented by a (bounded) polyhedron. The (un-
bounded) half-plane that is described by parallel translation of the polyhedron by 45◦ rep-
resents the clock zone that can be reached by time elapsing from an assignment inϕ. This
region is denoted byϕ⇑.

CHAPTER 2. PRELIMINARIES 16

Formally, if ϕ is a clock zone, then a clock assignmentv will be an element ofϕ⇑, if
v satisfies the formula∃t ≥ 0 : (v − t) ∈ ϕ or, equivalently,∃t ≥ 0 : v ∈ (ϕ + t). This
region is a clock zone.

In principle, the three operations on clock zones describedabove can be used to con-
struct a finite representation of the transition graphT (A) corresponding to a timed automa-
ton. In the next section it is described how this algorithm can be implemented efficiently
by usingdifference bound matrices[3, 11]. In this section states are represented byzones
[3]. A zone is a pair(s, ϕ) wheres is a location of the timed automaton andϕ is a clock
zone. Consider a timed automatonA with transitione = (s, 〈a, ψ, λ〉, s′). Assume that
the current zone is(s, ϕ). Thus,s is a location ofA, andϕ is a clock zone. The clock zone
succ(ϕ, e) will denote the set of clock assignmentsv′ such that for somev ∈ ϕ, the state
(s′, v′) can be reached from the state(s, v) by letting time elapse and then executing the
transitione. The pair(s′, succ(ϕ, e)) will represent the set of successors of(s, ϕ) under the
transitione. The clock zonesucc(ϕ, e) is obtained by the following steps:

1. Intersectϕ with the invariant of locations to find the set of possible clock assign-
ments for the current state.

2. Let time elapse in locations using the operator⇑ described above.

3. Take the intersection with the invariant of locations again to find the set of clock
assignments that still satisfy the invariant.

4. Take the intersection with the guardψ of the transitione to find the clock assignments
that are permitted by the transition.

5. Set all of the clocks inλ that are reset by the transition to 0.

Combining all of the above steps into one formula, one obtains

succ(ϕ, e) = ((ϕ ∧ I(s))⇑ ∧ I(s) ∧ ψ)[λ← 0]

Because clock zones are closed under the operations of intersection, elapsing of time, and
resetting of clocks, the setsucc(ϕ, e) is also a clock zone.

Finally, we describe how to construct a transition system for a timed automatonA. The
transition system is called thezone graphand is denoted byZ(A). The states ofZ(A) are
the zones ofA. If s is the initial location ofA, then(s, [X ← 0]) will be the initial state of
Z(A). There will be a transition from the zone(s, ϕ) in Z(A) to the zone(s′, succ(ϕ, e))
in Z(A) labeled with the actiona for each transition of the forme = (s, 〈a, ψ, λ〉, s′) of
the timed automatonA. Because each step in the construction of the zone graph is effective,
this gives an algorithm for determining state reachabilityin the state transition graphT (A).
In the next section we will show how to make this constructionmore efficient.

Note that the standard reachability graph that is shown hereis not appropriate for syn-
thesis, which is the aim of this thesis. In section5.2.2, this issue is discussed in detail.

CHAPTER 2. PRELIMINARIES 17

2.2.3 Difference Bound Matrices

A clock zone can be represented by adifference bound matrixas described by Dill in [11].
This matrix is indexed by the clocks inX together with a special clockx0 whose value is
always 0. This clock plays exactly the same role as the clockx0 in the previous section.
Each entryDi,j in the matrixD has the form(di,j, ≺i,j) and represents the inequality
xi − xj ≺ di,j, where≺i,j is either< or ≤, or (∞, <), if no such bound is known.
Because the variablex0 is always 0, it can be used for expressing constraints that only
involve a single variable. Thus,Dj,0 = (dj,0, ≺), means that we have the constraint
xj ≺ dj,0. Likewise,Dj,0 = (dj,0, ≺), means that we have the constraint0− xj ≺ d0,j or
−d0,j ≺ xj. Let D donate the functional prototype of a difference bound matrix:

D := N× N→ Z× {<,≤}

The representation of a clock zone by a difference bound matrix is not unique. In fact,
a single clock zone can be represented by infinite many matrices. In general, the sum of the
upper bounds on the clock differencesxi − xj andxj − xk is an upper bound on the clock
differencexi − xk. This observation can be used to progressively tighten the difference
bound matrix. Ifxi−xj ≺i,j di,j andxj −xk ≺j,k dj,k, then it is possible to conclude that
xi − xk ≺

′
i,k d

′
i,k where

d′i,k = di,j + dj,k

and

≺′
i,k=

{

≤ : ≺i,j=≤ ∧ ≺j,k=≤
< : else

Thus, if (d′i,k,≺
′
i,k) is a tighter bound than(di,k,≺i,k), one should replace the latter by

the former so thatDi,k := (d′i,k,≺i,k). This operation is calledtighteningthe difference
bound matrix. We can repeatedly apply tightening to a difference bound matrix until further
application of this operation does not change the matrix. The resulting matrix is acanonical
representation for the clock zone under consideration. Note that a canonical difference
bound matrix will satisfy the inequalitydi,k ≺i,k di,j + dj,k for all possible values of the
indicesi, j, andk.

Finding the canonical form of a difference bound matrix can be automated by using the
Floyd-Warshall algorithm [10], which has cubic complexity. The algorithm guarantees that
all the possible combinations of indices are systematically checked to determine if further
tightening is possible. We determine if a tighter bound can be obtained forDi,k by checking
if the inequalitydi,k ≺i,k di,j + dj,k holds for all possible values ofj. If the inequality
does not hold for some value ofj, then we replaceDi,k by (d′i,k,≺

′
i,k) as described in the

preceding paragraph. Algorithm2 gives a description in mathematical pseudocode.
After the difference bound matrix has been converted to canonical form, we can deter-

mine if the corresponding clock zone is non-empty by examining the entries on the main
diagonal of the matrix. If the clock zone described by the matrix is nonempty, all of the
entries along the main diagonal will have the form(0,≤). If the clock zone is empty or
unsatisfiable, there will be at least one negative entry on the main diagonal. Note that an
entry on the main diagonal of the form(0, <) indicates also an infeasible clock zone.

CHAPTER 2. PRELIMINARIES 18

Input : Non-canonical matrixD havingn clocks plus the zero-clockx0.
Output : Canonical, tightened matrixD′.

D′ ← D1

for j ∈ {0, ..., n} do2

for i ∈ {0, ..., n} do3

for k ∈ {0, ..., n} do4

if d′i,k ≥ di,j + dj,k then5

d′i,k ← di,j + dj,k6

≺′
i,k ←

{

≤ : ≺i,j=≤ ∧ ≺j,k=≤
< : else7

Algorithm 2 : Tightening a difference bound matrix

Now, three operations on difference bound matrices are described. These operations
correspond to the three operations defined on clock zones in the previous section.

• Intersection. We defineD = D1 ∧ D2. LetD1
i,j = (c1,≺1) andD2

i,j = (c2,≺2).
ThenDi,j = (min(c1, c2),≺), where≺ is defined as follows:

– If c1 < c2, then≺=≺1.

– If c2 < c1, then≺=≺2.

– If c1 = c2 and≺1=≺2, then≺=≺1.

– If c1 = c2 and≺1 6=≺2, then≺=<.

• Clock reset. DefineD′ = D[λ← 0], whereλ ⊆ X as follows:

– If xi, xj ∈ λ, thenD′
i,j = (0,≤).

– If xi ∈ λ ∧ xj /∈ λ, thenD′
i,j = D0,j .

– If xi /∈ λ ∧ xj ∈ λ, thenD′
i,j = Di,0.

– If xi, xj /∈ λ, thenD′
i,j = Di,j .

• Elapsing of time. DefineD′ = D⇑ as follows:

– D′
i,0 = (∞, <) for anyi 6= 0.

– D′
i,j = Di,j if i = 0 or j 6= 0.

In each case the resulting matrix may fail to be in canonical form. Thus, as a final step, we
must reduce the matrix to canonical form. All three of the operations can be implemented
efficiently. Moreover, the implementation of these operations is relatively straightforward
to program.

CHAPTER 2. PRELIMINARIES 19

2.2.4 Complexity Considerations

The construction of a region graph [9, 2] is exponential in the number of clocks and also in
the magnitude of the clocks, since for each interval betweenzero and the maximum integer
constant, a corresponding state must exist. The size of the zone graph, on the other hand,
also depends on the number of clocks but not on the magnitude of the clocks. Hereby, the
number of zones only depends on the number of distinguishable clock differences. When
modelling industrial machines, it is typical that the number of clocks is proportional to the
number of components. Since complex machines may have many different components,
it is crucial for the whole synthesis process to minimise theunavoidable temporal blowup.
Of course, one cannot reduce the number of clocks, but one canchoose the optimal clock
value discretisation method, which are, in the oppinion of the author, clock zones.

However, the clock zones have one disadvantage: in loops, where unused clocks are not
being resetted, they count to infinity, i.e. that the difference to those clocks that are actually
resetted, do gradually increase. The result is that for eachloop cycle, a new clock zone is
generated, since this new zone does not lie within the old ones. One way to avoid such a
diverging behaviour is to fix the inequality in the clock zonefor all unused clocksCu in
the corresponding states to0 ≤ Cu − C < ∞ for any other clockC. Alternatively, as a
suggestion of a possible future work, one could construct additionally a region graph on top
of the zone graph.

Chapter 3

Computational Models

In order to cope with continuous real time, on the one hand, and non-determinism, on the
other hand, the two basic concepts of timed automata and infinite games are combined in
one major computational model, timed game automata.

3.1 Timed Game Automata

While the nodes of an automaton represent local states of a system, the transitions symbolise
occurring events. The combination of infinite games with timed automata is done by adding
a message-type information to each transition. Formally, the finite input alphabet of a timed
game automatonΣG is a tuple containing a message-label and a message-type:

ΣG ⊆ Σ× {?, !, $, D, T}

The five message-types are defined as follows:

• Controllable messages, denoted by?, represent externalrequests to forcethe au-
tomaton to go into a certain state.

• Uncontrollable messages, denoted by!, arespontaneous reactionsof the plant (e.g.
reactions to a prior controller request).

• Transitions havingsynchronisedmessages, denoted by$, can only be taken if the
same messageα occurs at thesame timeelsewhere. Synchronised transitions can be
used to model internal communications among several automata.

• Delay- and timeout-transitions, denoted byD andT , are generated automatically
by transforming animplicit timed automaton to anexplicit one (see section5.2.2).

One possibility to synchronise timed automata can either bedoneimplicitly orexplicitly.
The classical implicit way is that if automatonA contains an uncontrollable message!m
and automatonB contains a controllable message?m, then the combined automaton is
synchronised via a?m transition. Later, it will be shown how an explicit synchronisation is
used to synchronise the production goals with the events of the plant. Also, when modelling

20

CHAPTER 3. COMPUTATIONAL MODELS 21

industrial machines, the experience was made that the explicit synchronisation method is
more convenient than the implicit one.

3.2 Plan Automata

Plan automata are timed automata, that have an additional dedicated locationfailed. They
are intended to run in parallel to the state space exploration in order to ensure that as long as
no plan automaton enterfailed the represented plan is still maintained. A plan automaton
has only synchronised transitions, and therefore, it produces no messages by its own. This
means that no messages can be received from the controller orsent to the plant. Every
synchronised transition represents a certain goal. Each message that is sent within the plant
is passed to each plan automaton. If the current plan location has an outgoing transition
containing the passed message from the plant, then that goalhas been reached. Since
failed must always be a sink, a plan automaton can never exit this node.
Formally, a timed plan automatonP = (Q,Σ,∆, q0, failed,X, I) is a timed automaton
with the following properties:

• failed ∈ Q is a dedicated fail location.

• ∄(x, e, y) ∈ ∆ : x = failed.

• ∀(x, 〈α, τ, ϕ, λ〉, y) ∈ ∆ : τ = $.

A B C
$a $b

failed

$b $a

Figure 3.1: Part of a plan automaton

Figure3.1shows a part of a plan automaton. It represents the plan: reach event ”a” first
then ”b”; the vice versa case is explicitly forbidden.

CHAPTER 3. COMPUTATIONAL MODELS 22

3.3 Parallel Composition

Paralleling two or more automata means combining their states. An interleaving or asyn-
chronous semantics for this operation is assumed.
Let A1 = (Q1,Σ1,∆1, q

1
0,X1, I1) andA2 = (Q2,Σ2,∆2, q

2
0 ,X2, I2) be two timed au-

tomata with the following properties:

• A1 andA2 have disjoint sets of clocks:X1 ∩X2 = ∅.

• For each controllable/uncontrollable transition inA1, A2 must not have a control-
lable/uncontrollable transition with the same message:
Let

Σi(T) := {α | (x, 〈α, τ, ϕ, λ〉, y) ∈ ∆i ∧ τ ∈ T}

be the set of all messages of a given set of transition-typesT in the relation-set∆i,
then

Σ1({?, !}) ∩ Σ2({?, !}) = ∅

. The parallel composition ofA1 andA2 is the timed automaton

A1 ‖ A2 := (Q1 ×Q2, Σ1 ∪ Σ2, ∆, q10 × q
2
0 , X1 ∪X2, I)

whereI(q1, q2) = I1(q1) ∧ I2(q2) and the edge relation∆ is computed by algorithm3.

Input : Two timed automataA1 andA2.
Output : Combined edge relation∆.

∆ ← ∅1

forall (p, q) ∈ Q1 ×Q2 do2

forall (p, 〈α1, τ1, ϕ1, λ1〉, p
′) ∈ ∆1 do3

if α1 ∈ Σ2({$}) then4

forall (q, 〈α1, $, ϕ2, λ2〉, q
′) ∈ ∆2 do5

∆ ← ∆ ∪ {((p, q), 〈α1, τ1, ϕ1 ∧ ϕ2, λ1 ∪ λ2〉, (p′, q′))}6

else7

∆ ← ∆ ∪ {((p, q), 〈α1, τ1, ϕ1, λ1〉, (p′, q))}8

forall (q, 〈α2, τ2, ϕ2, λ2〉, q
′) ∈ ∆2 do9

if α2 ∈ Σ1({$}) then10

forall (p, 〈α2, $, ϕ1, λ1〉, p
′) ∈ ∆1 do11

∆ ← ∆ ∪ {((p, q), 〈α2, τ2, ϕ1 ∧ ϕ2, λ1 ∪ λ2〉, (p′, q′))}12

else13

∆ ← ∆ ∪ {((p, q), 〈α2, τ2, ϕ2, λ2〉, (p, q′))}14

return ∆15

Algorithm 3 : Computing the combined edge relation

CHAPTER 3. COMPUTATIONAL MODELS 23

Thus, the nodes of the parallel composition are pairs of nodes from the component
automata, and the invariant of such a node is the conjunctionof the invariants of the com-
ponent nodes. There will be a transition in the parallel composition for each pair of syn-
chronised transitions from the individual timed automata with the same label. The source
node of the transition will be the composite node obtained from the source nodes of the
individual transitions. The target node will be the composite node obtained from the target
nodes of the individual transitions. The guard will be the conjunction of the guards for the
individual transitions, and the set of clocks that are resetted will be the union of the sets
that are resetted by the individual transitions. If the action of a transition is only an action
of one of the two processes, then there will be a transition inthe parallel composition for
each node of the other timed automaton. The source and targetnodes of these transitions
will be obtained from the source and target nodes of the original transition and the node of
the other automaton. All of the other components of the transition will remain the same.

Figure3.2shows a simple untimed composition. An untimed compositionwith a syn-
chronised transition is shown in figure3.3. Looking at this example, one can see that some
states are never reached. Therefore, these states do not need to be included in the total
combined state space. So it concludes that when computing the parallel composition of
multiple automata, it is smarter to do this in conjunction with the reachability computation
in order to avoid non-reachable states at all.

A,X
!x ?y

A,Y A,Z

B,X B,Y B,Z

C,X C,Y C,Z

?a ?a ?a

!b !b !b

!x ?y

?y!x

A

B

C

?a

!b

X

Y

Z

!x

?y

Figure 3.2: Simple untimed parallel composition

3.4 Combined State Space

A combined configuration (state)is a pair(q∗, z) ⊆ (Q1×Q2× ...×Qn)×D. EachQi is
a finite node set of a corresponding timed automatonAi = (Qi,Σi,∆i, rooti,Xi, Ii), for
anyn ∈ N. z represents a difference bound matrix that stands for a specific clock zone.q∗i
refers to the i-th component of the node-tupleq∗. The setA = {A1, A2, ..., An} is called
thebasisof (q∗, z).

A combined state spaceis a quadruple(S,Σ,∆, s0) with basisA. Let∀Ai ∈ A : Ai =
(Qi,Σi,∆i, rooti,Xi, Ii), then

CHAPTER 3. COMPUTATIONAL MODELS 24

A,X
?y

B,X C,Y C,Z
?a !b

A,X
?y

A,Y A,Z

B,X B,Y B,Z

C,X C,Y C,Z

?a ?a ?a

!b
!b !b

?y

?y

A

B

C

?a

!b

X

Y

Z

$b

?y

$b

$b

Figure 3.3: Untimed synchronised parallel composition

• S ⊆ (Q1 ×Q2 × ...×Qn)×D is a finite set of discrete combined states.

• Σ =
⋃n

i=1 Σi is the combined set of the messages of the basis.

• s0 ∈ S is the initial combined state.

• ∆ ⊆ S× (Σ∪C(X)×{!, ?, %, D, T}× 2X)×S is a set of transitions. The triple
(s, e, s′) corresponds to a transition from states to states′ labeled with the evente.
The triple〈α, τ, λ〉 denotes an event with message or either delay-conditionα, type
τ , and a set of clocksλ that are resetted when the transition is executed.

When computing a state space by combining multiple timed automata, all synchro-
nised transitions are resolved such that the resulting state space has only uncontrollable (!),
controllable (?), or guarded (%) transitions. There are two types of ”time advancing” tran-
sitions: delay (D) and timeout (T). Timeout transitions are delay transitions that lead to
undesired states.

Chapter 4

Specification Language

In this chapter, the developed specification language is introduced. In order to define the
formal semantics, for each abstract syntactical construct, the denotational functionD de-
fines how the mathematical representation is extracted fromthe abstract syntax. Later, these
mathematical objects are used as the input of the state spacealgorithm in chapter5.

The specification is structured into the parts: plant definition and production goals.

specification ::= plant goals

4.1 Plant Definition

All components that are part of the controllable plant are described in this section.

plant ::= components assertions dependencies

components ::= plant ′{′ componentlist ′}′

componentlist ::= component ′;′ {component ′;′ }

component ::= automaton | hardware | operator

The plant can contain multiple components. A component can either be an explicitly
defined timed automaton, a hardware component, or an operator component.

25

CHAPTER 4. SPECIFICATION LANGUAGE 26

4.1.1 Automaton Component

Declaring a component as an automaton, one can define arbitrary user defined timed game
automata that comply with the theoretical definition from section 3.1.

automaton ::= automaton label ′{′ automatonbody ′}′

automatonbody ::= [clocksdef] nodesdef transitionsdef

clocksdef ::= clocks clock {′,′ clock } ′;′

nodesdef ::= nodes nodedef {′,′ nodedef } ′;′

nodedef ::= node [constraintlist]

constraintlist ::= ′{′ constraint { and constraint } ′}′

constraint ::= clock in interval

interval ::= (′(′ | ′[′) constant ′,′ constant (′)′ | ′]′)

transitionsdef ::= transition { ′;′ transition } ′;′

transition ::= node ′ →′ node transitionargs

transitionargs ::= event [constraintlist]

[reset clocklist]

[instant]

event ::= eventtype message

eventtype ::= (′?′ | ′!′ | ′$′)

clocklist ::= ′{′ clock {′,′ clock } ′}′

According to [4], each node may have a list of clock constraints, representing the invari-
ant of the node. Analogously, the transitions may also have clock constraints, representing
the guards of the edges. Since a constraint for a single clockis always convex, it can be
specified as an interval. If no invariant or guard is present,then the constraints function
will always returntrue. An interval has a lower- and an upper bound, represented by two
integers. The bounds can be either declared as open (”(” or ”)”) or closed (”[” or ”]”). Al-
ternatively, the upper bound can also be infinity (”inf)”). A transition must have a message
and may reset some clocks. The keywordinstantindicates that a transition should be taken
prioritised, before any other. A message can either be controllable (”?”), uncontrollable
(” !”), or synchronised (”$”).

Example Code

The following example code models the automaton from figure2.1.

plant {
...
automaton A {

clocks c1, c2;
nodes q0{c1 in [0,5]}, q1{c1 in [0,10], c2 in [0,8]};

CHAPTER 4. SPECIFICATION LANGUAGE 27

q0 -> q1 ?a {c1 in [3,inf)} reset{c1};
q1 -> q0 !b {c1 in [4,inf) and c2 in [6,inf)} reset{c2};

}
...

}

4.1.2 Hardware Component

A hardware component represents a syntactical frontend to the automaton component.
Which means that each hardware unit can be expressed by an equivalent automaton unit. It
is integrated for convenience only, since it represents an often occurring pattern in industrial
component design.

A hardware component can move to certain defined resting states. This happens when
the controller has sent a corresponding request (e.g. ”Gotostate X”, where X is one of the
defined resting states). Then, the component will firstly enter an intermediate state, rep-
resenting the movement phase from the origin resting state to the destination state. Also,
the corresponding clock is resetted that measures the time that passes during that move-
ment. After the clock-value enters the given time-intervalfor the movement, the component
reaches the destination state and sends a corresponding uncontrollable event (e.g. ”State X
has been reached”) that the controller can receive.
The grammar is defined as follows:

hardware ::= hardware label ′{′ hardwarebody ′}′

hardwarebody ::= statesdef movesdef

statesdef ::= states state {′,′ state } ′;′

movesdef ::= move {′;′ move } ′;′

move ::= state ′ →′ state takes interval

Example code

The component modeled by the following example code is visualised in figure4.1. Figure
4.2shows the resulting automaton.

plant {
...
hardware A {

states X, Y, Z;
X -> Y takes [2,4];
Y <- X takes [2,3];
Y -> Z takes [3,4];
Z <- Y takes [1,2];

}
...

CHAPTER 4. SPECIFICATION LANGUAGE 28

}

X Y Z

Figure 4.1: A hardware component with three resting states

X

moving_x_y

Y Z

moving_y_z

moving_z_ymoving_y_x

?moveto_Y ?moveto_Z

?moveto_Y?moveto_X

!reached_Y

!reached_X !reached_Y

!reached_Z

Cmoving:=0

Cmoving:=0

Cmoving:=0

Cmoving:=0

Figure 4.2: Figure4.1represented as an automaton

4.1.3 Operator Component

Like the hardware unit, theoperator unit is also a syntactical frontend to the timed au-
tomaton unit. It can be used to model components that wait fora certain external operator
input and then perform immediately a reaction. The canonical example for such a unit is a
press/release-button. A precise elaboration of this problem is given in section7.2.1.
The definition of the grammar is similar to the hardware unit:

operator ::= operator label ′{′ operatorbody ′}′

operatorbody ::= statesdef movesdef

statesdef ::= states state {′,′ state } ′;′

movesdef ::= move {′;′ move } ′;′

move ::= state ′ →′ state

CHAPTER 4. SPECIFICATION LANGUAGE 29

Example code

plant {
...
operator button {

states released, pressed;
released <-> pressed;

}
...

}

4.1.4 Assertions

The assertions describe the safety predicate, which was introduced in2.1.2. It is represented
as a conjunction of propositions of combined node tuples. They can be used to explicitly
define undesired states or to set up global state invariants that must always hold.
The grammar is defined as follows:

assertions ::= assertions ′{′ nodeconditionlist ′}′

nodeconditionlist ::= nodeconditiondef { nodeconditiondef }

nodeconditiondef ::= never | always | onlyif ′;′

never ::= never nodecondition

always ::= always nodecondition

onlyif ::= nodecondition onlyif nodecondition

nodecondition ::= or

or ::= and [or or]

and ::= literal [and and]

literal ::= [not] terminal

terminal ::= (′(′ or ′)′ | state | constant)

state ::= < unit > ′.′ < node > [′∗′]

constant ::= (true| false)

One can see thatnot has the highest operator priority, thenand, and at leastor. With
the tokenstate, one can refer a single state or a set of states of a certain unit, which was
defined in the plant. Multiple states can be referenced by adding a star (∗) at the end. Doing
so, a substring match is performed instead of an equality check. For example,X.moving∗
references all moving states of a unitX. WhileX.moving a b references only one state.

Example code

In the following example code, two components are modeled, controlling a robot arm. The
componentvertical represents a valve that moves the robot armdown andup, while
horizontal moves the arm fromleft to right. Now, consider that some obstacle is

CHAPTER 4. SPECIFICATION LANGUAGE 30

in the physical moving range of the robot arm, such that it must not move horizontally as
long as it is not in the upper vertical position. This set-up can be modelled with this plant
definition:

plant {
hardware vertical {

states down, up;
down <-> up takes [1,2];

}
hardware horizontal {

states left, right;
left, right takes [1,2];

}
}

and these assertions:

assertions {
horizontal.moving* onlyif vertical.up;

}

Note that this definition is equivalent to:

assertions {
horizontal.moving* and not vertical.up;

}

This example is visualised in figure4.3. Here, the hatched states indicate the fail states in
which the robot arm would crash with the obstacle.

4.1.5 Dependencies

Dependency information about the events that the plant produces can later be used to opti-
mise the total code size of the intermediate controller program. Using the following gram-
mar, one can define that some uncontrollable (in-) messages depend on one or more con-
trollable (out-) messages.

dependencies ::= dependencies ′{′ dependencylist ′}′

dependencylist ::= dependency { dependency }

dependency ::= inmessage depends on outmessagelist ′;′

outmessagelist ::= (time | outmessage) ′,′ outmessage

The terminaltime can be used to define that an in-message depends on letting time
pass. Let!m be a message that only depends on time. If!m is queried once and the result
is false, then every succeeding query will be alsofalse as long as no time passes by.

CHAPTER 4. SPECIFICATION LANGUAGE 31

up,right

vertical.
moving*,

right

down,right

up,
horizontal.
moving*

vertical.
moving*,

horizontal.
moving*

down,
horizontal.
moving*

up,left

vertical.
moving*,

left

down,left

Obstacle

Figure 4.3: Two dimensional moving robot arm with obstacle

Example Code

Consider a hardware component that needs at leastx time units to move between two resting
states A and B. Now, whenx time units have passed, the controller can start querying for the
message!reached_B. A priori, it is clear that the outcome of a query of!reached_B
changes only if time passes by. This can be formulated as follows:

dependencies {
reached_B dependson time;

}

4.2 Production Goals

In order to give a complete specification of the program that should be synthesised, the
production goals must be also defined. They consists of the socalled state guards and a
sequence of plan automata.

goals ::= guards plans

CHAPTER 4. SPECIFICATION LANGUAGE 32

4.2.1 State Guards

Guards can be used to ensure that certain plant states are only entered when a corresponding
assertion holds. This assertion is interpreted as an uncontrollable message. Starting from a
certain state A, when an adjacent state B is to be guarded, an intermediate state is created
and inserted between A and B. The grammar is defined as follows:

guards ::= guards ′{′ guardlist ′}′

guardlist ::= guard { guard }

guard ::= nodecondition guardedby message ′;′

Note thatnodecondition refers to the token, which was already declared in section4.1.4.

Example Code

A gripper may grasp a workpiece only when a corresponding sensor signalises that a work-
piece is actually available. This can be modeled as follows:

plant {
hardware gripper {

states open, closed;
open <-> closed takes [1,1];

}
}
...
guards {
gripper.moving_open_closed guardedby gear_is_present;

}

This example is visualised in figure4.4. Here, a new guard node is inserted between
the two nodesgripper.open andgripper.moving open closed.

gripper.
open

gripper.
moving_open_closed

Guard
Node

?moveto_close%gear_is_present

Figure 4.4: A gripper that may only close if the guard holds

CHAPTER 4. SPECIFICATION LANGUAGE 33

4.2.2 Plans

In this part of the input specification, one can specify one ormore plans. A plan describes
which goals should be reached within a certain amount of time. A goal can be any message
that was produced by the plant or sent by the controller. The grammar looks as follows:

plans ::= plans ′{′ planlist ′}′

planlist ::= plan { plan }

plan ::= plan ′{′ [clockdeflist] plancommandlist ′}′ ′;′

clockdeflist ::= clocks clockdef {′,′ clockdef } ′;′

clockdef ::= clock constant

plancommandlist ::= [label ′ :′] resetcommand | waitforcommand ′;′

resetcommand ::= reset clock

waitforcommand ::= waitfor waitforlist

waitforlist ::= message [′− >′ label]

The top level is aplanlist. All plans must be maintained independently from each
other, i.e. that a conjunctive semantics is assumed. Each plan consists of a definition of
timeout-clocks and a list of plan commands. A plan command can optionally have a label.
There are two types of plan-commands: thereset-commandresets a timeout-clock back to
0 and thewaitfor-commandhalts the execution of the plan until the given message occurs.
Unless no target label is specified, the execution will continue with the following command.
If the end of the plan is reached, an implicit jump to the beginis made. At any time, if a
timeout-clock exceeds its given upper time bound, the plan will enter a fail state.

Example Code

Consider a gear checking machine that consists (among otherthings) of aninlet that loads a
new gear into the machine, aclassifierthat measure some properties of the loaded gear, and
an outlet that discharges the gear again. The transporting system of the machine is quite
complex and has some perils due to obstacles in the moving range and limitations of the
used hardware. The machine should reach the following goals:

1. gear isloaded,

2. gear isclassified, and

3. gear isunloaded.

While waiting for a certain goal, the other goals must be avoided (e.g. while waiting
for loaded, classified or unloaded must not occur). This can be modeled by the
following code:

CHAPTER 4. SPECIFICATION LANGUAGE 34

plans {
plan {

clocks timeout 15;

reset timeout;
waitfor loaded, classified -> failed, unloaded -> failed;
waitfor classified, loaded -> failed, unloaded -> failed;
waitfor unloaded, loaded -> failed, classified -> failed;

}
}

With this plan, the synthesis algorithm will generate a program that controls the ma-
chine components in such a way that all the goals are reached (i) in the correct order and
(ii) quickly enough.

CHAPTER 4. SPECIFICATION LANGUAGE 35

4.3 Semantics

4.3.1 Automaton Component

The denotational semantics describes how the abstract syntax of an automaton is translated
into the formal representation(Q, Σ, ∆, q0, X, I).

D[automatonbody(clocksdef, nodesdef, transitionsdef)] :=
let

X := DX [clocksdef]
(Q, q0, I) := DQ[nodesdef]
(Σ, ∆) := D∆[transitionsdef]

in

(Q, Σ, ∆, q0, X, I)

DX [clocksdef(x1, ..., xn)] := {x1, ..., xn}

DQ[nodesdef((q1, I1), ..., (qn, In))] := ({q1, ..., qn}, q1,
⋃n

i=1 {qi 7→ DC [ci]})

D∆[transitionsdef((q1, q
′
1, τ1, α1, ϕ1, λ1), ..., (qn, q

′
n, τn, αn, ϕn, λn))] :=

({α1, ..., αn}, {(qi, 〈αi, τi, DC [ϕi], λi〉, q
′
i) | 1 ≤ i ≤ n})

DC [⊥] := λv.true

DC [constraintlist(c1, ..., cn)] := λv.
∧n

i=1DC [ci](v)

DC [constraint(clock, lb, ub)] :=
λv.DC [lowerbound(clock, lb)](v) ∧
λv.DC [upperbound(clock, ub)](v)

DB [lowerbound(clock, type, const)] :=
if type =′ [′ then λv.const ≤ v(clock) else λv.const < v(clock)

DB [upperbound(clock, type, const)] :=
if type =′]′ then λv.v(clock) ≤ const else λv.v(clock) < const

DX returns the set of clocksX. DQ returns the set of nodesQ, the root nodeq0, which is the
first declared node, and the invariant-functionI that maps each nodeqi to its corresponding
clock constraintsci. If no clock constraints are present,I(qi) returns alwaystrue. The
function DC generates for a given clock constraint a corresponding constraint function.
The functionDB generates an inequality function for a given interval bound.

CHAPTER 4. SPECIFICATION LANGUAGE 36

4.3.2 Hardware Component

The denotational semantics shows how a hardware-unit is transformed into a timed automa-
ton:

D[hardwarebody(statesdef, movesdef)] :=
let

(QR, q0) := DR[statesdef]
(QM , Σ, ∆, I) := DM [movesdef]

in

(QR ∪ QM , Σ, ∆, q0, {Cmoving}, I)

DR[statesdef(s1, ..., sn)] := ({s1, ..., sn}, s1)

DM [movesdef((s1, s
′
1, lb1, ub1), ..., (sn, s

′
n, lbn, ubn))] :=

let

Q := {moving(si, s
′
i) | 1 ≤ i ≤ n}

Σ := {moveto(s′i), reached(s
′
i) | 1 ≤ i ≤ n}

∆? := {(si, 〈moveto(s
′
i), ?, λv.true, {Cmoving}〉, moving(si, s

′
i)) | 1 ≤ i ≤ n}

∆! := {(moving(si, s
′
i), 〈reached(s

′
i), !, DC [lowerbound(Cmoving ,

′[′, lbi)], ∅〉, s
′
i) | 1 ≤ i ≤ n}

I := {moving(si, s
′
i) 7→ DC [upperbound(Cmoving,

′]′, ubi)] | 1 ≤ i ≤ n}
in

(Q, Σ, ∆? ∪ ∆!, I)

For each declared resting state in the hardware description, a corresponding node in the
target automaton is inserted. The clockCmoving is used to measure the time that passes
during a movement between two resting states. A declarationof a movement between two
resting states A and B implies a generation of

1. an intermediate moving statemoving(A,B) (moving_A_B),

2. a controllable transition?moveto(B) (?moveto_B) from A tomoving(A,B), re-
setting the clockCmoving, and

3. an uncontrollable transition!reached(B) (!reached_B) from moving(A,B) to
B.

Let Tmin andTmax denote the lower- and upper bound of the time that takes the movement
from A to B. The invariant ofmoving(A,B) is set toλv.v(Cmoving) ≤ Tmax, implying
that the execution may remain inmoving(A,B) for at mostTmax time units. The guard of
the !reached(B) transition is set toλv.Tmin ≤ v(Cmoving), implying that this transition
may only be taken after thatTmin time units since?moveto(B) have passed. So, the
destination state B can only be reached if the invariantv(Cmoving) ≤ Tmax and the guard

CHAPTER 4. SPECIFICATION LANGUAGE 37

Tmin ≤ v(Cmoving) hold true:

v(Cmoving) ≤ Tmax ∧ Tmin ≤ v(Cmoving)
⇔ v(Cmoving) ∈ [0, Tmax] ∧ v(Cmoving) ∈ [Tmin,∞)
⇔ v(Cmoving) ∈ [0, Tmax] ∩ [Tmin,∞)
⇔ v(Cmoving) ∈ [Tmin, Tmax]

sinceTmin ≤ Tmax, by definition.

4.3.3 Operator Component

D[operatorbody(statesdef, movesdef)] :=
let

(QR, q0) := DR[statesdef]
(QM , Σ, ∆, I) := DM [movesdef]

in

(QR ∪ QM , Σ, ∆, q0, {Cmoving}, I)

DR[statesdef(s1, ..., sn)] := ({s1, ..., sn}, s1)

DM [movesdef((s1, s
′
1, lb1, ub1), ..., (sn, s

′
n, lbn, ubn))] :=

let

Q := {moving(si, s
′
i) | 1 ≤ i ≤ n}

Σ := {occurred(s′i), reached(s
′
i) | 1 ≤ i ≤ n}

∆ :=
{(si, 〈occurred(s

′
i), !, λv.true, {Cmoving}〉, moving(si, s

′
i)) | 1 ≤ i ≤ n} ∪

{(moving(si, s
′
i), 〈reached(s

′
i), !, λv.0 < v(Cmoving) < 1, ∅〉, s′i) | 1 ≤ i ≤ n}

I := {moving(si, s
′
i) 7→ λv.v(Cmoving) < 1 | 1 ≤ i ≤ n}

in

(Q, Σ, ∆, I)

CHAPTER 4. SPECIFICATION LANGUAGE 38

4.3.4 Assertions

A : Qn → {false, true} represents the safety predicate function to identify explicit fail
states. The denotational semantics is formally defined as:

D[nodeconditionlist(c1, c2, ..., cn)] := λq.
n
∧

i=1

DA[ci](q)

DA[never(x)] := λq.¬DA[x](q)

DA[always(x)] := λq.DA[x](q)

DA[onlyif(x, y)] := λq.¬DA[x](q) ∨DA[y](q)

DA[or(x, y)] := λq.DA[x](q) ∨ DA[y](q)

DA[and(x, y)] := λq.DA[x](q) ∧ DA[y](q)

DA[not(x)] := λq.¬DA[x](q)

DA[state(unit, node, substr)] := λq.q ∼ (unit, node, (substr = ∗))

DA[constant(c)] := λq.c

Where the matching operator∼ is defined as follows:

(q1, q2, ..., qn) ∼ (unit, node, substr) :=






true : substr ∧ ∃qi : label(Ai) ⊆ unit ∧ label(qi) ⊆ node
true : ¬substr ∧ ∃qi : label(Ai) = unit ∧ label(qi) = node
false : else

The statements1 ⊆ s2 stands for a test, whether the strings1 is contained ins2 as a
substring.

4.3.5 Dependencies

LetD ⊆ Σ× Σ be a dependency relation, then we say

e1 ande2 aredependentw.r.t. D ⇔ (e1, e2) ∈ D ∨ (e2, e1) ∈ D
e1 ande2 areindependentw.r.t. D ⇔ e1 ande2 arenot dependentw.r.t. D

The denotational semantics of the dependency grammar is defined as:

D[dependencylist(d0, d1, ..., dn)] :=
n
⋃

i=0

D[di]

D[dependency(message, events)] := {(message, e) | e ∈ events}

4.3.6 State Guards

G = {G0, G1, ...Gn} denotes a finite set of guard functions where eachG ∈ G is a function
G : Qn → Σ ∪ {⊥} that represents a guard of a combined node tuple. The denotational
semantics of the guard grammar is defined as:

D[guardlist(g0, g1, ..., gn)] := {DG[g0],DG[g1], ...,DG[gn]}

DG[guard(node,message)] := λq.if DA[node](q) thenmessage else ⊥

CHAPTER 4. SPECIFICATION LANGUAGE 39

4.3.7 Plans

The final mathematical representation of the plans is a finiteset of vectorsP = {P1, ..., Pn},
where each itemPi represents a single plan automaton.
The denotational semantics is defined as follows:

D[plans(P1, ..., Pn)] := ({DP [P1], ..., DP [Pn]})

DP [plan(clocksdef, plancommandlist)] :=
DC [clocksdef, plancommandlist]

WhereDC [plancommandlist] is computed by algorithm4.

Input : Set of timeout-clocksT = {(X1, T1), ..., (Xn, Tn)}. List of plan
commands, represented by a vectorC = ((l1, C1), ..., (lm, Cm)). Each
command(li, Ci) is a pair consisting of a labelli and the command itself
Ci.

Output : Timed plan automaton(Q, Σ, ∆, q0, failed, X, I) that describes the
plan.

(Σ, ∆) ← (∅, ∅)1

X ← {Xi | i ∈ {1, ..., n}}2

Q ← {failed} ∪ {li | i ∈ {1, ...,m}}3

I ← λv.true4

for i ∈ {1, ..., m} do5

if Ci = reset(R) then6

∆ ← ∆ ∪ {(li, 〈ǫ, $, λv.true, R〉, l(i+1) mod m)}7

else ifCi = waitfor((e1, d1), ..., (ep, dp)) then8

forall j ∈ {1, ..., p} do9

∆ ← ∆ ∪ {(li, 〈ej , $, λv.true, ∅〉, dj)}10

forall j ∈ {1, ..., n} do11

∆ ← ∆ ∪ {(li, 〈ǫ, $, λv.v(Xj) ≥ Tj , ∅〉, failed)}12

return (Q, Σ, ∆, l1, failed, X, I)13

Algorithm 4 : Generation of a plan automaton

Chapter 5

Game Solving

This chapter describes an efficient algorithm that computesthe winning controller strategy
as described in section2.1.3. In combination with the discretisation ideas as shown in2.2.2,
the product state space is explored on-the-fly.

In the input specification, it is described which behaviour of the plant is forbidden. For
example, the assertions describe certain combinations of component states that must be
avoided. Therefore, thecombinedstate space must be considered. This makes it possible
that undesired state combinations can be excluded.

A plant state is the combination of the configurations of the components, the configu-
rations of the plans, and the current clock assignment. Rather than combining the automata
step by step (i.e., firstA1 with A2, then the resulting automata withA3 and so on...), all
automata are combined at a time.

5.1 Zenoness

Recall that the basis for finding winning strategies are safety games, i.e. that within a con-
troller winning strategy, no fail state can be reached. But what happens if there were loops
in the strategy? Hereby, we distinguish between two types ofloops: loops where time grad-
ually elapses and loops where no time elapses. The latter loops are calledzeno-loopsand
represent a fundamental issue in synthesis since such loopscan be infinitely often executed
without exceeding a time bound.

Of course, since we are using timed automata, time always elapses in the clocks. How-
ever, this is only technically true. If a clock is not used within some parts of a timed
automaton, no time elapses effectively with respect to thatclock. Also, if a transition in a
loop resets a clock, no time elapses for that clock as well.

One way to avoid zenoness is just by not allowing zeno specifications. A precompu-
tation step could determine if there are zeno-loops and, if so, reject the input. Another
possibility is to declare zeno-loops in particular as fail states and only to avoid them in the
winning strategy. This can be done by keeping all visited states since the last goal state
in mind. If the plant part of a new discovered state is also contained in the already visited
states, then that new found state becomes a fail state. If a goal is reached, this set of visited

40

CHAPTER 5. GAME SOLVING 41

states is cleared again. Even though this causes a blow up in theory, practical experience
has shown that this works with real world case studies. Laterin section5.3, this technique
is explained in detail.

A B

!a

!b

?in !out

Figure 5.1: The plant can force an infinite loop

Figure5.1 shows a simple zeno example. If the controller issues an?in request, the
execution comes to stateA. From there, the plant may produce a spontaneous!a event
that brings the execution to stateB. There, either an!out event can occur that causes the
execution to leave that zeno part, or else, a!b event leads back toA. Using the zeno-loop
avoiding technique as described above, one would identify the !b transition as erroneous,
since no plan goal has been achieved since the last visit inA. Because!b can happen
spontaneously, we must declareB as a fail state, which causes alsoA to become a fail
state since there is the uncontrollable transition!a leading fromA to B. Thus, sinceA is
identified as a fail state,?in is discarded as a decision for the controller.

One may say that this method copes only with zeno-behaviour of the plant, while con-
troller zenoness is not considered. This is true but it is accepted. Consider a machine that
processes workpieces, which are sequentially loaded over an intake transporting belt. After
the processing, the processed workpiece is unloaded and thenext piece is loaded. Now, if
one would specify that problem by modelling the plant in sucha way that the processing
consumes no time, and the plan is formulated as ”for each workpiece w: process w”, a valid
program could be ”load workpiece w, do forever: process w”. Indeed, this program satisfies
the specification because processing consumes no time, and hence, it can be executed in-
finitely often without exceeding any given upper time bound.Furthermore, this zeno-loop
cannot be detected by the technique that was described abovesince processing is the only
goal of the plan, actually. In order to avoid the generation of such senseless programs, the
plan has to be formulated more precisely. For this example, an appropriate plan could be
”for each workpiece w: load w, process w, and unload w”.

5.2 Precomputation

Prior to the actual state space exploration, two precomputation steps were applied. In order
to reduce the state space explosion, a clock usage analysis is done. Hereby, it is computed in
which locations of a timed automaton its clocks are being actually used. For those locations
where a clockc is not used, we do not need to consider any assignment that is more precisely
than0 ≤ c < ∞. This reduces the amount of distinct clock zones for that locations, and
therefore, the overall amount of states.

The unique choice interval split-up of the input timed automata ensure that they do
not have any implicit temporal behaviour. In [1], it was firstly explained that the usual

CHAPTER 5. GAME SOLVING 42

model-checking simulation graph of a timed automaton is notsuitable for synthesis, since
letting time pass is neither controllable nor uncontrollable. Hence, the possibility that an
uncontrollable event occurs that lies in the future becomescontrollable if letting time pass
is controllable as well.

5.2.1 Clock Usage Analysis

The current value of a clockc is seldom needed in each location of a timed automaton. It
is straightforward to declarec as locally used in a locationL: namely, if some execution-
decisions, i.e., the invariant or the guards of the outgoingedges ofL, depend onc. But
when is it actually possible to declarec asglobally unused in a certain location?

Wheneverc is being resetted, its old value is lost. So, in the precedinglocations before
the clock reset that not locally usec, it is irrelevant what valuec has (sincecwill be resetted
anyway).

More formally, a clock constraintϕ : (X → R+
0) → {false, true} depends on a

clock c ∈ X if ∃v(c) ∈ R+
0 : ϕ(v) = false. In this case,c ∈ ϕ denotes this dependence.

The set of used locationsR(c) is computed by a backward least fixed-point computation
starting at those locations that usesc locally,R0(c):

R0(c) := {s ∈ Q | c ∈ I(s) ∨ ∃(s, 〈α, τ, ϕ, λ〉, t) ∈ ∆ : c ∈ ϕ}

µR(c)
(

R0(c) ∪ {s ∈ Q | ∃(s, 〈α, τ, ϕ, λ〉, t) ∈ ∆ : t ∈ R(c) ∧ c /∈ λ}
)

A clock c is unusedin a locationL iff L /∈ R(c).
In figure5.2, an example clock usage computation is showed. The node denoted with

R0 represents the location where the clockC is locally used. The nodes labelled withR
show the locations wherec is (transitively) used.

R0
C > 2

R

R

R
C:=0

Figure 5.2: Clock usage example

5.2.2 Unique Choice Intervals

A Timed Automaton may contain implicit temporal behaviour.Consider a locationL with
invariant0 ≤ c ≤ 4, an outgoing edge?a, and an outgoing edge!b that is guarded by the
constraintc > 2. When the execution is atL andc = 0, then?a can be taken instantly
while !b becomes firstly possible ifc > 2.

CHAPTER 5. GAME SOLVING 43

Now, it might turn out that!b leads to some fail state. IfLwould be treated as one whole
location, it would have to be removed in order to avoid the occurrence of!b at all. But this
would be inappropriate because the controller can issue an?a request as long asc ≤ 2 and
prevent the occurrence of!b either. So it gets clear why a precomputation is needed that
splits the locations with implicit decisions into explicitones.

Formally speaking, the set of the decision-intervalsDc ⊆ 22R
+
0 of a clockc of a timed

automaton induce a set ofunique choice intervalsU(c) such that

•
⋃

u∈U(c)

u = [0,∞)

Thisclosure-propertymeans that the unique choice intervals do not overlap and range over
the complete domain of clock-values.Dc is computed by collecting all constraints of the
clock c in the invariants and guards ofA. The following computational steps describe how
to obtain a valid partition such that the closure property issatisfied.
First of all, the bounds of the decision intervals are indexed and collected into an ordered
setB0 ⊂ N ∪ {∞}:

B0 :=
⋃

d∈Dc

{l(d)} ∪ {u(d)}

where

l(d) :=

{

4 inf(d) : inf(d) = min(d)
4 inf(d) + 2 : else

and

u(d) :=







∞ : ∄ sup(d)
4 sup(d) + 1 : sup(d) = max(d)
4 sup(d)− 1 : else

Note that the lower bound-indexes are always even, while theupper bound-indexes are
always odd. The caseinf(d) = min(d) (or sup(d) = max(d), respectively) stands for a
closed interval bound, i.e. that the bound lies within the interval. Based onB0, the index-set
B = (b0, b1, ..., bn) of U(c) is computed as follows:

B := B0 ∪ {bi+1 − 1 | ∀bi, bi+1 ∈ B0 : bi mod 2 ≡ 0 ∧ bi+1 mod 2 ≡ 0}
∪ {bi + 1, bi+1 − 1 | ∀bi, bi+1 ∈ B0 : bi mod 2 ≡ 1 ∧ bi+1 mod 2 ≡ 0}
∪ {bi + 1 | ∀bi, bi+1 ∈ B0 : bi mod 2 ≡ 1 ∧ bi+1 mod 2 ≡ 1}

For convenience, it is defined that∞ mod 2 ≡ 1. It is obvious to see thatB contains only
sequences of bound-indexes of the form

∀b2i, b2i+1 ∈ B : b2i mod 2 ≡ 0 ∧ b2i+1 mod 2 ≡ 1

Therefore, the(b2i, b2i+1)-pairs represent the unique choice intervals ofU(c):

U(c) := {l−1(b2i) ∩ u−1(b2i+1) | i ∈ {0...n ÷ 2− 1}}

CHAPTER 5. GAME SOLVING 44

where

l−1(i) :=

{

{x ∈ R+
0 | x ≥ i÷ 4} : i mod 4 ≡ 0

{x ∈ R+
0 | x > i÷ 4} : else

and

u−1(i) :=







R+
0 : i =∞

{x ∈ R+
0 | x ≤ (i+ 1)÷ 4} : (i+ 1) mod 4 ≡ 2

{x ∈ R+
0 | x < (i+ 1)÷ 4} : else

Note that÷ stands for integer-division.

n0
C <= 4

n1

C>2

n0/0
C <= 2

n0/1
2<C<=4

!b

C>2

n1
!b

Timeout

C>4

n2
?a

n2
?a

?a

Figure 5.3: Unique choice split-up

In the overall synthesis process, the unique choice split-up takes place after the clock
usage analysis and prior to the state space exploration. It must be done for each plant
component, each clock, and for each location. Of course, only these locations where the
clocks are actually used must be considered for split up. Figure 5.3 shows the split-up
for the example that was described above. For each choice interval, a new sub-location is
added. These new sub-locations are linked by explicitdelay-edges. Formally speaking, the
sub-location for the intervalui is linked with the succeeding sub-location forui+1 with the
event〈 ε, D, λv.v(c) ∈ ui+1, ∅ 〉.

Let I be the value-interval of the invariant of a locationL that has to be split up. If
sup(I) < ∞, i.e. that the invariant has an upper bound, then the closure-property would
not be satisfied, since∀x > sup(I) : ∄u ∈ U(c) : x ∈ u. Indeed, if an invariant
has an upper bound for a clockc, then this means that it was specified that it is impossible
thatc exceeds this limit. But on the other hand, it is also impossible that every exceptional
behaviour is covered by the specifications.

Imagine a location that models a machine process that takes some time. This ”being-
in-process” location A would have a guarded outgoing edge leading to some ”process-

CHAPTER 5. GAME SOLVING 45

done” location B. While the guard of this edge models the lower bound of the process-time
c ≥ min, the invariant of A ensures that the execution remains in A only until the upper
bound of the process-time has not yet exceededc ≤ max. Most of the running-time of this
machine, the process actually takes that specified amount oftime. But in the (seldom) case
that something goes wrong (e.g. due to malfunctioning hardware), thenc would advance
beyond the upper time bound.

Of course, one could model such an exceptional behaviour manually additional to each
”being-in-process” location. But this would, on the one hand, imply more complexity for
the programmer (modeller), and on the other hand, modellingsuch exceptions as uncon-
trollable reactions that lead to a fail state would be inappropriate because all those ”being-
in-process” locations would not be part of the controller winning strategy since it might
happen that this exception holds, sometimes.

So it gets clear why another type of exceptional delay-edge is needed; a delay-edge that
leads to a fail state (explicit or timeout) becomes atimeout-edge. A location can be part of
the winning strategy despite the fact that it has (uncontrollable) timeout-edges. Automati-
cally, timeout-edges can be generated by invertingU(c):
Let T ⊆ R+

0 be the timeout interval of a set of unique choice intervalsU(c), then

T := R+
0 \

⋃

u∈U(c)

u

If T 6= ∅, then a timeout-edge is generated from the sub-locations, representing the last
unique choice interval to a dedicated timeout-location with the event〈 ε, T, λv.v(c) ∈
T, ∅ 〉.

Later, in the final synthesised program, these timeout-edges are treated as exceptions.
Comparing with the ”fleeing-robber”-analogon, timeout-edges can be seen as trapdoors in
the corridors: after some time, they open spontaneously andlet the robber fall through such
that he gets into the floor that lies right under the current one (the sub-location with the
succeeding choice interval). So falling downwards corresponds to advancing in time. The
robber can take a lift (that can move only upwards) to return to the higher-level floors again.
This corresponds to the resetting of some clocks.

5.3 Winning Controller State Space

The winning controller state space is the basis for any synthesised program. It contains all
winning strategies of the controller such that no decision may lead to a state, in which the
plant can produce an uncontrollable event that brings the machine into an undesired state.
As already mentioned in2.1.2, the computational model is a two-player safety game. Com-
puting all reachable good states in a first pass and then, reversely, removing all fail states
from that set in a second pass would be, because of the giant state space, inappropriate.
That is why instead of that, a combined forward/backward algorithm is used to find the
winning controller state space. Since each distinct state is visited at most twice (discovery
and removal), the complexity of the algorithm is linear to the size of the combined state
space.

CHAPTER 5. GAME SOLVING 46

5.3.1 Basic Functions and Operators

In the following, letq = (q1, q2, ..., qn) be a tuple ofn locations such that eachqi belongs
to an timed automatonAi = (Qi,Σi,∆i, rooti,Xi, Ii).
The functionM : Q∗ → 2Σ×{?,!} returns the set of all controllable and uncontrollable
messages ofq:

M(q) :=
n
⋃

i=1

{(α, τ) | (x, 〈α, τ, ϕ, λ〉, y) ∈ ∆i ∧ x = qi ∧ τ ∈ {!, ?}}

The functionD : Q∗ → 2C(X)×{D,T} returns the set of all delay and timeout-events ofq:

D(q) :=

n
⋃

i=1

{(ϕ, τ) | (x, 〈α, τ, ϕ, λ〉, y) ∈ ∆i ∧ x = qi ∧ τ ∈ {D,T}}

The operator∼ returnstrue if two messages are synchronised.

(α1, τ1) ∼ (α2, τ2) :=







true : α1 /∈ Σ ∧ α2 /∈ Σ ∧ com(α1, α2) 6= ∅
true : ((τ1 = $ ∧ τ2 6= $) ∨ (τ1 6= $ ∧ τ2 = $)) ∧ (α1 = α2)
false : else

Recall that if anα is not inΣ, then thisα is a clock-zone, representing the condition for
an explicit delay or timeout-edge.com(α1, α2) yields the set of commonly used clocks in
both clock-zonesα1 andα2. Note that∼ is commutative:

(α1, τ1) ∼ (α2, τ2) = (α2, τ2) ∼ (α1, τ1)

The functionΛ returns the set of all clocks that are being simultaneously resetted among
the locations inq when a given event is executed.

Λ(q, (α, τ)) :=

n
⋃

i=1

λ : (x, 〈α′, τ ′, ϕ, λ〉, y) ∈ ∆i ∧ x = qi ∧ (α, τ) ∼ (α′, τ ′)

The functionsink returnstrue if the given states has only outgoing timeout or no edges
at all in the given∆.

sink(s,∆) :=

{

false : ∃(x, 〈α, τ, λ〉, y) ∈ ∆ : x = s ∧ τ 6= T
true : else

The set of all applicable events toq is computed by

Φ(q) := {〈α, τ,Λ(q, (α, τ))〉 | (α, τ) ∈M(q) ∪D(q)}

The functionapply applies a given event to a given discrete combined state suchthat the
components of the state are updated accordingly.

apply((q, z), 〈α, τ, λ〉) :=

{

(q′, z[λ← 0]) : α ∈ Σ
(q, (z⇑ ∩ α)[λ← 0]) : else

whereq′ = (q′1, q
′
2, ..., q

′
n) such that

q′i :=

{

y : ∃(x, 〈α, τ, ϕ, λ〉, y) ∈ ∆i : x = qi ∧ (α, τ) ∈M(q)
qi : else

CHAPTER 5. GAME SOLVING 47

5.3.2 Forward Exploration

The forward exploration algorithm (5) explores the product state space of the plant and
the plan automata by computing the least fixed-point of winning combined configurations
(states) that are reachable from the root nodes of the plant and plan automata. Whenever
this exploration reaches a fail state, the reverse state removal algorithm is called and all
configurations that lead to this found fail state are removedfrom the state space, which was
explored so far.

The traversal order of the exploration algorithm isBreadth-First Search(BFS). This
means that, starting at the root state, all neighbouring states that are not yet explored are
pushed in a FIFO-queue. In the next loop cycle, the exploration continues at those new
found states. The loop ends when there are no new states in thesearch queue.

q0
0

q1
1

q2
1

q3
2

q4
2

q5
2

q6
3

Figure 5.4: Breadth-First Search

Figure 5.4 shows the BFS traversal order with a simple example graph. The upper
label of the nodes are the actual node names, while the lower labels denote the number of
iterations when the nodes are (firstly) discovered. Trivially, the root nodeq0 is explored
after 0 iterations. After 1 iteration,q1 andq2 are found. Then, after 2 iterations,q3, q4, and
q5 are found. And finally, after 3 iterations,q6 is found.

Let q = (e1, ..., en, p1, ..., pm), where eachei is a node of a plant automaton and each
pj is a node of a plan automaton. Then, the two functionsenv : (QE

1 × ...×Q
E
n ×Q

P
1 × ...×

QP
m) → (QE

1 ×...×Q
E
n) andplan : (QE

1 ×...×Q
E
n ×Q

P
1 ×...×Q

P
m) → (QP

1 ×...×Q
P
m)

are defined as follows:

env((e1, ..., en, p1, ..., pm)) := (e1, ..., en)

plan((e1, ..., en, p1, ..., pm)) := (p1, ..., pm)

env(q, z) := env(q)

plan(q, z) := plan(q)

CHAPTER 5. GAME SOLVING 48

Input : Basis containing plant automata{E1, E2, ..., En} and plan automata
{P1, P2, ..., Pm}. EachEi is a timed automaton with
Ei = (QE

i , ΣE
i , ∆E

i , root
E
i , X

E
i , I

E
i) and eachPi is a timed plan

automaton withPi = (QP
i , ΣP

i , ∆P
i , root

P
i , failed

P
i , X

P
i , I

P
i). Safety

predicateA : Q∗ → {false, true}. Set of state guardsG = {G1, G2, ...},
where eachGi is a functionGi : Q∗ → ΣG that associates combined states
with a guard, namely an uncontrollable event.

Output : Controller winning state space(S,Σ,∆, s0)

root ← (rootE1 , root
E
2 , ..., root

E
n , root

P
1 , root

P
2 , ..., root

P
m)1

(S, Σ, ∆, s0) ← ({(root, Z0)},
⋃n

i=1 ΣE
i ∪

⋃m
i=1 ΣP

i ∪ ΣG, ∅, (root, Z0))2

fail ← ∅3

L ← {(s0, {env(root)})}4

while L 6= ∅ do5

L′ ← ∅6

forall (q, z), vis) ∈ {((q′, z′), vis′) ∈ L | (q′, z′) /∈ fail} do7

forall e = 〈α, τ, λ〉 ∈ Φ(q) do8

(new = (qnew, znew)) ← apply((q, z), e)9

if new is valid then10

if new ∈ S then11

∆ ← ∆ ∪ {((q, z), e, new)}12

else13

S ← S ∪ {new}14

if ∃G ∈ G : G(env(qnew)) = g then15

qg ← createNewState()16

S ← S ∪ {(qg, z)}17

∆ ← ∆ ∪ {((q, z), 〈g,%, ∅〉, (qg , z))}18

∆ ← ∆ ∪ {((qg, z), e, new)}19

else20

∆ ← ∆ ∪ {((q, z), e, new)}21

vis′ ←

{

vis ∪ {env(qnew)} : plan(q) = plan(qnew)
{env(qnew)} : else22

L′ ← L′ ∪ {(new, vis′)}23

else ifτ =! then24

(S,∆, fail) ← removeReverse(S,∆, fail, (q, z))25

continue with next item inL26

else ifτ = D then27

∆ ← ∆ ∪ {((q, z), 〈α, T, λ〉, (qg , z))}28

if isSink((q, z),∆) then29

(S,∆, fail) ← removeReverse(S,∆, fail, (q, z))30

L ← L′31

return (S,Σ,∆, s0)32

Algorithm 5 : State space exploration main algorithm

CHAPTER 5. GAME SOLVING 49

The root node of the combined state space is the combination of all plant root nodes
rootEi , all plan root nodesrootPj , and the zero clock zoneZ0 (lines 1-2). The message
alphabetΣ of the state space is the union of the message alphabets of allplant automata
ΣE

i , all plan automataΣP
j , and the set of the guard messagesΣG (line 2). The set of found

fail statesfail is initialised as the empty set (line 3). The setL represents the BFS search-
queue. The search-items that are stored inL are tuples, consisting of a new explored state
and a set of already visited combined plant nodes.L is initialised with the root states0 and
the plant part of the root node as the only item of the already visited set (line 4).

The main loop runs until no new states were added anymore, i.e. thatL is empty (line
5). For each new found state in line 7, all neighbouring statesnew = (qnew, znew) are con-
sidered that are reachable by applying all possible applicable events (line 9). The functions
Φ, as described in section5.3.1, return the set of all applicable message- and delay-events.
The functionapply returns the new combined state that evolves from the origin state when
applying an event. In line 10, the new found combined statenew is valid if all of the
following conditions hold true:

1. new /∈ fail

2. A(env(new)) = true

3. plan(q) 6= plan(qnew) ∨ env(qnew) /∈ vis

The first condition just means that the new state must not be part of the set of the already
known fail states. Condition 2 ensures that the new found state must be a safe one (i.e., no
explicit specified fail state). Condition 3 is a bit more sophisticated; it says that redundant
movements of the plant are not allowed without any progress of the plans. It gets clearer if
one negates condition 3: a state isinvalid if

¬(plan(q) 6= plan(qnew) ∨ env(qnew) /∈ vis)
≡ plan(q) = plan(qnew) ∧ env(qnew) ∈ vis

So a state is actually invalid if we reach an already visited combined plant state without
that any plan state has changed meanwhile. This is the realisation of the zeno-avoidance
technique as sketched in5.1.

Figure5.5 shows a simple combined state space, consisting of some plant states (e0,
e1,...), plan states (p0, p1), and clock zones (z0, z1). The initial state is(e0, p0, z0). From
there, the controller can make an?a transition to get to(e1, p0, z0). Then, time can elapse
via the◦D transition, which leads to(e1, p0, z1). A spontaneous reaction!b may follow
that brings the plant toe2 and the current combined state to(e2, p0, z1). Because the
current goal of the plan does not care about?a or !b, the plan component of the combined
state remains atp0. Thus, the controller must not issue another?a request frome2 back to
e1, since this action would not bring a progress w.r.t. the plan. Instead, it turns out that the
controller has to wait until!c occurs, which is the current goal. Now from(e3, p1, z1), the
controller can execute?a and return toe1, since a goal was reached.

CHAPTER 5. GAME SOLVING 50

e0,p0
z0

e1,p0
z0

e1,p0
z1

e3,p1
z1

?a

°D

e2,p0
z1

?a

!b

!c

e1,p1
z1

?aGoal p0
accomplished

e1,p0
z1

Figure 5.5: Forward exploration of reachable states

If new is actually valid, then it is checked if it was already explored in the past (line
11). Is this also true, only a new transition is added (line 12). Otherwise, if it is a new state,
then it is added to the set of statesS (line 14) and a new search-item(new, vis′) is added to
L′ (line 23). If a plan has reached its next goal,vis is being resetted (line 22). Otherwise,
if no goal is reached, the plant part ofqnew is added to the set of already visited plant states
of the search item. If there exists a guard associated withqnew, an intermediate stateqg is
additionally generated that ensures thatnew is entered only if the guard-condition allows
that (lines 16-19).

If new is not valid ande is controllable, then we can avoidnew just by discardinge.
But if e is uncontrollable, then the origin state(q, z) is also invalid since we can get from
there tonew spontaneously. In order to remove every other state, which may also lead to
(q, z), the reverse state removal algorithm is called with origin(q, z) (line 25). After that,
since(q, z) is no longer part of the state space, no other events applicable to (q, z) have to
be considered yet and we may continue with the next search item inL (line 26). In the case
thatnew is not valid ande is a delay-edge, then we add a timeout-edge with the same clock
constraint instead ofe (line 28).

In case that(q, z) is a sink, i.e. that there are no or only timeout-edges going out from
(q, z), then(q, z) becomes invalid as well since no goals can be reached anymorefrom that
state (line 29). Consequently, the reverse state removal algorithm must be called again (line
30).

5.3.3 Reverse Fail State Removal

Once an invalid state has been discovered in the forward exploration, all states that may
lead to this invalid state must be removed from the so far explored state space. In order to

CHAPTER 5. GAME SOLVING 51

avoid all invalid states in the future, they are also added tothe set of already known fail
states.

Algorithm 6 represents the functionremoveReverse(S, ∆, fail, origin). It back-
tracks on all transitions in the transition system(S, ∆) that lead toorigin and removes
them.

Input : So far explored state spaceS with transitions∆. Nodeorigin, identifying
the origin of the removal process. Set of fail statesfail.

Output : Triple (S′,∆′, fail′) containing the adjusted state space with transitions
and the supplemented set of fail states.

(S′,∆, fail′) ← (S,∆, fail ∪ {origin})1

L ← {origin}2

while L 6= ∅ do3

L′ ← ∅4

forall s ∈ L do5

fail′ ← fail′ ∪ {s}6

forall δ = (x, 〈α, τ, λ〉, y) ∈ {(x′, e′, y′) ∈ ∆ | x′ /∈ fail′ ∧ y′ = s} do7

switch τ do8

case!9

L′ ← L′ ∪ {x}10

case? or %11

∆′ ← ∆′ \ δ12

if sink(x,∆′) then13

L′ ← L′ ∪ {x}14

case◦15

∆′ ← ∆′ ∪ {(x, 〈α, , λ〉, timeout}16

if sink(x,∆′) then17

L′ ← L′ ∪ {x}18

∆′ ← ∆′ \ {(x′, e′, y′) ∈ ∆′ | x′ = s}19

S′ ← S′ \ {s}20

L ← L′21

return (S′,∆′, fail′)22

Algorithm 6 : Reverse fail state removal

In line 3, the iteration runs until the least fixed-point of invalid states leading toorigin
is found. Our interest lies only in the transitions between anon fail statex and a fail state
y (line 7). We call thosefail transitions. If such a fail transitionδ is uncontrollable (lines
9-10), then the origin statex is identified as a further fail state. This is caused by the fact
that a plant in statex may spontaneously executeδ and the controller cannot do anything
to prevent that. Sox must be already avoided. Ifδ is controllable or a guarded transition
(lines 11-14), thenx is not necessarily also a fail state. Initially, it is sufficient to remove

CHAPTER 5. GAME SOLVING 52

only δ from the state space (line 12). Doing so, the controller willnot be able to execute
that transition. If there were no further transitions (other than timeout-edges) starting from
x, thenx has now become a sink and must also be removed since no goals can be reached
from x anymore (lines 13-14).

root s0

s1

?a

?b

s2 s3

s5

?a

?b

?c

!d

s4

!d reverse
removal

Figure 5.6: Reverse state removal

Figure 5.6 shows an example reverse fail state removal. Starting atroot, either ?a
before?b or, vice versa, first?b then ?a can be executed. Both alternatives lead to the
states2. Now, the controller can executec to get to states3. In s3, only the spontaneous
reaction !d can occur, that lead to states5. It turns out thats5 is a fail state. So, the
reverse state removal is called with origins5. Since the exploration got froms3 to s5 by the
uncontrollable transition!d, s3 must also be removed. Furthermore,s3 was reached froms2
by executing the controllable transition?c. Therefore, the option of executing?c in s2 must
be removed. Sinces2 has yet another outgoing transition!d to s4, we can stop removing
here.

5.3.4 Special ”Guarded State” Transition Type

In line 18 of algorithm5, it would be inappropriate to declare the new guard-transition from
(q, z) to (qg, z) as uncontrollable. Doing so, wrong fail states would be identified. Consider
the following problem: One can get from a stateA to a stateC by executing a request?y.
In the specification, a guard is declared that matchesC. It says thatC can only be entered
if it is ensured that a conditionx holds true. Then, in the final state space, a transition from
A toB having!x and a transition fromB toC having?y are added. If it turns out later that
C is a fail state, the following objects will be removed:

1. the stateC,

2. the?y transition fromB toC,

3. the guard stateB (sinceB is now a sink), and finally

4. the stateA (since the uncontrollable!x transition leads fromA toB)

CHAPTER 5. GAME SOLVING 53

Without protectingC by the guardx, only a transition fromA to C carrying?y would be
added. Now, ifC is identified as a fail state, only the stateC and the?y transition are
removed but not the stateA (unlessA becomes a sink, of course). So it is obvious that a
special transition type for guards is needed. Figure5.7shows an illustration.

A B C
!x ?y

A B C
%x ?y

Figure 5.7: !- vs. %-state-guards

Chapter 6

Code Generation

In this chapter, it will be shown how a generation of a controller program can be done from
a winning controller state space.

6.1 Intermediate Controller Language

Before any precise controller code of a real-world PLC system is compiled, an intermediate
controller program is generated first. Later in section6.7, it is shown how this code can be
compiled into concrete assembler code.

program ::= command

command ::= label ′ :′ instruction [resetclocks] ′;′

instruction ::= (do | goto | if | waituntil)

do ::= do ′(′ outmessage ′)′

goto ::= goto label

if ::= if ′(′ condition ′)′ then goto label

waituntil ::= waituntil ′(′ condition ′)′

condition ::= inmessage | delay

delay ::= clocklist wait constant

resetclocks ::= and reset clocks clocklist

clocklist ::= ′{′ clock {′,′ clock } ′}′

A controller program consists of a sequence of commands. Each command must have
a label (line number) and an instruction. Optionally, commands may also have a sequence
of reset clocks. There are four instructions:

1. DO (x) Execute the actionx / send a request?x to the plant.

2. GOTO l Unconditional jump tol / continue program execution at the command
with labell.

54

CHAPTER 6. CODE GENERATION 55

3. IF (x) THEN GOTO l Conditional jump tol / if x is true, continue program
execution atl or else continue at the succeeding line.

4. WAITUNTIL (x) Halt program execution untilx becomestrue. Then continue at
the succeeding line.

Indeed, practical experience has shown that the four basic instructionsDO, GOTO, IF ,
andWAITUNTIL are sufficient to model a wide range of controller programs. Acondi-
tion that is queried in the instructionsIF andWAITUNTIL may either be an uncontrol-
lable message, sent by the plant or a clock-constraint.

Semantics

A controller program is defined as a vector of controller commandsP = (C1, C2, ..., Cn).
Each command is a tripleC ⊆ L×S×2X containing a label (line number), an instruction,
and a set of clocks that should be resetted when executing that command. The setL must
provide a partial ordering and support the following operation:

∀l1, l2 ∈ L : l1 < l2 ∃l
′ ∈ L : l1 < l′ < l2

In other words,L has to bedense. The symbolL0 denotes the label of the first command
in a program. There are four instructions:

S := {DO(action), IF (cond, then), GOTO(dest),WAITUNTIL(cond)}

The semantics is defined by the function

E : (Σ→ {false, true})× (Σ→⊥)× (2X →⊥)× L× I × L→ L

E(in, out, reset, l1, s, l2, λ) returns the label of the command that should be executed
next by the controller where(l1, s) is the current command andl2 is the label of the subse-
quent command. The functionin corresponds to the input-layer of a controller. It returns
true if the given event was sent by the plant and can be received by the controller. The
functionout is purely imperative, which means that it returns nothing. It corresponds to the
output-layer of a controller that takes an event and sends itto the plant. The functionreset
represents an abstraction of the timer control:reset(λ) resets the clocks/timers inλ.

CHAPTER 6. CODE GENERATION 56

The precise denotational semantics is defined as follows:

E(in, out, reset, l1,DO(action), l2, λ) := let out(action); reset(λ) in l2

E(in, out, reset, l1, IF (cond, dest), l2, λ) := if in(cond) then

let reset(λ) in dest

else

l2

E(in, out, reset, l1, GOTO(dest), l2, λ) := let reset(λ) in dest

E(in, out, reset, l1,WAITUNTIL(cond), l2, λ) := if in(cond) then

let reset(λ) in l2

else

l1

A real controller works as shown in algorithm7.

Input : Controller programP = (C1, C2, ..., Cn). Input/Output functionsin / out.
Timer control functionreset.

Output : Nothing, since this algorithm never ends.

l ← L01

while true do2

(l1, s1, λ1) ← P [l]3

(l2, s2, λ2) ← succ(P [l])4

l ← E(in, out, reset, l1, s1, l2, λ1)5

Algorithm 7 : Principle of a real controller

Note that a singleWAITUNTIL instruction can also be expressed by anIF - and a
GOTO-instruction. More precisely, this:

L1: WAITUNTIL (x);
L2: (succeeding command);

is semantically equivalent to that:

L1: IF (x) THEN GOTO L3;
L2: GOTO L1;
L3: (succeeding command);

However, theWAITUNTIL instruction is useful for post-optimisations, as we see later in
section6.6. Furthermore, many industrial controllers have an analogous instruction, which
makes the final compilation easier.

CHAPTER 6. CODE GENERATION 57

Example code

Consider two hardware componentsH1 andH2. H1 can move between the two resting
states A and B, whileH2 can move between X and Y. It is possible that both components
can move at the same time. Bringing the machine in a state whereH1 is at B andH2 is at
Y, it is more efficient to moveH1 andH2 simultaneously than moving them sequentially.
The following controller code will do this movement:

0: DO (moveto_B)
1: DO (moveto_Y)
2: IF (reached_B) THEN GOTO 5
3: IF (reached_Y) THEN GOTO 7
4: GOTO 2
5: WAITUNTIL (reached_Y)
6: GOTO 8
7: WAITUNTIL (reached_B)
8: ...

In the lines 0 and 1, the controller sends the two requestsmoveto_B andmoveto_Y.
Now, the two componentsH1 andH2 will start moving. The lines 2-4 represent a wait-
block, that is, a sequence ofIF instructions with a succeedingGOTO instruction jumping
to the beginning of that block. Ifreached_B occurs beforereached_Y, then the con-
troller will jump to line 5, where it waits forreached_Y. If reached_Y is received
first, then the controller will jump to line 7, waiting forreached_B. Figure6.1 shows a
flow-chart of this controller program.

6.2 Basic Functions and Operators

Firstly, in this section, some basic functions and operators are defined that makes the suc-
ceeding code generation and -optimisation algorithms morecompact and easier to under-
stand.
The following access operations on controller programs aredefined:
Let P = (..., (li−1, si−1, λi−1), (li, si, λi), (li+1, si+1, λi+1), ...) be a controller program,
represented by a vector over triples consisting of a label, instruction, and reset-clocks. Fur-
thermore, letli−1 < li < li+1, then

P [li] := (li, si, λi)

P [li + +] := (li+1, si+1, λi+1)

P [li −−] := (li−1, si−1, λi−1)

The inserting operator on controller programs is defined as follows:
Let P = (..., (li−1, si−1, λi−1), (li+1, si+1, λi+1), ...) andli−1 < li < li+1, then

P [li]← (si, λ) := (..., (li−1, si−1, λi−1), (li, si, λi), (li+1, si+1, λi+1), ...)

CHAPTER 6. CODE GENERATION 58

line
0

line
1

lines
2-4

line
7

DO (moveto_B)

DO (moveto_Y)

IF (reached_Y)

lines
5-6

IF (reached_B)
else

line
8

IF (reached_B)

IF (reached_Y)

Figure 6.1: Controller program as a flow-chart

The replace operator on controller programs is defined as follows:
LetP = (..., (li−1, si−1, λi−1), (li, si, λi), (li+1, si+1, λi+1), ...) andli−1 < li < li+1, then

P [li]← (s′i, λ
′
i) := (..., (li−1, si−1, λi−1), (li, s

′
i, λ

′
i), (li+1, si+1, λi+1), ...)

The remove operator on controller programs is defined as follows:
LetP = (..., (li−1, si−1, λi−1), (li, si, λi), (li+1, si+1, λi+1), ...) andli−1 < li < li+1, then

P [li]←⊥ := (..., (li−1, si−1, λi−1), (li+1, si+1, λi+1), ...)

The functionR0 : P ×L→ N returns thebasicreference-count of a given label. It returns
1 if the label is the root entry-point or if the preceding command was no GOTO command.

R0(P, l) :=







1 : l = L0

1 : ∃(l, s, λ) = P [l −−] : s 6= GOTO(.)
0 : else

Remember thatL0 denotes the label of the first command in the program.
The functionRjump : P ×L→ N returns the number of commands that refer a given label.

Rjump(P, l) :=
∣

∣

∣
{(l, s, λ) ∈ P | s = IF (., l) ∨ s = GOTO(l)}

∣

∣

∣

The functionR : P × L→ N returns thetotal reference count of a given label.

R(P, l) := R0(P, l) +Rjump(P, l)

CHAPTER 6. CODE GENERATION 59

6.3 From Strategies to Controller Programs

A state space represents a description of the behaviour of a controllable timed system. In
each state, the plant listens for some external requests and/or executes some spontaneous
reaction by its own. Switching the point of view to the controller side, the requests are now
possibilities to influence the behaviour and the reactions are non-deterministic alternatives
that must be observed all the time, in order to be up-to-date with the state of the plant.

An execution cycle of a modern programmable logic controller works as follows: First,
all states of the sensors are read and stored in an internalin-buffer. Subsequent read in-
structions will access this in-buffer instead of directly querying the sensors. Then, some
instructions are executed until some wait condition is reached. Here, all write requests are
buffered in anout-buffer. The duration of executing an instruction is negligible small (< 1
msec). Finally, the out-buffer is flushed (i.e. that the actuators are controlled at a time).

In the definition of timed automata (section2.2), it was defined that transitions are
instantaneous, meaning that no time can elapse when taking anon-delay transition. Only
staying at some node makes it is possible that time can pass by. Looking at the working
principle of a real logic controller, indeed, it can be assumed that when executing a non-
delay transition, no time elapses.

The basic idea of constructing a program that controls a non-deterministic plant, repre-
sented as a state space, looks as follows:

• Each state in the state space corresponds to a state in the controller program.

• Each transition in the state space corresponds to a command and a jump to another
state in the program.

• Uncontrollable transitions correspond to querying sensors.

• Controllable transitions correspond to activating actuators.

• Resetting clocks in the state space is interpreted as resetting timer-objects in the pro-
gram.

• Querying clock constraints corresponds to querying timers.

Querying timers means testing if they have passed a certain limit. In a controller state, when
there is only one uncontrollable edge, this state should evaluate to ”wait until some time has
passed”, which is actually controllable again. Before a request from the controller can be
sent to the plant, it must be tested firstly if a spontaneous reaction has occurred. Therefore,
being at a certain program state, the input-signals must be checked first and only after that,
a request can be sent.

6.4 Selection of Controllable Transitions

In the previous section, it was established that sending a request corresponds to activating
an actuator and jumping to some other program state. Since the found winning strategy

CHAPTER 6. CODE GENERATION 60

is non-deterministic, i.e., in some states there might be several controller decisions, the
controller could pick any arbitrary request. Indeed, a bad selection could not bring the
machine into some undesired state, but time could be unnecessarily wasted, anyway.

Therefore, a selection-heuristic is introduced that worksas follows: Having the choice
between some requests to execute in a certain state, then therequest, which leads as fastest
to the next state where the plan advances, is to be taken. Thus, it is assumed that the machine
responds in an optimal way. Note that it is not possible to do that selection already during
the exploration phase. Because it might turn out that some ofthe requests are invalid and
must be removed. So we must keep the other valid requests in the state space as long as we
are not finished.

q0,p0

q1,p0

q3,p0

q2,p0

q4,p0

q5,p0

q6,p0

q7,p1

q8,p0

!x

!y

?a

?b

?c

Figure 6.2: Controller request selection heuristic

Figure6.2 shows an example state space. The current state is(q0, p0). Now, one has
to choose one of the three requests?a, ?b, or ?c. Selecting?a or ?c, the nearest state where
the plan changes,(q7, p1) is four transitions away. When selecting?b, one gets to(q7, p1)
with only three transitions. Therefore,?b is selected and can stay in the state space while
?a and?c are removed.

Algorithm 8 traverses a given state space in a BFS manner and removes all multiple
request transitions from the states such that the new state space has at most one request
transition per state. It works as follows: The new root states′0 corresponds to the original
root states0 (line 1). L represents the BFS search set, which is initialised with{s0} (line
2). The main loop runs as long as new states were added (lines 3-15). For each states in L,
s is also added toS′ (line 6) and the two sets∆!

s and∆?
s are computed (lines 7-8). These

two sets contain the outgoing uncontrollable (!)-, guarded- (%), delay- (◦), and controllable
(?) edges starting froms. If ∆?

s has more than one element, the (optimal) request is chosen
w.r.t. the above mentioned heuristic (line 10). Then, all other request edges are removed
from ∆?

s (line 11). In line 12, the (possible modified)∆?
s and∆!

s are added to∆′. In the
lines 13-14, the neighbouring states are added toL′ except those which are already in the
new state space.

The functionnextGoal() is computed by the BFS based algorithm9. It works as
follows: Here, the search setL contains 2-tuples consisting of the current search state and
the distance to the origin states0. It is initialised with the first neighbouring states′0 and the

CHAPTER 6. CODE GENERATION 61

Input : Control state space(S,Σ,∆, s0).
Output : State space with at most one outgoing request transition per state

(S′,Σ′,∆′, s′0).

(S′, Σ′, ∆′, s′0) ← (∅, Σ, ∅, s0)1

L ← {s0}2

while L 6= ∅ do3

L′ ← ∅4

forall s ∈ L do5

S′ ← S′ ∪ {s}6

∆!
s ← {(x, 〈α, τ, λ〉, y) ∈ ∆ | x = s ∧ (τ =! ∨ τ = D ∨ τ = T)}7

∆?
s ← {(x, 〈α, τ, λ〉, y) ∈ ∆ | x = s ∧ τ =?}8

if |∆?
s| > 1 then9

Pick a(x, e, y) ∈ ∆?
s such that10

∀(x′, e′, y′) ∈ ∆?
s : nextGoal(∆, (x, e, y)) ≤ nextGoal(∆, (x′, e′, y′))

∆?
s ← (x, e, y)11

∆′ ← ∆′ ∪∆!
s ∪∆?

s12

forall (x, e, y) ∈ ∆!
s ∪∆?

s : y /∈ S′ do13

L′ ← L′ ∪ {y}14

L ← L′15

return (S′, Σ′, ∆′, s′0)16

Algorithm 8 : Request transition selection

distance1 (line 1). The setvis contains all states that were already visited. It is initialised
with the empty set (line 2). Again, the main loop iterates as long as no new states were found
anymore (lines 3-12). For each search item(s, d), it is checked if the plan part ofs differs
from the plan part ofs0 (line 7). If it is so, the algorithm is done andd is returned (line
11). But if the both plan parts are equal, then the BFS will be continued on the neighbours
of s (line 9). If no state can be found whose plan part differs fromthe origin state, then
the exception⊥ is returned (line 13). Note that when callingnextGoal() with a ∆ from a
winning control state space, the function will always return a valid result since there can be
no dead ends.

6.5 Intermediate Code Generation

The actual code generation phase is quite straightforward since the produced code does not
have to be compact or optimal. The subsequent optimising techniques that are applied to
that code yield finally a more satisfying representation. The set of the rational numbers is
chosen as the label domain:L = Q with L0 = 0.

Algorithm 10 works as follows: At first, for each state in the input controlstate space,
an integer label is generated (lines 1-5). These state/label pairs are stored in a hash-map.

CHAPTER 6. CODE GENERATION 62

Input : Set of transitions∆ and origin transitionδ ∈ ∆ with δ = (s0, e, s
′
0).

Output : Shortest distanced ∈ N0 ∪ {⊥} to the next changing plan state.

L ← {(s′0, 1)}1

vis ← ∅2

while L 6= ∅ do3

L′ ← ∅4

forall (s, d) ∈ L do5

vis ← vis ∪ {s}6

if plan(s) has advanced w.r.t.plan(s0) then7

return d8

else9

forall (x, e, y) ∈ ∆ : x = s ∧ y /∈ vis do10

L′ ← L′ ∪ {(y, d+ 1)}11

L ← L′12

return ⊥13

Algorithm 9 : Search for the nearest state that shows a progress in its plan part

The integer labels represent theentry-pointsof the states in the code. The root state has
always the entry-point 0.

In the following, for each transition starting from a states ∈ S, a corresponding
command is generated. All commands that are produced under acertains are called the
command-blockof s. Taking a transition(s, e, y) in the input state space corresponds to
executinge and then jumping tohash[y] in the output program.

The main loop iterates over all states inS (lines 7-23). For each state, the uncontrol-
lable transitions are synthesised first (lines 11-13). Thisis important because the controller
must react on certain plant behavioursbefore it can execute any action by its own. For
all uncontrollable transitions, an IF-instruction is generated that queries the message of the
event. The states may have at most one controllable transition, which is synthesised as
a DO-instruction and inserted after the IF-instructions (lines 14-23). If there are were no
controllable transition starting froms, then the controller must remain in the command-
block of s until any uncontrollable event becomestrue. This is achieved by inserting a
GOTO-instruction at the end of the command-block. The destination of that command is
the entry-point of the current command-block again (line 23).

Assuming that ”first uncontrollable, then controllable transitions”-semantics, it is im-
portant that the command-blocks do not overlap. Which meansthat each command-block
must have only one entry-point at its first command. The controller may only enter another
command-block via jumping to other entry-points.l0 represents the entry-point of the cur-
rent states. l1 = l0 + 1 represents the entry-point the subsequent command-block.So the
labels of the command-block ofq must lie in[l0, l1). This is done by inserting every new
command at label(l1 + l)/2 and reassigning this value back tol, where initially l is set to

CHAPTER 6. CODE GENERATION 63

Input : Winning control state space, given by(S,Σ,∆, s0).
Output : Intermediate controller programP = (C1, C2, ..., Cn).

n ← 11

forall s ∈ S \ {s0} do2

hash[s] ← n3

n ← n+ 14

hash[s0] ← 05

P ← ()6

forall s ∈ S do7

l0 ← hash[s]8

l1 ← l0 + 19

l ← l0 − 110

forall (x, 〈α, τ, λ〉, y) ∈ ∆ : x = s ∧ (τ =! ∨ τ = % ∨ τ = ◦) do11

l ← (l1 + l)/212

P [l] ← (IF (α, hash[y]), λ)13

∆?
s ← {(x, 〈α, τ, λ〉, y) ∈ ∆ | x = s ∧ τ =?}14

if ∆?
s = {(x, 〈α, τ, λ〉, y)} then15

l ← (l1 + l)/216

P [l] ← (DO(α), λ)17

l ← (l1 + l)/218

P [l] ← (GOTO(hash[y]), ∅, ∅)19

else20

l ← (l1 + l)/221

P [l] ← (GOTO(l0), ∅, ∅)22

return P23

Algorithm 10 : Intermediate code generation

l0 − 1.

6.6 Post Optimisations

When talking about code optimality, code size optimality isactually meant. Running time
optimality is implicitly assumed due to the bounded liveness constraints, as specified in the
plan. The produced intermediate code holds a lot of optimisation potential w.r.t. the code
size.

The main reason why optimisation takes place after (and not during) the construction
of the state space is that the control state space as a whole isneeded. For example, it is
necessary to know all reachable states in order to compute the indegree of a state. This
indegree corresponds to the reference-count, which is an important part of the precondition

CHAPTER 6. CODE GENERATION 64

s0

s1

!a

s2

!b

s3

!c

?x

s4

7→

1: IF (A) THEN GOTO 2
1.5: IF (B) THEN GOTO 3
1.75: IF (C) THEN GOTO 4
1.875: DO (X)
1.9375: GOTO 5

Figure 6.3: Code extraction example 1

s0

s1

!a

s2

!b

s3

!c

(X>4)

TO

7→

1: IF (A) THEN GOTO 2
1.5: IF (B) THEN GOTO 3
1.75: IF (C) THEN GOTO 4
1.875: IF (X>4) THEN TIMEOUT
1.9375: GOTO 1

Figure 6.4: Code extraction example 2

for many optimisations.
In this section, some basic simplification rules are introduced, which are applied step-

by-step by a fixed-point algorithm to the initial non-optimal controller program. We have
reached code optimality when no simplification rule is applicable anymore. This multi-pass
approach is necessary because some optimisations that reduce the code size may lead again
to new optimisation potential. Algorithm11shows the main post-optimisation algorithm.

Input : Non-optimal intermediate controller programP = (C1, C2, ..., Cn).
Dependency relationD.

Output : Optimal intermediate controller program.

repeat1

P ′ ← P2

P ← simplify(P ′,D)3

until P = P ′4

return P5

Algorithm 11 : Controller program post-optimisation algorithm

The functionsimplify in line 3 applies the following simplification rules.

CHAPTER 6. CODE GENERATION 65

6.6.1 WAITUNTIL-replacement

Whenever a command-block only consists of an IF- and a GOTO-instruction, then it can be
substituted to a command-block containing a WAITUNTIL-instruction and another GOTO-
instruction with the same destination as the IF-instruction. Such command-blocks are gen-
erated when a state in the state space has only one transitionthat is uncontrollable.

(..., (l0, IF (cond, dest), λ), (l1 , GOTO(l0), ∅), ...)
7→

(..., (l0,WAITUNTIL(cond), λ), (l1, GOTO(dest), ∅), ...)

This replacement seems quite senseless, since we do not reduce the code-size in the first
place. But looking at the next simplification rules, it gets more clearly that in the further
optimisation passes standalone WAITUNTIL-instructions can be much better handled than
IF- with GOTO-instructions.
Example:
1: IF (A) THEN 10
2: GOTO 1

7→
1: WAITUNTIL (A)
2: GOTO 10

6.6.2 Inlining

The idea is quite simple: GOTO-instructions that refer to entry-points of command-blocks
that only contain one WAITUNTIL- or DO-instruction and a GOTO-instruction, can be
replaced by the referenced command-block.
Let s be an arbitrary non IF-instruction andR(P, l2) = 1, then

(..., (l0, GOTO(l2), ∅, ∅), (l1 , ...), ..., (l2 , s, λ), (l3, GOTO(dest), ∅, ∅), ...)
7→

(..., (l0, s, λ), ((l0 + l1)/2, GOTO(dest), ∅, ∅), (l1 , ...), ...)

Example:

1: GOTO 10
2: DO (B)
...
10: DO (A)
11: GOTO 20

7→

1: DO (A)
1.5: GOTO 20
2: DO (B)
...
10: DO (A)
11: GOTO 20

6.6.3 Reference-inlining

When an IF- or GOTO-instruction refer to another GOTO-instruction, then the destina-
tion of the actual instruction can be replaced by the destination of the referenced GOTO-
instruction.

(..., (l0, GOTO(l1), λ), ..., (l1 , GOTO(dest), ∅), ...)
7→

(..., (l0, GOTO(dest), λ), ..., (l1 , GOTO(dest), ∅), ...)

CHAPTER 6. CODE GENERATION 66

respectively:

(..., (l0, IF (cond, l1), λ), ..., (l1, GOTO(dest), ∅), ...)
7→

(..., (l0, IF (cond, dest), λ), ..., (l1 , GOTO(dest), ∅), ...)

Example:
1: IF (A) THEN 10
...
10: GOTO 20

7→
1: IF (A) THEN 20
...
10: GOTO 20

6.6.4 Unreachable command-block removal

Entry-points of command-blocks, whose total reference-count is zero can never be reached
during execution. Therefore, they can be removed without substitution. Letl1 be a label of
P andR(P, l1) = 0, then

(..., (l0, s0, λ0), (l1, s1, λ1), (l2, s2, λ2), ...)
7→

(..., (l0, s0, λ0), (l2, s2, λ2), ...)

Example:
10: GOTO 13
11: DO (A)
12: DO (B)
13: DO (C)

7→
10: GOTO 13
12: DO (B)
13: DO (C)

6.6.5 Redundant GOTO removal

A GOTO-instruction is redundant if it refers to the very nextcommand. Therefore, a re-
dundant GOTO can be removed because this would not change theexecution order of the
commands in the controller program. Letl1 be a label ofP andR(P, l1) ≤ 1, then

(..., (l0, s0, λ0), (l1, GOTO(l2), ∅), (l2, s2, λ2), ...)
7→

(..., (l0, s0, λ0), (l2, s2, λ2), ...)

Example:
10: DO (A)
11: GOTO 12
12: DO (B)
13: DO (C)

7→
10: DO (A)
12: DO (B)
13: DO (C)

6.6.6 Redundant IF removal

Some events are in relationship with each other. This means that a specific event may only
occur if another related event occurred before. Hence, someIF-instructions in the program

CHAPTER 6. CODE GENERATION 67

can be removed because we can surely assume that the condition will never becometrue.
Also, when a condition of an IF-instruction is oncetrue, it will remain true until some
other event occurs, which influences that condition. Note that letting time pass is also an
event, i.e., one can model that the result of a test is influenced just by waiting.

These dependencies are a matter of the problem definition andcannot be found au-
tomatically. Thus, they must be provided a priori. See section ?? for a formal language
description of the dependency relation. We define the ”remove-if-dependent” operator
⊖ : 2Σ ×D × Σ→ 2Σ:

M ⊖ (D,α) := M \ {β ∈M | α andβ are dependent w.r.t.D}

Algorithm 12shows a recursive approach for finding and removing redundant IF-instructions
in a given controller programP with a dependency relationD.

Input : Controller programP = (C1, C2, ..., Cn) containing redundant
IF-instructions. Dependency relationD.

Output : Adjusted controller programP ′ = (C ′
1, C

′
2, ..., C

′
n) containing no

redundant IF-instructions.

(P ′, vis) ← removeIF (P,D, 0, ∅, ∅, ∅)1

return P ′2

Algorithm 12 : Removal of redundant IF-instructions

Before looking at the functionremoveIF , we define two auxiliary functions: the func-
tionB : P ×L→ 2C returns all commands within a given command-block, referenced by
its entry-point:

B(P, l) :=
{

{(l, s, λ)} ∪B(P, l′) : (l, s, λ) = P [l] ∧ s 6= GOTO(x) ∧ ∃P [l+ +] = (l′, s′, λ′)
{P [l]} : else

The functionW : 2C → {true, false} returnstrue if the given command-block contains
only IF-instructions (except the last GOTO-instruction).Then we say that the given block
is await-block:

W ({(l1, s1, λ1), ..., (ln, sn, λn)}) :=
{

true : sn = GOTO(l1) ∧ ∄s ∈ {s1, ..., sn−1} : s 6= IF (x, y)
false : else

Example wait-block:

1: IF (A) THEN 10
2: IF (B) THEN 15
3: IF (C) THEN 20
4: GOTO 1

CHAPTER 6. CODE GENERATION 68

The recursive functionremoveIF (P,D, l0, vis, T, F) works as follows: Redundant
IF-instructions should be removed out of the given controller-programP . WhereD is a
dependency-relation,l0 the entry-label of the command-block to examine,vis the set of
already visited labels,T is a set of conditions, which must betrue, andF is a set of
conditions, which must befalse due to prior jumping decisions.

At the beginning, it is checked ifl0 was already visited (lines 1-2). If it is so, the
unchanged program is returned. If the command-block referenced byl0 is a wait-block (i.e.
that it waits for some events to occur) and the reference-count of l0 is greater than 2, then
the two setsT andF are resetted to the empty set (line 5). Because then, we know that this
command-block is referenced by at least three other commands. Two of them do we know:
the basic reference ofl0 and (since this is a wait-block) the loop GOTO-instruction at the
end of the block.

If l0 has only two references, then we can be sure that this command-block is not ref-
erenced elsewhere. We do not need to resetT andF completely, but we must remove all
conditions that are related toTIME (line 7). This is because we are in a wait-block and
time can pass as long the controller is waiting for any event to occur. If this is no wait-block
and the reference-count ofl0 is greater then 1, we must completely resetT andF , since it
is very likely that the other referencing command does not have the sameT andF sets (line
9).

The main loop iterates over all commands of the given command-block (lines 11-33).
Here, the label of each passed command is added tovis. Then, in dependence on the in-
structions, the following steps are performed: Ifs is a GOTO-instruction,removeIF is
called recursively on the destination label (line 15). Ifs is a DO-instruction, all condi-
tions that depend on the action of this command are removed from T andF . If s is a
WAITUNTIL-instruction, all conditions that depend onTIME are removed fromT and
F (line 22). If the condition of this instruction is inT , then we can remove the current
command fromP , since the instruction (WAITUNTIL(true)) would not have any effect
(line 24).

If s is an IF-instruction with conditioncond andcond is inF , then we can also remove
the command (line 27), since the controller would never jumpto the destination label (IF
(false) THEN GOTO dest). Otherwise, ifcond is in T , we can replace the IF-instruction
by a GOTO-instruction (line 30), since the succeeding commands in that block are never
reached (IF (true) THEN GOTO dest). Ifcond is neither inF nor in T , we must recurse
again on the destination label and extendT with cond for that function call (line 32). After
that, we addcond to F , since in this branch we did not take the IF-instruction and can,
therefore, assume thatcond is false (line 33).

CHAPTER 6. CODE GENERATION 69

if l0 ∈ vis then1

return (P, vis)2

if W (B(P, l0)) then3

if R(P, l0) > 2 then4

(T, F) ← (∅, ∅)5

else6

(T, F) ← (T ⊖ (D,TIME), F ⊖ (D,TIME))7

else ifR(P, l0) > 1 then8

(T, F) ← (∅, ∅)9

P ′ ← P10

foreach (l, s, λ) ∈ B(P, l0) do11

vis ← vis ∪ {l}12

switch s do13

caseGOTO(dest)14

return removeIF (P ′,D, dest, vis, T, F)15

caseDO(action)16

(T, F) ← (T ⊖ (D,action), F ⊖ (D,action))17

caseWAITUNTIL(cond)18

(T, F) ← (T ⊖ (D,TIME), F ⊖ (D,TIME))19

if cond ∈ T then20

P ′[l] ← ⊥21

caseIF (cond, dest)22

if cond ∈ F then23

P ′[l] ← ⊥24

else25

if cond ∈ T then26

P ′[l] ← (GOTO(dest), λ)27

else28

(P ′, vis) ← removeIF (P ′,D, dest, vis, T ∪ {cond}, F)29

F ← F ∪ {cond}30

return (P ′, vis)31

Function removeIF(P ,D, l0, vis, T , F)

CHAPTER 6. CODE GENERATION 70

6.7 Assembler Code Generation

The final step in the synthesis algorithm is the compilation of IEC 1131-3 conforming
assembler code [21] from the optimised intermediate code. Such an assembler code can be
uploaded without any modifications into a real Siemens S7 programmable logic controller
(PLC), which is the current industrial standard.

6.7.1 Target System

As we have seen, prior to the assembler code generation, an intermediate program is gener-
ated. Because of this abstraction, we are able to implement awide range of target systems.
In order to give a proof of concept of the developed synthesisapproach, a compiler was im-
plemented that translates the intermediate programs to IEC1131-3 conforming assembler
code [21].

The current standard PLC is a Siemens S7. Using the special programming software
Siemens Step7, one is able to upload IEC 1131-3 assembler code into such a controller.
The machine-sensory is attached as HIGH/LOW input-signalson the controller. The con-
troller executes the synthesised assembler program that reads these input-signals and con-
trols some output-signals. These output-signals are linked with machine-actuators that per-
form some movements. Reading and writing of input and output-signals works as follows:

• Before the controller program (also called as the main cycle) is executed, all input-
signals are cached in an input-buffer. The main cycle does not read any input-signals
directly from the sensors but from the input-buffer. Duringone cycle, the input-
signals do not change.

• All writing requests are cached in an output-buffer. After the termination of the main
cycle, this buffer is flushed such that all actuators are controlled at the same time.

In the memory of an S7 controller, there are so called data- and function-blocks that rep-
resent the data- and code-segments. The synthesised program is placed into such a code-
segment.

6.7.2 IEC 1131-3 Code Compilation

Because of the input/output-caching functionality of a Siemens S7 controller, as described
in the last section, it is necessary that the main cycle must terminate if it waits for a specific
event from the sensors. Since only then, state-changes of the input-signals can be noticed
by the controller. Thus, the assembler program must not contain loops. For example, it is
not allowed to compile the following ”wait-for” intermediate code

...
10: IF (<sensor X>) THEN GOTO 20
11: GOTO 10
...
20: ...

CHAPTER 6. CODE GENERATION 71

just by syntactical replacement of equivalent assembler functions:

...
aaaa: A <sensor X>

JC bbbb
JU aaaa

...
bbbb: ...

This would result in a hang-up of the controller because the query-commandA <sensor X>
will never return a distinct result since the input-buffer does not get refreshed. Note that
the assembler commandJC stands for a conditional, whileJU stands for an unconditional
jump.

Unfortunately, an S7-controller has no built-in function that allows to terminate the cur-
rent cycle and resume later on the same position. Also, no program counter, containing the
current position in the code-segment, is accessible by any assembler command. Therefore,
as a matter of fact, the synthesised assembler program has tostore the current position in a
helper variable, a so called marker-byte. Now, on a re-entrance, depending on that position-
variable, the program can jump to the command where the execution was terminated during
the last cycle.

The compilation of an intermediate GOTO-command depends onits destination; if the
destination address liesbehindthe current position, then this GOTO-command is compiled
as an unconditional jump (JU). If the destination address liesbeforethe current position,
in order to avoid possible loops, an assembler code is generated that loads the destination
address into the position-variable and then terminates thecycle. The compilation of IF-
commands works analogously. The conditions of the IF-commands and the actions of the
DO-commands are compiled with respect to a given assembler look-up table in which all
symbolic events are mapped to some concrete assembler commands.

The labels of an assembler program may only contain letters,not digits, and can have at
most a length of four. Because it is not possible to store the labels as dynamical references
in a marker byte, a so called ”Jump to Labels” (JL) code-sequence must be generated at
the beginning. There, the contents of the position-variable is queried from the dedicated
marker byte, and then, depending on the (numerical) value, ajump to the corresponding
label is made.
The following example intermediate program:

0 : WAITUNTIL (occurred_pressed);
1 : DO (turn_on_led);
2 : WAITUNTIL (occurred_released);
3 : DO (turn_off_led);
4 : GOTO 0;

with the following symbolic look-up table:

occurred_pressed = A I124.0
occurred_released = AN I124.0

CHAPTER 6. CODE GENERATION 72

turn_on_led = SET;S Q125.6
turn_off_led = SET;R Q125.6

is compiled to this assembler program:

L MB0
JL ud
JU aaaa
JU aaac
JU end

ud: JU end

aaaa: L 0
T MB0
A I124.0
JCN end
SET
S Q125.6

aaac: L 1
T MB0
AN I124.0
JCN end
SET
R Q125.6
L 0
T MB0
JU end

end: NOP 0

I124.0 is an input-signal,Q125.6 is an output-signal, and in the marker byteMB0, the
current program position is stored.

Chapter 7

Practical Experience

7.1 Tool Implementation

Within the scope of this diploma thesis, the synthesis algorithm has been also implemented
in C++. The back-end synthesis functions were efficiently programmed using STL func-
tions and classes. For the parser routines, the standard tools flexandyacc[17] were used.
As a front-end API,wxWidgets[22] was used such that a platform independent GUI im-
plementation was possible. The tool graphviz from AT&T [15] was used as a rendering
back-end for the plant components.

7.2 Real World Examples

The following sections describe three real world examples that could be successfully solved
with the developed synthesis tool. At first, the lamp exampleis shown, which has, on the
one hand, a quite simple plant but, on the other hand, shows a common problem when one
tries to model instantaneous reactions. The second exampleshows a modelling approach
for a gear checking machine, which is a standard example for an industrial machine. The
last example shows how a program for a round table can be generated.

7.2.1 Lamp

A simple example that shows a fundamental issue in modellingreactive components is the
Lamp Example. There are two components: a lamp and a button. The Lamp has the two
states ON and OFF while the button can be in a RELEASED or PRESSED state. It is
required that the lamp should be turned ON when the button is PRESSED and, vice versa,
it should be turned OFF when the button is RELEASED again.

So the conjunctive assertions are formulated as follows:

• never: lamp is turned OFFand button is PRESSED

• never: lamp is turned ONand button is RELEASED

The plan is defined as:

73

CHAPTER 7. PRACTICAL EXPERIENCE 74

Figure 7.1: Screenshot of the synthesis tool

• wait for button becomes PRESSED

• wait for button becomes RELEASED

Modelling the plant, a first straightforward approach wouldbe to model both compo-
nents, lamp and button, as two-states automata as shown in figure7.2.

One observers that turning the lamp ON and OFF is controllable while changing the
state of the button is uncontrollable since this depends on external user interaction that is,
in fact, unpredictable. The combined state space looks as shown in figure7.3.

It is obvious that, starting at(OFF,RELEASED), there is no strategy that leads to
the next target state,(ON,PRESSED), without entering a fail state. So this first straight-
forward specification is actually unrealisable, which can also be demonstrated using the
developed synthesis tool. Recall that our target-controller can onlyreact on certain plant
events. Therefore, it is necessary to give the controller a chance of reacting to!press.
Since we can make use of timed automata, we can introduce a clockC to give the controller
the time to react on!press: if !press occurs at locationRELEASED, before the execu-
tion enters the target statePRESSED, an intermediate stateRELEASED’ is entered having
the invariantC < 1. FromRELEASED’, the intermediate!press’-transition, having the
guardC > 0, leads toPRESSED. The same is done for thePRESSED→ RELEASED case.
This new (reactive) button is shown in figure7.4.

CHAPTER 7. PRACTICAL EXPERIENCE 75

OFF

ON

?turn_on ?turn_off

Lamp

RELEASED

PRESSED

!press !release

Button

Figure 7.2: Lamp Example: naive approach

OFF , RELE�ASED

ON , RELE�ASED

OFF , PRESSED

ON , PRESSED

!release

!press

!release

!press

?turn_on ?turn_off ?turn_on ?turn_off

Figure 7.3: Lamp Example: naive approach combined state space

As one can see, there exists a winning strategy, now. Since aslong asC = 0, the
controller has enough time to send a?turn_on-request after a!press-event was no-
ticed. After that, it can let time pass untilC > 0, i.e., it waits an arbitrary small time
ǫ > 0. Then, the intermediate!press’-event happens immediately that brings the plant
to (ON,PRESSED).

The final intermediate controller program is generated as follows:

0 : WAITUNTIL (press);
1 : DO (turn_on);
2 : WAITUNTIL (release);
3 : DO (turn_off);
4 : GOTO 0;

Note that all clock, delay, and intermediate events are discarded.

7.2.2 Gear Checking Machine

The objective of a gear checking machine is to load workpieces (gears) that come over an
intake transporting-belt and to classify them. After the classification, the gears are unloaded

CHAPTER 7. PRACTICAL EXPERIENCE 76

OFF

ON

?turn_on ?turn_off

Lamp

RELEASED

!press

!release

PRESSED

RELEASED’
C < 1

C := 0

PRESSED’
C < 1

C := 0

!press’

!release’

C > 0

C > 0

Button

Figure 7.4: Lamp Example: reactive approach

in a dedicated outtake. A gripper arm transports the gears within the machine to the various
locations. It can be controlled independently in two directions: vertically (up or down) and
horizontally (intake, classification, or outtake). There are also some other components as
well: a mandril that fixes the loaded gear during classification, a PC-software that performs
the actual classification, a loader that loads the gear into the gripper at the intake, and an
unloader that unloads the gear from the gripper into an outtake.

The mechanical setup of the machine induces some constraints on the components:

• The gripper can move horizontallyonly if it is in the upper position

• The software can classifyonly if the mandril is strained

• The gripper can move verticallyonly if the mandril is relaxed (since only then, the
workpiece is released and can be transported away)

• The loader can loadonly if the horizontal position of the gripper is at the intakeand
the vertical position is down

• The software can classifyonly if the horizontal position of the gripper is at the pro-
cessing stationand the vertical position is down

• The mandril can change its stateonly if the horizontal position of the gripper is at the
processing stationand the vertical position is down

• The unloader can unloadonly if the horizontal position of the gripper is at the outtake
and the vertical position is down

Note that the last four constraints define, which component is enabled when the gripper
(and so the workpiece) is at a certain position.

CHAPTER 7. PRACTICAL EXPERIENCE 77

The plant can be modelled in a straightforward manner. The horizontal movement of the
gripper is given by a hardware unit (as introduced in section??) that has four resting states
(intake,process, andouttake) plus the implicitly generated intermediate states (e.g.
moving_intake_process). The vertical movement is also modelled by a hardware
unit. But this one consists only of the two resting statesup anddown. The mandril is
the third hardware unit that contains the resting statesrelaxed andstrained. The
software, loader, and unloader are defined by explicit timedautomata that are shown in
figure7.5.

idle

Software

classifying classified

!classify_end

?classify

?resetC := 0

C = 1

idle

loading

?load !load_end

Loader

C := 0 C = 1

idle

unloading

?unload !unload_end

Unloader

C := 0 C = 1

Figure 7.5: Components of the Gear Checking Machine

The actions of the components are modelled such that time elapses when they are ex-
ecuted. For the sake of simplicity, the plant is modelled such that each action will take
exactly one time unit. Because it is not allowed that a processing cycle of the machine
takes arbitrarily much time, a global timeout-clock is partof the goal-definitions that lets
the plan fail as soon as this clock exceeds 15 time units. The precise plan-definition is
defined as:

plans {
plan {

clocks timeout 15;

reset timeout;
waitfor loaded;
waitfor classify_end;
waitfor unloaded;

};
}

Based on that, the synthesis tool generates:

0 : DO (load);

CHAPTER 7. PRACTICAL EXPERIENCE 78

1 : WAITUNTIL (loaded);
2 : DO (moveto_up);
3 : WAITUNTIL (reached_up);
4 : DO (moveto_process);
5 : WAITUNTIL (reached_process);
6 : DO (moveto_down);
7 : WAITUNTIL (reached_down);
8 : DO (moveto_strained);
9 : WAITUNTIL (reached_strained);
10 : DO (classify);
11 : WAITUNTIL (classify_end);
12 : DO (moveto_relaxed);
13 : DO (reset_software);
14 : WAITUNTIL (reached_relaxed);
15 : DO (moveto_up);
16 : WAITUNTIL (reached_up);
17 : DO (moveto_outtake);
18 : WAITUNTIL (reached_outtake);
19 : DO (moveto_down);
20 : WAITUNTIL (reached_down);
21 : DO (unload);
22 : WAITUNTIL (unloaded);
23 : DO (moveto_up);
24 : WAITUNTIL (reached_up);
25 : DO (moveto_intake);
26 : WAITUNTIL (reached_intake);
27 : DO (moveto_down);
28 : WAITUNTIL (reached_down);
29 : GOTO 0;

7.2.3 Round Table

A round table is an often occurring design-pattern in mechanical engineering. It consists of
n bins that are located on the rim of a cycling disc. The bins areuniformly distributed such
that the angle between two bins isγ = 360◦

n
. If the table gets a?cycle-request, it rotates

by γ in clockwise direction such that the bin that was at positioniγ is now at(i + 1)γ. At
each position, a certain action can be applied to the bin. Each bin can hold a workpiece that
is, by cycling the table, processed through the various processing stations of the machine.

In this example, we have a round table with eight bins (n = 8 / γ = 45◦). The
workpieces are marbles having the colors red, green, and blue. The positions have the
following functionality:

• At position 0, a new marble is loaded into the bin.

• At position 2, the color of the loaded marble is determined bya sensor.

CHAPTER 7. PRACTICAL EXPERIENCE 79

• At position 4, the marble is unloaded into the ”red”-outtake.

• At position 5, the marble is unloaded into the ”green”-outtake.

• At position 6, the marble is unloaded into the ”blue”-outtake.

• At position 7, the marble is unloaded into the ”undef”-outtake.

• At the positions 1 and 3, nothing happens.

P0

P1

P2

P3

P4

P5

P6

P7

?cycle

sensor

unloading if red

unloading if green

unloading if blue

unloading if undef

loading

Figure 7.6: Round table with eight bins

The formal specification can be given in a straightforward manner; the round table itself
is represented by an automaton having the two locationsIDLE andCYCLING. At IDLE, it
waits for a?cycle request that brings the table-automaton intoCYCLING. At CYCLING,
a !cycling_end-event back toIDLE can occur spontaneously, indicating that the next
position is reached.

All the bins are modelled by automata that have the same structure. Only the initial
locations vary. They have eight position-locationsPOS0 toPOS7 and aRESTART location.
The position-locations are linked sequentially with a$cycle_end-transition such that

CHAPTER 7. PRACTICAL EXPERIENCE 80

every time the table rotates for one position, the bin-automata advance in the next position-
location as well.POS7 is not linked directly withPOS0. In order to notice whenever a bin
returns to positionPOS0, afterPOS7 an intermediate locationRESTART is added. From
there, via a!restart-transition, the bin-automata reachPOS0 again.

The sensor and the classification information is represented by a marble-automaton.
Starting at locationUNDEF, it waits for arestart-event to get into the locationEMPTY.
There, it waits for aload_end-event to get into the locationUNCLASSIFIED. Being
in that location, the controller can send a?classify-request, and after some time, a
!classify_end is sent by the plant back to the controller, signalising thatthe classi-
fication of the color is done. Then, the automaton will be in the locationVALIDATING
and the controller can request a?store_class that safes the measured color informa-
tion into the controllers’ memory. After that, at locationCLASSIFIED, the controller
can send either?unload_a, ?unload_b, ?unload_c, or ?unload_d to go into
UNLOADING_AT_A,UNLOADING_AT_B,UNLOADING_AT_C, orUNLOADING_AT_D,
respectively. The unloading process ends with the feedbackmessage!unloading_end.
Then, the automaton is in the locationUNLOADED where a prioritised!unloaded event
occurs that signalises the plan that the marble was unloaded. All plant automata are shown
in sectionA.

Let 0 ≤ i ≤ 7, then the conjunctive assertions are formulated as follows:

• never: table is CYCLINGand any marble is CLASSIFYING, VALIDATING, or
UNLOADING

• marblei can CLASSIFYINGonly if bin i is in POS2

• marblei can UNLOADING AT A only if bin i is in POS4

• marblei can UNLOADING AT B only if bin i is in POS5

• marblei can UNLOADING AT C only if bin i is in POS6

• marblei can UNLOADING AT D only if bin i is in POS7

The four last assertions associate the four outtakes A, B, C,and D to the corresponding
positions.

For each bini, the state guards specify whenever a marble should be unloaded at a
certain position:

• marblei in UNLOADING AT A along with bin i in POS4is guarded byc0 is blue

• marblei in UNLOADING AT B along with bin i in POS5is guarded byc0 is green

• marblei in UNLOADING AT C along with bin i in POS6is guarded byc0 is red

• marblei in UNLOADING AT D along with bin i in POS7is guarded byc0 is undef

For each bini, the plan says:

• wait for bin i sends restart

CHAPTER 7. PRACTICAL EXPERIENCE 81

• wait for any unloader sends unloadedor, if bin i sends restart prior to any unloaded
event, then the plan has failed

The precise specification code is given inA. The intermediate code for controlling one
bin in this round table of eight positions is given inA.

7.3 Benchmarks

The following benchmarks have been measured on an Intel Pentium III Mobile 1.2 GHz
with 512 MB RAM, running Linux 2.6.12, compiled with GCC 3.3,and -O3 optimisations
enabled.

Example Visited Winning Code size Time [sec]
Lamp 11 10 5 0
GCM 1660 483 30 6.0
RT 1/8 60 51 53 0
RT 2/8 206 138 141 0.4
RT 3/8 656 330 312 1.1
RT 4/8 2118 841 773 5.5
RT 5/8 Out of memory

In this table, for each example from the sections before, thenumber of totally visited
states, the winning states, the number of lines of the intermediate program, and the actual
generation time are shown. RTn/8 stands for round table with eight positions but only
n bins considered. GCM means gear checking machine. The roundtable examples are
untimed, while the lamp and the gear checking examples are timed.

The round table results with one to four bins illustrate how wrong controller decisions at
the beginning are firstly detected at the very end of a complete cycle; Recall that, hereby, the
controller has to decide whether a bin at a certain position in the cycle should be unloaded
or not. The plan was formulated quite vaguely: ”Each bin mustbe unloaded within one
complete cycle”. As a result of this specification, some missed unloading requests can only
be detected very deeply in the decision tree by the game solving algorithm. Thus, the round
table example with five bins exceeds the memory limit.

All actions of the components in the gear checking example consume time. Therefore,
clock zone operations are needed that lead to an increase of the overall time. The discrep-
ancy between code size and winning states is due to the effectiveness of the applied post
optimisations.

Chapter 8

Conclusions and Outlook

8.1 Conclusions

This diploma thesis presents an innovative synthesis approach that uses optimal model-
checking techniques that have already been successfully implemented in standard model-
checking tools. With a new developed specification language, the user can easily specify
component based industrial problem setups. Along with assertions and goal-definitions, a
controller program is automatically generated, or else, ifthere exists no valid program, it is
reported that the specification is unrealisable.

The two basic computational models are timed automata and safety games that were
adapted from related work and appropriate extended in orderto match the purpose of this
thesis, synthesising industrial controller programs. A nested forward/backward fixed-point
algorithm finds a non-deterministic winning strategy for the controller in the spanned safety
game. It runs on-the-fly on the locations of the plant automata and the clock assignments,
symbolised by clock zones, encoded by difference bound matrices.

Because the standard simulation graph of a timed automaton is too abstract for a linear
game solving algorithm, a precomputation transforms that implicit representation to an
explicit one. A local, component based, approach for doing this is firstly introduced in this
thesis. Hereby, instead of transforming the whole product state space, the various plant
components are transformed independently from each other.Thus, the overall running time
is linear to the size of the product state space.

Instead of directly generating concrete assembler code, a generic intermediate code is
synthesised first. Thus, it is possible to reduce the code-size by applying generic optimisa-
tion steps. Because of this abstraction, the synthesis approach is applicable to a wide range
of platforms since porting means just implementing an appropriate compiler.

In order to get a proof of concept, a prototype was implemented in C++. At the end of
the synthesis process, a compilation step compiles the intermediate code in concrete IEC
1131-3 assembler that can be uploaded into a real Siemens S7-300 programmable logic
controller, which is the current industrial standard. In cooperation with the Laboratory of
Process Automation at Saarland University, real world problem tasks could be solved and
implemented on a training S7-300.

82

CHAPTER 8. CONCLUSIONS AND OUTLOOK 83

A typical life-cycle of an industrial machine looks roughlylike this:

1. Create specification.

2. Do manual programming.

3. If verification reports an error, goto 2.

4. Put machine into production (until customer changes specification, then goto 1).

With the synthesis approach no manual programming is necessary anymore. Similarly to
the classical development approach, a formal specificationmust be created that describes
the actual problem task. But after that, in contrast to the classical approach, the program
generation works completely automatically. This brings not only a boost with the initial
development, but also with later customisations. Furthermore, the question, whether or not
a certain component-setup is sufficient to solve an industrial problem task, can be answered
at the very beginning, since it can be automatically checkedif the specification is realisable
or not.

8.2 Outlook

Indeed, for the various parts of the synthesis algorithm, there exists some improving poten-
tial. In this section, some ideas are sketched that outline possible future work. Independent
to each extension, the primary requirement that the synthesis process should run completely
automatically, must be always maintained.

8.2.1 Language

A major task in the future will be the improvement of the specification language such that
modelling of industrial program tasks will become as intriguing as possible. In order to do
so, a preprocessing step prior to the actual parsing of the specification could be applied. By
using macros and preprocessor directives, the language could be easily extended by loops
and conditionals.

In order to increase expressivity, the specification language could be extended by further
data types other than time, which is the only data type at the moment, actually. Possible
new data-sensitive elements range from simple scalar variables like integers or floats up to
complex objects like sets, lists, or vectors.

8.2.2 Computational Models

In this thesis, an extension to the classical theory of the timed automata is introduced. By
distinguishing between controllable, uncontrollable, and synchronisation events, one ob-
tains timed game automata that form the basis for the synthesis algorithm. Indeed, with
these modelling techniques, one can model a wide range of industrial problem tasks. How-
ever, practical experience with the implemented synthesistool has shown that some further
extensions might be useful to the user. For example, in addition to synchronising two com-
ponents via events one could also include a state-based synchronisation.

CHAPTER 8. CONCLUSIONS AND OUTLOOK 84

8.2.3 State Space Exploration

The core part of the synthesis algorithm is the state space exploration. The overall running
time is dominated by that process. Thus, speeding up the exploration phase results in a
major speed up of the whole synthesis algorithm.

With the synthesis approach that is shown in this thesis, asynchronous components that
interleave each other form the basis of the state space algorithm. This means, if, for exam-
ple, two events A and B may occur concurrently, then on the onehand, the ”first A, then
B”-case must be considered as well as the ”first B, then A”-case. Thus, both paths must
be part of the combined state space, in order to have an exhaustive combined model. How-
ever, in practice, it is often not necessary to consider all combinations of parallel occurring
events. Using such an a priori knowledge, which events that run in parallel do not need
to be considered in every possible combination, can be used to drastically reduce the size
of the combined state space, and thus, the size of the generated program and particularly
the overall running time of the synthesis algorithm. This technique is calledpartial order
reduction[9] that is already quite well known for model-checking. A possible future work
could be integrating such techniques in synthesis.

As shown in section5.3, all controller decisions that lead to a valid state are keptin
the state space. After the exploration, the deterministic winning strategy is obtained by
removing all non-optimal controller decisions out of the explored state space. A further
future work could be bringing the selection heuristic into the actual exploration phase. This
could be done by extending the purebreadth-first-searchto aninformed depth-first-search
algorithm. Hereby, when there are several controllable actions in a discovered state, only
one of them is traversed, the others are only marked as possible alternatives for that state,
in case that the picked decision becomes invalid.

8.2.4 Code Generation

Looking at the generated intermediate programs, one observes that there exists still min-
imisation potential. For example, one could introduce the concept of subprograms by iden-
tifying identical code-parts and replacing them with a function call to a corresponding sub-
program. Also, in correspondence to the ideas of including new data-sensitive elements as
mentioned above, the size of the intermediate programs could also be reduced by making
use of a variable environment.

In order to get a more canonical assembler code, one could extend the assembler-
compilation at the end of the synthesis algorithm such thatabstract syntaxis generated
instead ofconcrete syntax, as it is done right now. Based on that abstract syntax, a second,
assembler-code based, optimisation could be applied.

Appendix A

Round Table

Components

Marble

validating

classifiedunloaded

emptyundef classifyingunclassified

unloading_at_a

unloading_at_b

unloading_at_c

unloading_at_d

$restart !load_end ?classify

!classify_end

?store_class

?unload_a

?unload_b

?unload_c

?unload_d

!unloading_end_a

!unloading_end_b

!unloading_end_c

!unloading_end_d

!unloaded

85

APPENDIX A. ROUND TABLE 86

idle

cycling

?cycle
!cycle_end

Table

pos0

restart

$cycle_end
pos1

$cycle_end
pos2

$cycle_end
pos3

pos7
$cycle_end

pos6
$cycle_end

pos5
$cycle_end

pos4

$cycle_end

$cycle_end

!restart

Bin

Specification

plant {
automaton table {

nodes idle, cycling;
idle -> cycling ?cycle;
cycling -> idle !cycle_end;

};

automaton pos_0 {
nodes restart, p0, p1, p2, p3, p4, p5, p6, p7;
p0 -> p1 $cycle_end;
p1 -> p2 $cycle_end;
p2 -> p3 $cycle_end;
p3 -> p4 $cycle_end;
p4 -> p5 $cycle_end;
p5 -> p6 $cycle_end;
p6 -> p7 $cycle_end;
p7 -> restart $cycle_end;
restart -> p0 !restart instant;

};

automaton marble_0 {

APPENDIX A. ROUND TABLE 87

nodes
undef, empty, unclassified,
classifying, validating, classified,
unloading_at_a, unloading_at_b,
unloading_at_c, unloading_at_d,
unloaded;

undef -> empty $restart;
empty -> unclassified !load_end instant;
unclassified -> classifying ?classify;
classifying -> validating !classify_end;
validating -> classified ?store_class;

classified -> unloading_at_a ?unload_a;
classified -> unloading_at_b ?unload_b;
classified -> unloading_at_c ?unload_c;
classified -> unloading_at_d ?unload_d;

unloading_at_a -> unloaded !unloading_end_a;
unloading_at_b -> unloaded !unloading_end_b;
unloading_at_c -> unloaded !unloading_end_c;
unloading_at_d -> unloaded !unloading_end_d;

unloaded -> undef !unloaded instant;
};

}

assertions {
never table.cycling and

(marble_0.classifying or
marble_0.validating or
marble_0.unloading*);

marble_0.classifying onlyif pos_0.p2;
marble_0.unloading_at_a onlyif pos_0.p4;
marble_0.unloading_at_b onlyif pos_0.p5;
marble_0.unloading_at_c onlyif pos_0.p6;
marble_0.unloading_at_d onlyif pos_0.p7;

}

guards {
marble_0.unloading_at_a and pos_0.p4 guardedby c0_is_blue;
marble_0.unloading_at_b and pos_0.p5 guardedby c0_is_green;
marble_0.unloading_at_c and pos_0.p6 guardedby c0_is_red;
marble_0.unloading_at_d and pos_0.p7 guardedby c0_is_undef;

APPENDIX A. ROUND TABLE 88

}

dependencies {
c0_is_blue dependson store_class_0;
c0_is_green dependson store_class_0;
c0_is_red dependson store_class_0;
c0_is_undef dependson store_class_0;

}

plans {
plan {

waitfor restart;
waitfor unloaded, restart -> failed;

};
}

Intermediate Code

0 : DO (cycle);
1 : WAITUNTIL (cycle_end);
2 : DO (cycle);
3 : WAITUNTIL (cycle_end);
4 : DO (classify);
5 : WAITUNTIL (classify_end);
6 : DO (store_class);
7 : DO (cycle);
8 : WAITUNTIL (cycle_end);
9 : DO (cycle);
10 : WAITUNTIL (cycle_end);
11 : IF (c0_is_blue) THEN GOTO 26;
12 : DO (cycle);
13 : WAITUNTIL (cycle_end);
14 : IF (c0_is_green) THEN GOTO 35;
15 : DO (cycle);
16 : WAITUNTIL (cycle_end);
17 : IF (c0_is_red) THEN GOTO 38;
18 : DO (cycle);
19 : WAITUNTIL (cycle_end);
20 : WAITUNTIL (c0_is_undef);
21 : DO (unload_d);
22 : WAITUNTIL (unloading_end_d);
23 : DO (cycle);
24 : WAITUNTIL (cycle_end);

APPENDIX A. ROUND TABLE 89

25 : GOTO 0;
26 : DO (unload_a);
27 : WAITUNTIL (unloading_end_a);
28 : DO (cycle);
29 : WAITUNTIL (cycle_end);
30 : DO (cycle);
31 : WAITUNTIL (cycle_end);
32 : DO (cycle);
33 : WAITUNTIL (cycle_end);
34 : GOTO 23;
35 : DO (unload_b);
36 : WAITUNTIL (unloading_end_b);
37 : GOTO 30;
38 : DO (unload_c);
39 : WAITUNTIL (unloading_end_c);
40 : GOTO 32;

List of Figures

1.1 Two concurring robot arms. 2
1.2 Verification vs. Synthesis. 3
1.3 Synthesis algorithm overview. 6
1.4 Standard simulation graph. 7
1.5 Time abstracted quotient graph. 8

2.1 An example timed automaton. 12

3.1 Part of a plan automaton. 21
3.2 Simple untimed parallel composition. 23
3.3 Untimed synchronised parallel composition. 24

4.1 A hardware component with three resting states. 28
4.2 Figure 4.1 represented as an automaton. 28
4.3 Two dimensional moving robot arm with obstacle. 31
4.4 A gripper that may only close if the guard holds. 32

5.1 The plant can force an infinite loop. 41
5.2 Clock usage example. 42
5.3 Unique choice split-up. 44
5.4 Breadth-First Search. 47
5.5 Forward exploration of reachable states. 50
5.6 Reverse state removal. 52
5.7 !- vs. %-state-guards. 53

6.1 Controller program as a flow-chart. 58
6.2 Controller request selection heuristic. 60
6.3 Code extraction example 1. 64
6.4 Code extraction example 2. 64

7.1 Screenshot of the synthesis tool. 74
7.2 Lamp Example: naive approach. 75
7.3 Lamp Example: naive approach combined state space. 75
7.4 Lamp Example: reactive approach. 76
7.5 Components of the Gear Checking Machine. 77

90

LIST OF ALGORITHMS 91

7.6 Round table with eight bins. 79

List of Algorithms

1 Computing the controller losing states. 11
2 Tightening a difference bound matrix. 18
3 Computing the combined edge relation. 22
4 Generation of a plan automaton. 39
5 State space exploration main algorithm. 48
6 Reverse fail state removal. 51
7 Principle of a real controller. 56
8 Request transition selection. 61
9 Search for the nearest state that shows a progress in its plan part 62
10 Intermediate code generation. 63
11 Controller program post-optimisation algorithm. 64
12 Removal of redundant IF-instructions. 67
13 Function removeIF(P , D, l0, vis, T , F) . 69

Bibliography

[1] Karine Altisen and Stavros Tripakis. Tools for controller synthesis of timed systems.
2002.

[2] Rajeev Alur. Techniques for automatic verification of real-time systems. PhD thesis,
Stanford, CA, USA, 1992.

[3] Rajeev Alur. Timed automata. 1998. NATO ASI Summer School on Verification of
Digital and Hybrid Systems.

[4] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[5] Tobias Amnell, Elena Fersman, Paul Pettersson, HongyanSun, and Wang Yi. Code
synthesis for timed automata.Nordic Journal of Computing, 2003.

[6] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL - a tool suite for automatic verification of real-time systems.
In Hybrid Systems, pages 232–243, 1995.

[7] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and
Sergio Yovine. Kronos: A model-checking tool for real-timesystems. InCAV ’98:
Proceedings of the 10th International Conference on Computer Aided Verification,
pages 546–550, London, UK, 1998. Springer-Verlag.

[8] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G.Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games, 2005.

[9] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. MIT
Press, jan 2000.

[10] T.H. Corman, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. McGraw
Hill, 1989.

[11] David L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods for
Finite State Systems, pages 197–212. Springer, 1989.

92

BIBLIOGRAPHY 93

[12] A. Pnueli E. Asarin, O. Maler and J. Sifakis. Controllersynthesis for timed automata.
In Proc. System Structure and Control. Elsevier, 1998.

[13] Bernd Finkbeiner and Sven Schewe. Uniform distributedsynthesis. InIEEE Sympo-
sium on Logic in Computer Science, pages 321–330, June 2005.

[14] S. Finn, M. Fourman, M. Francis, and R. Harris. Formal system design—interactive
synthesis based on computer-assisted formal reasoning. InLuc Claesen, editor,IMEC-
IFIP International Workshop on Applied Formal Methods for Correct VLSI Design,
Volume 1, pages 97–110, Houthalen, Belgium, November 1989. Elsevier Science Pub-
lishers, B.V. North-Holland, Amsterdam.

[15] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering.Software — Practice and Experience,
30(11):1203–1233, 2000.

[16] Gerard J. Holzmann. The model checker spin.IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

[17] John R. Levine, Tony Mason, and Doug Brown.lex & yacc (2nd ed.). O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1992.

[18] X. Liu and S. Smolka. Simple linear-time algorithm for minimal fixed points. pages
53–66. Springer, 1998.

[19] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers
for timed systems. 1995.

[20] Zohar Manna.STeP: the Standford Temporal Prover, 1994.

[21] Siemens AG.SIMATIC - Statement List (STL) for S7-300 and S7-400 Programming
Reference Manual, 12/2002 edition.

[22] Julian Smart, Kevin Hock, and Stefan Csomor.Cross-Platform GUI Programming
with wxWidgets. Prentice Hall, 2005.

[23] Douglas R. Smith. KIDS: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024–1043, 1990.

	Introduction
	Motivation
	Correct Programs
	Overview
	Related Work

	Preliminaries
	Infinite Games
	Game Arena
	Safety Games
	Solving a Safety Game

	Timed Automata
	Infinite State Transition Graph
	Clock Zones
	Difference Bound Matrices
	Complexity Considerations

	Computational Models
	Timed Game Automata
	Plan Automata
	Parallel Composition
	Combined State Space

	Specification Language
	Plant Definition
	Automaton Component
	Hardware Component
	Operator Component
	Assertions
	Dependencies

	Production Goals
	State Guards
	Plans

	Semantics
	Automaton Component
	Hardware Component
	Operator Component
	Assertions
	Dependencies
	State Guards
	Plans

	Game Solving
	Zenoness
	Precomputation
	Clock Usage Analysis
	Unique Choice Intervals

	Winning Controller State Space
	Basic Functions and Operators
	Forward Exploration
	Reverse Fail State Removal
	Special "Guarded State" Transition Type

	Code Generation
	Intermediate Controller Language
	Basic Functions and Operators
	From Strategies to Controller Programs
	Selection of Controllable Transitions
	Intermediate Code Generation
	Post Optimisations
	WAITUNTIL-replacement
	Inlining
	Reference-inlining
	Unreachable command-block removal
	Redundant GOTO removal
	Redundant IF removal

	Assembler Code Generation
	Target System
	IEC 1131-3 Code Compilation

	Practical Experience
	Tool Implementation
	Real World Examples
	Lamp
	Gear Checking Machine
	Round Table

	Benchmarks

	Conclusions and Outlook
	Conclusions
	Outlook
	Language
	Computational Models
	State Space Exploration
	Code Generation

	Appendix
	Round Table

