CONTROLLER PROGRAM SYNTHESIS
FORINDUSTRIAL MACHINES

by
Hans-&rg Peter

A diploma thesis in the

DEPARTMENT 6.2 - COMPUTER SCIENCE

ADVISORS

Prof. Bernd Finkbeiner, PhD
Prof. Dr.-Ing. habil. Hartmut Janocha

SAARLAND UNIVERSITY, GERMANY

November 2005

Erkl arung

Hiermit versichere ich an Eides statt, dass ich die vorhelgeArbeit selbstandig und unter
ausschlief3licher Verwendung der angegebenen Hilfsnaitigéfertigt habe.

Saarbriicken, im November 2005

This work is dedicated to my grandparents Hannelore andlalisoPeter

Abstract

In this thesis, a new synthesis algorithm for industrialtoalier programs is presented.

Verification and synthesis are the two basic approachesdcagtee that a system is
correct. While verification requires the programmer to jewoth the specification and
the implementation, synthesis automatically transfotmesspecification into an implemen-
tation that is correct by construction.

The presented approach includes a new specification laaghad) is geared towards
usability in an industrial set-up. Specifications consfdiMm parts: a generic description
of the machine components that is reused for different mmogr and a description of the
production goals that is specific to each program. The behawf the machine compo-
nents is described by timed automata, while the productoatsgare captured by safety and
bounded liveness properties.

The advantage of this approach is that the description ofjtieds, and thus of the
behaviour of the overall system, is decoupled from the tiechrdetails of the machine
components. This results in a high degree of re-usabildgptvity, and maintainability.
The specification of the machine components can be reusatdifferent programs, and a
reconfiguration of the machine no longer requires a timesgonng re-implementation.

The synthesis problem is solved by finding a memory-lessegfyain a safety game.
A winning strategy is transformed into an intermediate oaigr program, which controls
the machine such that the production aims are met. The ietdiate program is improved
in several optimisation steps before it is cross-compitedafmachine controller.

The approach is illustrated with a prototype implementatibat includes a cross-
compiler for IEC 1131-3 assembler code. The implementdtesbeen applied in several
case studies using the Siemens S7-300 programmable lagioler, which is the current
industrial standard.

Acknowledgements

First of all, thanks a lot to Prof. Bernd Finkbeiner, Joachtox, and Sven Schewe for
giving me suggestions and valuable hints. In particulardiseussions with Sven about
safe and unsafe programs, as well as with Joachim about erhsdiving a problem by
straight programming is easier than giving a formal spesific), revealed some major
issues that found their way into the thesis. Thanks to Praftrilut Janocha for supporting
me with technical equipment that made a real world appbecatif the developed synthesis
tool possible.

Furthermore, thanks to Martin Bauer for the helpful disauss and especially Lea
Pfeifer for her patience and support, as well as to my pa®etsrud and Michael Peter.

Contents

1 Introduction 1
1.1 Motivation. 1
1.2 CorrectPrograms 2
1.3 OVEeIVIEW o 4
1.4 RelatedWork. e 7

2 Preliminaries 9
21 InfinteGames 9

211 GameArena. e 9
212 SafetyGames. 10
2.1.3 SolvingaSafetyGame. 10
2.2 TimedAutomata. e 11
2.2.1 Infinite State Transition Graph. 13
222 ClockZones. e 14
2.2.3 Difference Bound Matrices. 17
2.2.4 Complexity Considerations. 19

3 Computational Models 20
3.1 TimedGameAutomata 20
3.2 PlanAutomata 21
3.3 ParallelComposition. 22
3.4 CombinedStateSpace 23

4 Specification Language 25
4.1 PlantDefinition. 25

4.1.1 Automaton Component. 26
4.1.2 Hardware Component 27
4.1.3 OperatorComponent. 28
414 Assertions 29
415 Dependencies. 30
4.2 ProductionGoals. 31
421 StateGuards. 32
422 Plans. 33

CONTENTS
4.3 SemantiCs.
4.3.1 Automaton Component.
4.3.2 Hardware Component
4.3.3 OperatorComponent.
434 Assertions
435 Dependencies.
436 StateGuards.
437 Plans.
5 Game Solving
5.1 ZEeNnONEeSS. e e
5.2 Precomputation
5.21 ClockUsage Analysis.
5.2.2 Unique Choicelntervals
5.3 Winning Controller State Space
5.3.1 Basic Functions and Operatars
5.3.2 Forward Exploration.
5.3.3 Reverse Fail State Removal
5.3.4 Special "Guarded State” Transition Type.
6 Code Generation
6.1 Intermediate Controller Language
6.2 Basic Functions and Operators.
6.3 From Strategies to Controller Programs.
6.4 Selection of Controllable Transitions.
6.5 Intermediate Code Generation.
6.6 PostOptimisations.
6.6.1 WAITUNTIL-replacement.
6.6.2 Inlining
6.6.3 Reference-inlining. L.
6.6.4 Unreachable command-block removal
6.6.5 RedundantGOTOremoval.
6.6.6 RedundantIiFremoval
6.7 Assembler Code Generation
6.7.1 TargetSystem.
6.7.2 IEC1131-3 Code Compilation.
7 Practical Experience
7.1 Tool Implementation.
7.2 RealWorldExamples
721 Lamp. e
7.2.2 GearCheckingMachine
723 RoundTable. 0.
7.3 Benchmarks

CONTENTS

8 Conclusions and Outlook

8.1 Conclusions
8.2 Outlook

8.2.1
8.2.2
8.2.3
8.24

Appendix
A Round Table

Language

Computational Models
State Space Exploration

Code Generation

82
82
83
83

83
84
84

85

85

Chapter 1

Introduction

1.1 Motivation

When writing a controller program for an industrial machitiee programmer has to be
aware of two things:

1. Safety some machine-operations may lead to undesired behavi@awvea crashes.

2. Bounded LivenessWithin a certain amount of time, the production goals of the
machine must be reached.

So, the programmer has to implement a program that regaedsatiety properties while
trying to reach the goals quickly enough. The basic motivaior this thesis raised upon
the following consideration: When specifying both safetgpgerties and bounded liveness
independently from each other, is it possible to generageatitual program completely
automatically?

The following example illustrates this approach: Figlireshows two concurring robot
arms A and B. A loads workpieces to the processing stati®nn the middle, whileB
unloads them to an outtake. Both can be controlled indeplydeom each other.

The production goal is given by the bounded liveness coiteri"At least every 22
seconds, a new workpiece must be processed”. On the othéyihahand B would move
simultaneously to the processing station, they would cr8shthe safety criterion is: "It is
not allowed thatd and B are simultaneously at the processing station”. Or, momaéadly:
—(Aprocess N\ Brprocrss). The loading and unloading operation take four seconds
each. The processing operation takes six seconds. Sines gpecified that 22 seconds as
an overall cycle time are enough, a valid program could be:

1. Move A to the processing station in order to load a new workpiece (4s
2. Process the workpiece (6s)

3. Move A back to its initial position (4s)

4

. Move B to the processing station and grab the processed workplste (

CHAPTER 1. INTRODUCTION 2

Intake
L

© O ©

rLl Outtake

Figure 1.1: Two concurring robot arms

5. Move B to the outtake in order to unload the workpiece (4s)

6. Goto 1

Obviously, this is not the most time-optimal solution. Theggecifying a stricter upper time
bound, say 14 seconds, yields a more compact result:

1. Move A to the processing station in order to load a new workpiecg (4s

2. Do in parallel:
Process the workpiece (6s)
Move A back to its initial position (4s)
Move B to the processing station (4s)

3. Grab the processed workpiece and m@¢o the outtake in order to unload that
workpiece (4s)

4. Goto 1

Now, the synthesis algorithm is forced to exploit paradielj since this is the only chance
of solving the problem within the desired time. However, ragibound that lies below
14 seconds is actually unrealisable. In this case, the sgistlalgorithm indicates this by
returning an empty program.

1.2 Correct Programs

Machine programs are a high sensitive field of software agweent. Small programming
failures may result in a great financial disaster or coulchdwe dangerous for human be-
ings. Therefore, machine programs must provide a high degfeorrectness under all
circumstances.

CHAPTER 1. INTRODUCTION 3

Computer Aided Verification (CAV) has become a widely usezhtéque in order to
proof correctness of complex systems. Especially asyncdumsetups lead to state spaces,
which can only be exhaustively verified using automated pathCAV works as follows:
a specification is given and a programmer has to create agmogvhich inhibits that spec-
ification. Then, a model-checker (e.d.6[6, 7]) checks if the program satisfies the given
specification. The disadvantage of this method is that arprognust be givemanually
The model-checker only gives feedback about the correstokthat program: either the
specification is satisfied or else a counter-example is geali The actual error in the pro-
gram must be found and removed manually.

The approach presented in this thesis in order to get cooregrams is the so called
Controller Synthesis. Here, the user gives only a spedificatnd the actual program
generation works completelgutomatically From the practical point of view, one can
easily see that the synthesis approach needs significasdyuser interaction than CAV
does, since only the specification must be given manuallyfigerel.2).

Verification
/
Specification Synthesis
/
Specification
v
brogram 9 Model-cvhecking Synthesis

< Counter-example Program

Correct program Unrealisable Correct program
prog specification prog

Figure 1.2: Verification vs. Synthesis

Remove
errors

The gain in maintainability is also evident. Consider a natihat changes its be-
haviour (e.g. due to wear or parts exchange). Then, the atantprogram must be par-

CHAPTER 1. INTRODUCTION 4

tially rewritten or at least anew verified. This results ofte a waste of valuable production
time due to the lack of automated methods. Using syntheass,naust only change the
specification, which is, practically seen, a lot easier tiggmogramming.

Specifying instead of programming means transforming fffeeult task of creating
a controller program into the rather easy task of descrilimgachines hardware and its
production goals. Typically, when an industrial machinplanned the requirement speci-
fications are defined. This is done by the customer togethértine constructing engineer.
The engineer decides which components should be used inaswely that the wishes of
the customer are satisfied. Depending on those wishesagksan be very difficult; con-
sider running time requirements such as "The overall cyiole imust not be greater than
15 seconds”. Now, the engineer has to choose the (cheapegpooents, which allow the
programmer to write a program that inhibits the running tieguirement.

Obviously, the complexer the machine, the better must berl@eer. With the clas-
sical method, the question whether a specification is @dalksor not cannot be answered
until the end of the programming phase, actually. Becausiglfien, there exists a verifiable
controller program. However, a fundamental change of tleeiipation at this time due to
planning failures, can have a major financial impact. On tinerohand with the synthe-
sis approach, both customer and engineer can easily chestherttheir specification can
be realised. Thus, synthesis can be seen as a verificatidre agpecification, where the
concrete controller program is just a by-product of thatysis.

1.3 Overview

Essentially with this approach, the specification is a fdrdescription of the system that
has to be controlled, called plant, along with a definitiorthe production goals, called
plans. Typically, a machine (plant) is constructed by cammyg multiple asynchronous
hardware components with each other. So, the definitioneptant is given as a set of
components. Becauseal-timeis a major characteristic, one computational model forehos
components are Timed Automata. On the other hand, industaehines are reactive. This
means that the components may receive orders sent by altamared respond with plant-
messages by their own. The orders are cattaatrollableevents, while the plant-messages
are calleduncontrollableevents. The occurrence of the latter are basically unpieales for
the controller. The computational model that copes witlhsugon-deterministic behaviour
are Two Player Games. Combining both models, one gets Tina@deGAutomata, which
form the computational basis for representing the plantpmments. Also part of the plant
definition are state-assertions represented by first ooderiias. The conjunction of those
assertions is a safety predicate function. Along with th@ponents, this safety predicate
spans a Safety Game.

The production goals (plans) are timed automata that ruarallel with the plant com-
ponents. They guarantee that within a finite amount of tiregtain goals (key events) are
achieved. If not, they enter a fail state. The plans can be asatraightforward programs
that describe a rough skeleton of the program that shouldebergted. Synthesising a
valid program that matches the specification means findingpaimg strategy for the given

CHAPTER 1. INTRODUCTION 5

safety game.

Figure 1.3 shows the approach as a flowchart: First of all, based on tfieiton of
the plant and the production goals, the timed game autonmateoastructed. Because the
standard timed automata semantics implies implicit temlploehaviour, a preprocessing
step that converts each implicit timed automaton into arni@kpne is applied first. Then,
the spanned safety game is solved by computing the winningalcstate space. This is
done by an on-the-fly algorithm that explores the reachablkes forwardly and removes
the encountered fail states backwardly. The resulting ininstrategy is non-deterministic,
since in some states there might be multiple controller estpu A heuristic selects the
optimal requests such that in each state there is at mostooelypossible decision for the
controller. Then, that deterministic strategy is compileth an intermediate controller
program. In order to reduce the code-size, several postigations are applied. Here,
the dependencies that are defined in the specification adet@semove redundant testing
commands. Finally, the concrete assembler program willdmepied from the optimised
intermediate program. The language of the synthesisednédsecode complies with IEC
1131-3. This gives the opportunity to test the programs ahhrardware.

Chapter2 describes the preliminaries of the computational modedsrileed in chapter
3. Those form the basis of the actual synthesis algorithmepttesl in chapteb. In chap-
ter 4, the specification language is formally defined and illustfawith some examples.
Chapter6 describes the code generation algorithms. Finally in @raftsome real world
examples are shown that illustrate approaches for modettimmon engineering problem
tasks. Also, the developed tool and the generated code esernied.

CHAPTER 1.

INTRODUCTION

Environment

!

Implicit
Timed Automata

Plans
Explicit Timed Plan
Timed Automata Automata

~

e

Non-deterministic

Strategy

€—— Assertions

!

Deterministic
Strategy

!

Non-optimised
Intermediate Program

!

Optimised

Intermediate Program

€—— Dependencies

!

Assembler
Program

Figure 1.3: Synthesis algorithm overview

CHAPTER 1. INTRODUCTION 7

1.4 Related Work

There are two major directions in the broad field of programttsysis:dataintensive (or
deductive) andontrokintensive (or automata-theoretic) synthesis. With the-datensive
approach, one tries to generate programs based on proqgfshanefore, user interaction
is necessarily neede@3, 20, 14]. Control-intensive approaches do not contain any form
of data-type. Hence, the field of application is fairly res&d to theoretical problem tasks
[13].

Real-time synthesis, which is the aim of this thesis, is #as® automata to model
the control states of the machine components. On the othet, len infinite data-type,
continuous real-time, is included. So one can say thattiea-synthesis is a combination
of data- and control-intensive synthesis.

Seen from the point of view of the controller, machine conmgmia may show an un-
predictable behaviour. Thus, a non-deterministic contjmrtal model must be assumed.
The standard for modelling real-time systems Braed Automat44]. Based on that, the
authors of 19, 12] introduced theTimed Controller Synthesis Probleamd formulated a
solution as finding a winning strategy for an infinite gameey'khowed methods such as
a fixed-point computation on the space of states and clockgroations.

Similar to them, the synthesis approach in this thesis basé¢isned safety games. But
in contrast to a pure backward propagation from the failestan, a forward exploration
combined with a backward fail state removal from the inig&dte on is used to find a
winning strategy. Hereby, difference bound matriceq fhat represent clock zone8][are
used to symbolise the continuous part of the state spacéaffic The standard model-
checking tool §] has already shown that this technique works very well evemidustrial
setups.

In [5], based on timed automata extended by real-time tasks,thesia approach for
the Lego Mindstorms system was developed. They generata€4esing the TIMES tool
for checking reachability and schedulability of such auatem In contrast, for the target
systems of this thesis, programmable logic controllergheeduling approach is not suffi-
cient to deal with unpredictable plant behaviour.

C>2

Figure 1.4: Standard simulation graph

CHAPTER 1. INTRODUCTION 8

In [1], it was shown why the standard simulation graph of a timeidraaton cannot
be used in a straightforward manner for solving timed ganiesvas proposed to build
a quotient graph of the dense time transition system as am@aational step. In this
quotient graph, some transitions may only change their ledadiate by taking explicit
delay-transitions, while in the simulation graph, thistestean change while staying in a
location and letting time pass. Applying that implicit-¢aplicit conversion to the complete
product transition system would be very expensive. Howesiace in this thesis the plant
is defined in a modular manner, i.e. that each component ilheddas an independent
automaton, the precomputation can be applied to each atdornmalependently. Because
the clocks of the various automata do not overlap, the géoeraf the individual quotient
graphs can be done in a local fashion. Thus, the increasenoplegity is negligible,
since the running time of this precomputation depends onithe number of the locations,
edges, and clocks of the components, which are, by the wigrrany compared with the
complete product state space.

In figure 1.4, there are two transitions: an uncontrollable transitiofrom ng to ny
and a controllable: from ng to ny. While ¢ is always enabledy becomes firstly enabled
if two time units pass by. Obviously, the controller has tp@artunity to avoid a possible
occurrence ofu by executinge within the first two time units. Therefore, in this case,
u must be regarded as controllable. Figard shows the corresponding quotient graph.
Here, the nodes are split up according to their explicit €lentintervals. This yields a
correct controllable/uncontrollable classification dftednsitions.

Figure 1.5: Time abstracted quotient graph

Independently to this thesis, a truly on-the-fly algorithra,, without any precompu-
tation, for solving games based on timed game automata vegeged by §]. It extends
the on-the-fly algorithm suggested by@g] for linear-time model-checking of finite-state
systems. Itis an interleaved combination of forward corapaih of the simulation graph
together with back-propagation of information of winnirtgtes. Hereby, the winning sta-
tus of an individual state can change, which causes a redi@iuwf the predecessor states.
However, due to an overlap of regions it is possible that sstates are evaluated several
times, implying the disadvantage that the complexity islm&ar in the region graph. In
contrast, the game solving algorithm in this thesis is lineahe size of the product graph.

Chapter 2

Preliminaries

In this chapter, the theoretical foundations of the two mammputational models of this
thesis are introduced. On the one hand, the behaviour of aineats non-deterministic,
i.e. that in a certain state, there can be many uncontrellegsctions that all have to be
considered. 19] has shown that infinite games can be used to tackle the pnobie non-
deterministic environment. On the other hand, it is needetthttoduce an infinite time
domain. The concept of Timed Automata l# {s introduced to deal with continuous real-
time. Both models are decidable and represent the thealrétiondations of the actual
synthesis algorithm.

2.1 Infinite Games

The essence of each controller program is to handle unpabticbehaviour of the con-
trolled machine components. In contrast to schedule-sgigh it is not appropriate to
create a static rule in which order some requests should ek teethe plant such that a
flawless cycle is always ensured. Handling such a reactoelgam setup is the main topic
of this section.

2.1.1 Game Arena

Thegame arenaets up the structure in which the controller plays agalreshbn-deterministic
plant. All controllable requests are denoted with a questiark (?) and all uncontrollable
reactions are denoted with an exclamation mark.(!)

Formally, a game arena (or game structure) is a tidpte (Q, >, A) whereQ is afinite
set of statesy. is a finite message alphabet, afdC @ x {?,!} x ¥ x @ is a transition
relation, which defines thgame movetor each side. Note that in contrast to the classical
theory [L9], where there are two types of states, namely controller@andt states, here,
the information whether an action belongs to the contrarahe plant is modelled within
the transitions.

1The symbols are chosen that way because the plant is modieltadhe point of view of the components

CHAPTER 2. PRELIMINARIES 10

Thesuccessor functiodi : 22 — 2% is implied by a game arena and returns for a given
set of states all successor states that are reachable hyg ke move. It is defined as

§(Q):={t|Ise @ : (s,7,m,t) € A}

The functionreach : Q — 2% returns the set of all reachable states from a given origin
state. It can be described by a least fixed-point formula:

reach(sg) := ,uR({so} U (5(R))

2.1.2 Safety Games

A safety gamés triple S = (G, A, I) whereG is a game arenal : Q — {false, true}is

a safety predicate function, adde @ is an initial state. The safety predicate identifies the
game states as safe or unsafe (allowed or undesired, rneghgctThe set offail statesis
implicitly defined as

fail(Q) == {s € Q| A(s) = false}

Playing a safety game means that the plant must reach ad#sl ahd the controller
must prevent that in order to win the game. As already meatian the introduction, some
goals should be reached while playing the game. Not readhigge goals within a finite
amount of time is an undesired behaviour and is therefossified as a fail state. So just
letting the plant do nothing, or remaining in a cycle forewérere no goals are achieved, is
undesired.

An often quoted example for a safety game is a robber, reptiegethe plant, who
wants to escape from a building. A policeman (the contrplieust hold him off. The
building (the game arena) consists of several corridoitsattedinked directly or by lockable
doors with each other. The robber runs through the corridareder to find a way that leads
outside. In the approach that is shown here, the policemarepts the robber from fleeing
by locking some doors (removing controllable transitions)

2.1.3 Solving a Safety Game

Of course, it is always desired that the controller will wilthe main task in solving a
safety game is to find a winning strategy for the controllehisTstrategy is the basis for
any synthesised program. If there is no winning strategytfercontroller, then there can
not be any valid controller program as well. Anyway, a safyne is alwaysletermined
such that one side, either the plant or the controller, i<kbar winner (i.e. that there is no
draw).

A set of winning state$l” C @ describes a sub-graph of the original game arena such
that the plant is unable to win withii/. In order to determinéV, the attractor setL of
the falil states (i.e., all losing-states) must be computdis can be done by evaluating the
following least fixed-point expression:

,uL(fail(Q) U {s|3(s,l,m,t) e A:te L} U {s|V(s,T,m,t) EA:tEL})

CHAPTER 2. PRELIMINARIES 11

Algorithm 1 shows the explicit computational steps. Note that statesm@anly uncon-
trollable outgoing edges are regarded as valid. As we calataean chapteb, such states
are interpreted as "wait until any of the uncontrollablerggeoccurs”.

Input : A priori known fail statesfail(Q).
Output: Controller losing states.
L — fail(Q)
repeat
L' — L
L — L'uU{s|3(s,,mt)eA:teL} U {s|VY(s,7,m,t)eA:teL}
until L =L’
return L

o g b~ W N P

Algorithm 1: Computing the controller losing states

The set of the winning staté§’ is the intersection of all reachable states from the initial
state/ with the inverse set of the losing states

W :=reach(I) N L

There exists a controller winning strategy ifie .

2.2 Timed Automata

One approach to include time in the specification is to assiimme to bediscrete When
time is modeled in this manner, possible clock values ar@egative integers and events
can only occur at integer time values. This type of model rapriate forsynchronous
systemswhere all of the components are synchronised by a singlegtdock. The dura-
tion between successive clock ticks is chosen as the bagifoumeasuring time. Since
this thesis is assuming unsynchronised components, thi®agh is inappropriate.

Continuous time, on the other hand, is the natural modebhéynchronous systems
because the separation of events can be arbitrarily snta8.ability is desirable for repre-
senting causally independent events in an asynchronotensyboreover, no assumptions
need to be made about the speed of the plant when this modeleifst assumed.

In order to model asynchronous systems using discrete ifisaecessary to discretise
time by choosing some fixed time quantum so that the delaydmivany two events will
be a multiple of this time quantum. This is difficult to @opriori, and may limit the
accuracy with which systems can be modeled. Also, the clafiaesufficiently small time
guantum to model an asynchronous system accurately mayugdie state space so that
an exhaustive exploration is no longer feasible.

Thetimed automaton modelf Alur, Courcoubetis, and Dill4] has become the stan-
dard. Most on the research on continuous-time model-chgckind synthesis is based on
this model. In this chapter, the properties of timed autenaae presented and the major

CHAPTER 2. PRELIMINARIES 12

techniques how to solve tlreachabilityproblem for such automata are explained.
The following definitions are taken fron®].

A timed automatornis a finite automaton augmented with a finite set of real-whlue
clocks We assume that transitions are instantaneous. Howewer,dan elapse when the
automaton is in a node. When a transition occurs, some ofitickmay be resetted. At
any instant, the reading of a clock is equal to the time thatdi@psed since the clock was
resetted. We assume that time passes at the same rate fockd.c

A clock constraint, called guard, is associated with each transition. The transition
can be taken only if the current values of the clocks satiséydlock constraint. A clock
constraint is also associated with each node of the autamatus constraint is called the
invariant of the node. Time can elapse in the node as longeamvariant of the node is
true.

Cl1>=3 Cl:=0
Cl<=5

b

C1>=4AND C2>=6
C2:=0

q0

Figure 2.1: An example timed automaton

An example of a timed automaton is shown in Fig@r& The automaton consists of
two nodesy andn, two clocksC andCs, ana transition fromgg to ¢;, and ab transition
from ¢, to ¢p. The two clocksC; and () start with value O and advance synchronously in
time. The execution of the automaton starts at ngdehere it can remain as long as the
invariant of ¢ is satisfied, i.e. that’; < 5. Meanwhile, ifC7; > 3, one can make an
transition to the node,, resetting the clock’; back to 0. In g1, the execution can remain
until eitherC; > 10 or Cy > 8. If C7 > 4 andCy > 6, ab transition back t@, becomes
enabled that resets,.

The clock constraints are defined as follows: Létbe a set ofclock variablesand
C(X) :== (X — R{) — {false, true}. Then, the functionp C C(X) describeslock
constraintson X. Letv : X — R be aclock assignmentwhich maps each clock in
X to a nonnegative real value, theriv) returnstrue if the clock-values, indicated by,
inhibit the constraints of alse if not. ¢ is the conjunction of a finite number of inequalities

{c1(v), ..., cn(v)}: .
pv) = N civ)
=1
Each inequality; (v) can have one of the following forms:

e ¢i(v) = true

CHAPTER 2. PRELIMINARIES 13

o ci(v) = ¢j <v(x;)
o ¢i(v) = v(z;) <¢j

where< is either< or <, z; € X, andc; € Q. Note that if X containsk clocks, then
each clock constraint is a convex subsetafimensional Euclidean space. Thus, if two
points satisfy a clock constraint, then all of the pointedirup in-between do satisfy the
clock constraint.

Formally, a timed automaton is a 6-tuple= (Q, >, A, qo, X, I) such that

e () is afinite set of nodes (also called locations).

Y is a finite input alphabet containing all controllable andamirollable messages.

go € Q is the initial node.

X is afinite set of continuous clocks.

I:Q — C(X) is afunction that associates nodes with clock constradatited the
node invariants.

A CQx (X xOX)x2%) x @ is a set of transitions. The 3-tupla, ¢, ¢')
corresponds to a transition from nogléo nodeq’ labeled with the event. The triple
(o, p, \) denotes an event with messagea constrainty that specifies when the
transition is enabled, and a set of clocks. X that are resetted when the transition
is executed.

We will require that time be allowed to progress to infinityat is, at each node the
upper bound imposed on the clocks be either infinity, or snéftlan the maximum bound
imposed by the invariant and by the transitions outgoingnftbe node. In other words, it
is possible to stay at a node forever, or the invariant wiltéothe automaton to leave the
node. If in the latter case no transition is enabletin@out-edgd€T’) is implicitly generated
that leads the execution to a global timeout node.

2.2.1 Infinite State Transition Graph

A model for a timed automatoA is aninfinite state transition grapi (A) = (S, %, R, s¢).
Each state inS is a pair(¢,v) whereq € Q is a node, and : X — R is a clock
assignment, mapping each clock to a nonnegative real vaheinitial states is given by
(qo,vo) WhereVz € X : vp(x) = 0.

In order to define the state transition relation #fA), we must first introduce some
notation. For\ C X, we will define theclock resettingoperator as follows:

0 : ze€eA

U[AHO]::L’H{ v() x g A

Ford € R, thetime addingoperator is defined as: Let = v + d, then
Ve X v (z) =v(z)+d

CHAPTER 2. PRELIMINARIES 14

From the brief discussion in the beginning, we know that atmutomaton has two
basic types of transitions:

e Delay transitionscorrespond to the elapsing of time while staying at some néée

write (g, v) 4, (q,v + d), whered € R*, provided that for every < e < d, the
invariant!(q) holds forv + e.

e Message transitionsorrespond to the execution of a transition fraxn We write
(q,v) == (¢',v'), wherea € X, provided that there is a transitidn, (a, ¢, \), ¢')
such thaw satisfiesp andv’ = v[\ — 0].

The transition relation? of 7(A) is obtained by combining the delay and message
transitions. We will write(¢, v) R (¢/,v") or (¢,v) == (¢, ') if there exists &g, v") such

a

that(q, v) 4, (q,v") — (¢',v') for somed € R.

Now, our goal is to solve theeachability problenfor 7 (A): Given an initial state,
we show how to compute the set of all states .S that are reachable fromy by transitions
in R. This problem is non-trivial becau§e(A) has an infinite number of states. In order to
accomplish this goal, it is necessary to use a finite reptasen for the infinite state space
of 7(A). Developing such representations is the main topic of theviing sections.

2.2.2 Clock Zones

An efficient way to obtain a finite representation for the itéirstate spacd (A) is to
defineclock zoneg3], which also represent sets of clock assignments. A clociegs a
conjunction of inequalities that compare either a clockigadr the difference between two
clock values to an integer. We allow inequalities of thedwaiing types:

r<c¢c c<z, T —Y=<Cc

where< is < or <,

By introducing a special clock, that is always 0, it is possible to obtain a more uniform
notation for clock zones. Since the value of a clock is alwaysnegative, we will assume
that constraints involving only one clock have the form

—Co,; < Tj < G0,

where—cy ; ande; o are both nonnegative. Using the special clagkwe will replace this
constraint by the conjunction of two inequalities

To—T; <Coi N Ty —xo < Co-
Thus, the general form of a clock zone is

z0=0 A /\ T — Xj < Cij .
0<i#j<n

CHAPTER 2. PRELIMINARIES 15

The following operations will be used to construct more cboaped clock zones from
simpler ones3]. Let ¢ be a clock zone. IA C X is a set of clocks, then defingd\ « 0]
to be the set of all clock assignments such that

Voep: Ve ed: v(z)=0.

If d € RT, then we define + d to be the set of all clock assignments- d wherev € .
The setp — d is defined similarly.

Let ¢ be a clock zone expressed in terms of clocksXin The conjunctiony will
represent a set of assignments to the clockX inlf X containsk elements, therp will
be a convex subset of k-dimensional Euclidean space. Tlosvia lemma shows that the
projection of a clock zone onto a lower dimensional subsjmeaéso a clock zone.

Lemma 2.2.11If ¢ is a clock zone with free clock variable then3z[y] is also a clock
zone.

This lemma turns out to be quite valuable in working with &laones. A proof is given in
[9].

Note that the assignment of values to the clocks in an irstae of timed automaton
A is easily expressed as a clock zone singe) = 0 for every clockz € X. Moreover,
every clock constraint used in the invariant of an automddoation or in the guard of a
transition is a clock zone. Because of the observationkctooes can be used as the basis
for various state reachability analysis algorithms forgthmutomata. These algorithms are
usually expressed in terms of three operations on clocksz[she

Intersection

If © and are two clock zones, then the intersectipm\ ¢ is a clock zone. This is easy
to see. Becausg andt are clock zones, they can be expressed as conjunctionsaf clo
constraints. Hence; A ¢ is also a conjunction of clock constraints and, therefoirdpek
zone.

Clock Reset

If v is a clock zone and is a set of clocks, thep|A < 0] is a clock zone. We will show
that this is true when\ contains a single clock. In this casgl\ < 0] is equivalent to
d[p A x = 0], and the result follows immediately by Lemr@&.1 The result can easily be
extended to sets with more than one clock by induction.

Elapsing of Time

Geometrically seen, a clock zoneis represented by a (bounded) polyhedron. The (un-
bounded) half-plane that is described by parallel traimsiaaf the polyhedron by 45rep-
resents the clock zone that can be reached by time elapsimgain assignment i@. This
region is denoted by

CHAPTER 2. PRELIMINARIES 16

Formally, if is a clock zone, then a clock assignmenwill be an element ofo™, if
v satisfies the formuldt > 0 : (v —t) € ¢ or, equivalently3t > 0 : v € (¢ +t). This
region is a clock zone.

In principle, the three operations on clock zones descrdi®e can be used to con-
struct a finite representation of the transition gradpi) corresponding to a timed automa-
ton. In the next section it is described how this algorithm ba implemented efficiently
by usingdifference bound matricg$, 11]. In this section states are representedzbgies
[3]. A zone is a paif(s, ¢) wheres is a location of the timed automaton apds a clock
zone. Consider a timed automatdrwith transitione = (s, (a, ¥, \), s’). Assume that
the current zone is,). Thus,s is a location of4, andy is a clock zone. The clock zone
succ(p, e) will denote the set of clock assignmentssuch that for some € ¢, the state
(s',v") can be reached from the stdte v) by letting time elapse and then executing the
transitione. The pair(s’, succ(ep, €)) will represent the set of successorg @fy) under the
transitione. The clock zoneucc(yp, e) is obtained by the following steps:

1. Intersecty with the invariant of locatiors to find the set of possible clock assign-
ments for the current state.

2. Lettime elapse in locationusing the operatofr described above.

3. Take the intersection with the invariant of locatiemgain to find the set of clock
assignments that still satisfy the invariant.

4. Take the intersection with the guapdf the transitiore to find the clock assignments
that are permitted by the transition.

5. Set all of the clocks in that are reset by the transition to O.
Combining all of the above steps into one formula, one obtain
succ(p,e) = (@ AI(s))" A I(s) A)\ 0]

Because clock zones are closed under the operations aentem, elapsing of time, and
resetting of clocks, the seticc(p, €) is also a clock zone.

Finally, we describe how to construct a transition systermafimed automator. The
transition system is called tteone graphand is denoted by’ (A). The states of/ (A) are
the zones ofd. If s is the initial location ofA, then(s, [X < 0]) will be the initial state of
Z(A). There will be a transition from the zorie, ¢) in Z(A) to the zon€(s’, succ(y, €))
in Z(A) labeled with the action for each transition of the forra = (s, (a, 1, \), &) of
the timed automatod. Because each step in the construction of the zone grapiedieé,
this gives an algorithm for determining state reachabifitthe state transition grapgh(A).
In the next section we will show how to make this constructioore efficient.

Note that the standard reachability graph that is shown isaret appropriate for syn-
thesis, which is the aim of this thesis. In sect®@.2 this issue is discussed in detail.

CHAPTER 2. PRELIMINARIES 17

2.2.3 Difference Bound Matrices

A clock zone can be represented bglitierence bound matrias described by Dill inq1].
This matrix is indexed by the clocks iF together with a special clocky whose value is
always 0. This clock plays exactly the same role as the clgck the previous section.
Each entryD; ; in the matrixD has the form(d; ;, <;;) and represents the inequality
x; —x; < d;j, where=; ; is either< or <, or (oo, <), if no such bound is known.
Because the variable, is always 0, it can be used for expressing constraints thigt on
involve a single variable. ThusD;, = (d;o, <), means that we have the constraint
xj < djo. Likewise,D; o = (djo, <), means that we have the constrdint x; < dy ; or
—dp; < ;. Let’® donate the functional prototype of a difference bound matri

D:=NxN-Zx{<,<}

The representation of a clock zone by a difference boundixriatnot unique. In fact,
a single clock zone can be represented by infinite many reatrla general, the sum of the
upper bounds on the clock differences— x; andz; — x;, is an upper bound on the clock
differencex; — x;. This observation can be used to progressively tighten ifferehce
bound matrix. Ifr; — xz; <; ; d; ; andz; — 3, <,k d; , thenitis possible to conclude that
x; — xp <}y d;y, Where

ik = dij + djx
and
r) < 0 <= A <KjE=S
<i7kz_ . [
< : else

Thus, if (d} ., < ;) is a tighter bound thafv; ., < x), one should replace the latter by
the former so thaD; . := (d},,<;x). This operation is calletighteningthe difference
bound matrix. We can repeafedly apply tightening to a difiee bound matrix until further
application of this operation does not change the matrixe rélsulting matrix is @anonical
representation for the clock zone under consideration.e Nlwt a canonical difference
bound matrix will satisfy the inequality; , <; 1 d;; + d; . for all possible values of the
indicesi, j, andk.

Finding the canonical form of a difference bound matrix carabtomated by using the
Floyd-Warshall algorithmI0], which has cubic complexity. The algorithm guarantees tha
all the possible combinations of indices are systemayiadiecked to determine if further
tightening is possible. We determine if a tighter bound caolitained foD; ;. by checking
if the inequalityd; . <; d;; + d;; holds for all possible values gf If the inequality
does not hold for some value ¢f then we replac®; ;, by (d; ., <’) as described in the
preceding paragraph. Algorithéhgives a description in mathematical pseudocode.

After the difference bound matrix has been converted to mi@abform, we can deter-
mine if the corresponding clock zone is non-empty by examgirthe entries on the main
diagonal of the matrix. If the clock zone described by thermas nonempty, all of the
entries along the main diagonal will have the fofm <). If the clock zone is empty or
unsatisfiable, there will be at least one negative entry emthin diagonal. Note that an
entry on the main diagonal of the forff, <) indicates also an infeasible clock zone.

CHAPTER 2. PRELIMINARIES 18

Input : Non-canonical matriXD havingn clocks plus the zero-clocik.
Output: Canonical, tightened matri®’.
D «— D
for j € {0,...,n} do
for i € {0,...,n} do
for k € {0,...,n} do

if d;,k > dz‘,j =+ dj7k: then

dij — dij+djg

/ { < 0 =i=S A Rjp=S

o o0 b~ W N P

<L
i,k < : else

Algorithm 2: Tightening a difference bound matrix

Now, three operations on difference bound matrices areritbesic These operations
correspond to the three operations defined on clock zonég iprevious section.

¢ Intersection We defineD = D! A D2 LetD;; = (c1,<1) andDZ%j = (cg, <2).
ThenD; ; = (min(c1,c2), <), where< is defined as follows:

— If ¢1 < ¢9, then<=<;.
— If c5 < ¢1, then<=<.
— If ¢1 = ¢ and <=5, then<=<;.
— If ¢ = ¢ and=<1#<5, then<=<.

e Clock resetDefineD’ = D[\ « 0], whereX C X as follows:
—If Ti, T € A, theanJ- = (0, S)

If 2; € X A Zj ¢ A, theanJ- = DO,j-

If x; §é A A T; € A thean’j = Dz’,O-

- If Ti, Tj ¢ A, thean’j = Dz’,j-

e Elapsing of timeDefineD’ = D" as follows:

— D;y = (00, <) foranyi # 0.
— D;j:Di,j If’L:OOf]#O

In each case the resulting matrix may fail to be in canonicahf Thus, as a final step, we
must reduce the matrix to canonical form. All three of therafiens can be implemented
efficiently. Moreover, the implementation of these operadiis relatively straightforward
to program.

CHAPTER 2. PRELIMINARIES 19

2.2.4 Complexity Considerations

The construction of a region grap®, P] is exponential in the number of clocks and also in
the magnitude of the clocks, since for each interval betweeeo and the maximum integer
constant, a corresponding state must exist. The size ofaine graph, on the other hand,
also depends on the number of clocks but not on the magnitiuitie @locks. Hereby, the
number of zones only depends on the number of distinguishabtk differences. When
modelling industrial machines, it is typical that the numbgclocks is proportional to the
number of components. Since complex machines may have niiesedt components,
it is crucial for the whole synthesis process to minimisetuthavoidable temporal blowup.
Of course, one cannot reduce the number of clocks, but onele@rse the optimal clock
value discretisation method, which are, in the oppiniorhefduthor, clock zones.

However, the clock zones have one disadvantage: in loopes,enmused clocks are not
being resetted, they count to infinity, i.e. that the diffexe to those clocks that are actually
resetted, do gradually increase. The result is that for & cycle, a new clock zone is
generated, since this new zone does not lie within the old.o@me way to avoid such a
diverging behaviour is to fix the inequality in the clock zdioe all unused clockg”, in
the corresponding states o< C,, — C' < oo for any other clockC'. Alternatively, as a
suggestion of a possible future work, one could construditiatially a region graph on top
of the zone graph.

Chapter 3

Computational Models

In order to cope with continuous real time, on the one hand,rem-determinism, on the
other hand, the two basic concepts of timed automata andt&énfiames are combined in
one major computational model, timed game automata.

3.1 Timed Game Automata

While the nodes of an automaton represent local states starsythe transitions symbolise
occurring events. The combination of infinite games witretihautomata is done by adding
a message-type information to each transition. Form&lg/finite input alphabet of a timed
game automatobi; is a tuple containing a message-label and a message-type:

YeCEx{,1,$ D, T}
The five message-types are defined as follows:

e Controllable messages, denoted By represent externakquests to forcehe au-
tomaton to go into a certain state.

¢ Uncontrollable messages, denoted hyarespontaneous reactiore the plant (e.g.
reactions to a prior controller request).

e Transitions havingynchronisedmessages, denoted By can only be taken if the
same message occurs at thesame timeslsewhere. Synchronised transitions can be
used to model internal communications among several atégoma

e Delay- andtimeout-transitions, denoted byD andT’, are generated automatically
by transforming ammplicit timed automaton to aexplicit one (see sectioh.2.2).

One possibility to synchronise timed automata can eithelobeimplicitly or explicitly.
The classical implicit way is that if automatof contains an uncontrollable messdge
and automatorB contains a controllable message:, then the combined automaton is
synchronised via &n transition. Later, it will be shown how an explicit synchisation is
used to synchronise the production goals with the eventsegbliant. Also, when modelling

20

CHAPTER 3. COMPUTATIONAL MODELS 21

industrial machines, the experience was made that thecéxgjinchronisation method is
more convenient than the implicit one.

3.2 Plan Automata

Plan automata are timed automata, that have an additiodaaded locationfailed. They
are intended to run in parallel to the state space exploratiorder to ensure that as long as
no plan automaton entgiuiled the represented plan is still maintained. A plan automaton
has only synchronised transitions, and therefore, it preduno messages by its own. This
means that no messages can be received from the controlsamorto the plant. Every
synchronised transition represents a certain goal. Easlage that is sent within the plant
is passed to each plan automaton. If the current plan lot&i@s an outgoing transition
containing the passed message from the plant, then thathggabeen reached. Since
failed must always be a sink, a plan automaton can never exit this.nod

Formally, a timed plan automataR = (Q, X, A, qo, failed, X, I) is a timed automaton
with the following properties:

e failed € is a dedicated fail location.
o Axz,e,y) € A: x = failed.
hd V('I'v <a>7-790>)\>>y) cEA: T= $

S

Figure 3.1: Part of a plan automaton

Figure3.1shows a part of a plan automaton. It represents the planh mamnt "a” first
then "b”; the vice versa case is explicitly forbidden.

CHAPTER 3. COMPUTATIONAL MODELS 22

3.3 Parallel Composition

Paralleling two or more automata means combining theiestafn interleaving or asyn-
chronous semantics for this operation is assumed.

Let A7 = (Q1,%1,A1,¢, X1, 1) and Ay = (Q2, X9, Ag, g2, Xo, I2) be two timed au-
tomata with the following properties:

e A; and A, have disjoint sets of clocksX; N X5 = 0.

e For each controllable/uncontrollable transition4n, A must not have a control-
lable/uncontrollable transition with the same message:
Let
5(T) :=A{a| (z,{a,7,0,\),y) €EA; N TET}

be the set of all messages of a given set of transition-typesthe relation-set\;,
then

S({7) N E({7, 1) =0
. The parallel composition ofi; and A, is the timed automaton
Ap || Ag = (Q1 X Q2, 11U, A, g x g3, X1U Xy, 1)

wherel(q1,q2) = I1(q1) N I2(g2) and the edge relatioA is computed by algorithrf.

Input : Two timed automatad; and As.
Output: Combined edge relatioA.
1A «—
2 forall (p,q) € Q1 x Q2 do
3 forall (p, <Oé1, T1, ©1,)\1>, p') € Ay do
4 if aq € 22({$}) then
5 forall (q, (a1, $, @2, A2), ¢') € Ay do
6 | A — AU {((p.g), (a1, 71, o1 A2, MU N, (0,0))}
else
8 L A — A U {((p7q)7 <O[1, T1, P1,)‘1>7 (p,7q))}
9 forall (q, <Oé2, T2, V2,)\2>, q’) € Ay do
10 if ap € 21({$}) then
11 forall (p, (a2, $, v1, A1), p') € Ay do
12 | A — AU {((p.g), (a2, T2, 1 A2, MU N, (0,0))}
13 else
14 LA = AU {((pg), (a2 1, 92, Na), (0,d))}
15 re;[urn A

Algorithm 3: Computing the combined edge relation

CHAPTER 3. COMPUTATIONAL MODELS 23

Thus, the nodes of the parallel composition are pairs of sida®En the component
automata, and the invariant of such a node is the conjuncfitime invariants of the com-
ponent nodes. There will be a transition in the parallel cositpn for each pair of syn-
chronised transitions from the individual timed automatthwthe same label. The source
node of the transition will be the composite node obtainehfthe source nodes of the
individual transitions. The target node will be the compmsiode obtained from the target
nodes of the individual transitions. The guard will be thajoaction of the guards for the
individual transitions, and the set of clocks that are tesetvill be the union of the sets
that are resetted by the individual transitions. If theacttf a transition is only an action
of one of the two processes, then there will be a transiticihénparallel composition for
each node of the other timed automaton. The source and tavdes of these transitions
will be obtained from the source and target nodes of themaigransition and the node of
the other automaton. All of the other components of the tti@answill remain the same.

Figure3.2shows a simple untimed composition. An untimed composiith a syn-
chronised transition is shown in figuBe3. Looking at this example, one can see that some
states are never reached. Therefore, these states do mbtanbe included in the total
combined state space. So it concludes that when computengatallel composition of
multiple automata, it is smarter to do this in conjunctionthathe reachability computation
in order to avoid non-reachable states at all.

Figure 3.2: Simple untimed parallel composition

3.4 Combined State Space

A combined configuration (stat& a pair(¢*, z) C (Q1 X Q2 X ... X Q) x D. EachQ); is
a finite node set of a corresponding timed automaten= (Q;, ¥;, A;, root;, X;, I;), for
anyn € N. z represents a difference bound matrix that stands for afspeltick zone.q;
refers to the i-th component of the node-tupte The setd = {44, As, ..., A, } is called
thebasisof (¢*, z).

A combined state spadéga quadruplé.S, X, A, so) with basisA. LetVA; € A: A; =
(Qi, i, A root;, X;, Iz)- then

CHAPTER 3. COMPUTATIONAL MODELS 24

Figure 3.3: Untimed synchronised parallel composition

S C(Q1x Q2% ... x Q) x D is afinite set of discrete combined states.

¥ =J~, %, is the combined set of the messages of the basis.

sp € S'is the initial combined state.

ACSx(BuC(X)x{,? %, D, T} x2X)x Sisasetof transitions. The triple
(s,e,s’) corresponds to a transition from statéo states’ labeled with the event.
The triple («, 7, \) denotes an event with message or either delay-conditjdgpe
7, and a set of clocks that are resetted when the transition is executed.

When computing a state space by combining multiple timedmaata, all synchro-
nised transitions are resolved such that the resulting stace has only uncontrollablg, (
controllable), or guarded %) transitions. There are two types of "time advancing” tran-
sitions: delay D) and timeout T"). Timeout transitions are delay transitions that lead to
undesired states.

Chapter 4

Specification Language

In this chapter, the developed specification language iiedaoted. In order to define the
formal semantics, for each abstract syntactical consttbetdenotational functio® de-
fines how the mathematical representation is extractedtherabstract syntax. Later, these
mathematical objects are used as the input of the state ajgar@&hm in chapteb.

The specification is structured into the parts: plant dédiniand production goals.

specification = plant goals

4.1 Plant Definition

All components that are part of the controllable plant argcdbed in this section.

plant = components assertions dependencies
components = plant’{’ componentlist’}’
componentlist = component'; {component’; }
component = automaton | hardware | operator

The plant can contain multiple components. A component dherebe an explicitly
defined timed automaton, a hardware component, or an ope@tgonent.

25

CHAPTER 4. SPECIFICATION LANGUAGE 26

4.1.1 Automaton Component

Declaring a component as an automaton, one can define ayhisar defined timed game
automata that comply with the theoretical definition froratsmn 3.1

automaton
automatonbody
clocksdef
nodesdef
nodede f
constraintlist
constraint
interval
transitionsde f
transition

transitionargs

event
eventtype

clocklist

automaton label '{’ automatonbody '}
[clocksdef | nodesdef transitionsdef
clocks clock {') clock } "

nodes nodedef {', nodedef }';

node | constraintlist |

"I" constraint { and constraint } '}
clock in interval

("("|'") constant’) constant (') |']")
transition {'; transition }';

node’ —'

node transitionargs
event [constraintlist |

[reset clocklist |

[instant]

eventtype message

(/?/ | /!/ | /$/)

"I elock {') clock }'Y

According to f], each node may have a list of clock constraints, reprasgittie invari-
ant of the node. Analogously, the transitions may also hkbvekconstraints, representing
the guards of the edges. Since a constraint for a single ¢soakvays convex, it can be
specified as an interval. If no invariant or guard is prestrgn the constraints function
will always returntrue. An interval has a lower- and an upper bound, represented/ty t
integers. The bounds can be either declared as ogénr(”)”) or closed ({” or "]"). Al-
ternatively, the upper bound can also be infinitin(f)”). A transition must have a message
and may reset some clocks. The keywinstantindicates that a transition should be taken
prioritised, before any other. A message can either be altattte ("?”), uncontrollable
("!), or synchronised @").

Example Code

The following example code models the automaton from fiQuie

pl ant {

aut omat on A {

cl ocks c1,
nodes q0{cl in [0, 5]},

c2;

gl{cl in [0,10], c2 in [0,8]};

CHAPTER 4. SPECIFICATION LANGUAGE 27

g0 -> gl ?a {clin [3,inf)} reset{cl};
gl -> q0 !'b {c1 in [4,inf) and c2 in [6,inf)} reset{c2};
}

}

4.1.2 Hardware Component

A hardware component represents a syntactical frontend to the automaimponent.
Which means that each hardware unit can be expressed by aleqtiautomaton unit. It
is integrated for convenience only, since it representdtan occurring pattern in industrial
component design.

A hardware component can move to certain defined restingsstahis happens when
the controller has sent a corresponding request (e.g. "&ate X", where X is one of the
defined resting states). Then, the component will firstheeatn intermediate state, rep-
resenting the movement phase from the origin resting stetieet destination state. Also,
the corresponding clock is resetted that measures the hiatgpasses during that move-
ment. After the clock-value enters the given time-intefeathe movement, the component
reaches the destination state and sends a correspondiogtraiiable event (e.g. "State X
has been reached”) that the controller can receive.

The grammar is defined as follows:

hardware ::= hardware label'{" hardwarebody '}’
hardwarebody = statesdef movesdef
statesdef = states state{') state}';
movesdef = move {’;/ move } '/
move = state’ —' state takes interval

Example code

The component modeled by the following example code is lisein figure4.1 Figure
4.2 shows the resulting automaton.

pl ant {
hardware A {
states X, Y, Z
X -> Y takes [2,4];
Y <- X takes [2,3];

Y -> Z takes [3,4];
Z <- Y takes [1,2];

CHAPTER 4. SPECIFICATION LANGUAGE 28

?(—)(—)

Figure 4.1: A hardware component with three resting states

?moveto_Y

Ireached_Y ?moveto_Z Ireached_Z

Cmoving:=0 Cmoving:=0

Cmoving:=0 Cmoving:=0

Ireached_X

?moveto_X Ireached_Y ?moveto_Y

Figure 4.2: Figurel.1lrepresented as an automaton

4.1.3 Operator Component

Like the hardware unit, theperator unit is also a syntactical frontend to the timed au-

tomaton unit. It can be used to model components that wad fertain external operator
input and then perform immediately a reaction. The canbdeixample for such a unit is a
press/release-button. A precise elaboration of this prob$ given in sectio.2.1
The definition of the grammar is similar to the hardware unit:

operator ::= operator label '{’ operatorbody’}
operatorbody ::= statesdef movesdef
statesdef = states state {', state }';
movesdef = move {’; move}';
move = state’ —' state

CHAPTER 4. SPECIFICATION LANGUAGE 29

Example code

pl ant {

operator button {
states rel eased, pressed;
rel eased <-> pressed;

}

4.1.4 Assertions

The assertions describe the safety predicate, which wasliuded ir2.1.2 It is represented
as a conjunction of propositions of combined node tuplesyTdan be used to explicitly
define undesired states or to set up global state invariatsrtust always hold.

The grammar is defined as follows:

assertions = assertions’{’ nodeconditionlist'}

nodeconditionlist

nodeconditionde f { nodeconditiondef }

nodeconditiondef = never | always | onlyif’;
never 1= never nodecondition
always = always nodecondition
onlyif = mnodecondition onlyif nodecondition
nodecondition 1= or
or == and]|oror]
and == literal [and and |
literal = [not]terminal
terminal = ('("or’)"| state | constant)
state = <unit>"'! <node > ['+]
constant = (true| false)

One can see thaiot has the highest operator priority, thend, and at leasbr. With
the tokenstate, one can refer a single state or a set of states of a certadinwlrich was
defined in the plant. Multiple states can be referenced bingdustar) at the end. Doing
S0, a substring match is performed instead of an equalitgkchHeor example X.movings
references all moving states of a ufit While X.moving_a_b references only one state.

Example code

In the following example code, two components are modelentrolling a robot arm. The
componentverti cal represents a valve that moves the robot domwn andup, while
hori zont al moves the arm frorheft tori ght . Now, consider that some obstacle is

CHAPTER 4. SPECIFICATION LANGUAGE 30

in the physical moving range of the robot arm, such that ittrmos move horizontally as
long as it is not in the upper vertical position. This set-ap be modelled with this plant
definition:

pl ant {
hardware vertical {
states down, up;
down <-> up takes [1, 2];
}
har dwar e hori zontal {
states left, right;
left, right takes [1, 2];
}
}

and these assertions:

assertions {
hori zont al . movi ng*x onlyif vertical. up;

}

Note that this definition is equivalent to:

assertions {
hori zont al . movi ngx and not vertical . up;

}

This example is visualised in figuke3. Here, the hatched states indicate the fail states in
which the robot arm would crash with the obstacle.

4.1.5 Dependencies

Dependency information about the events that the plantyzexican later be used to opti-
mise the total code size of the intermediate controller oy Using the following gram-
mar, one can define that some uncontrollable (in-) messag@eEnd on one or more con-
trollable (out-) messages.

dependencies ::= dependencies’{’ dependencylist'}
dependencylist ::= dependency { dependency }
dependency := inmessage depends on outmessagelist';
outmessagelist = (time | outmessage)’, outmessage

The terminaltime can be used to define that an in-message depends on lettiag tim
pass. Letm be a message that only depends on timéwmlis queried once and the result
is false, then every succeeding query will be alg@ se as long as no time passes by.

CHAPTER 4. SPECIFICATION LANGUAGE 31

up,
horizontal.

moving*

vertical.
moving*,

horizontal.

moving*

vertical.
moving*,

vertical.

moving*,

left right

down,
horizontal.

moving*

Obstacle

Figure 4.3: Two dimensional moving robot arm with obstacle

Example Code

Consider a hardware component that needs atig#@se units to move between two resting
states A and B. Now, whentime units have passed, the controller can start queryintné
message r eached_B. A priori, it is clear that the outcome of a query!lof eached_B
changes only if time passes by. This can be formulated asAfsil

dependenci es {
reached_B dependson ti ne;

}

4.2 Production Goals

In order to give a complete specification of the program tihaukl be synthesised, the
production goals must be also defined. They consists of tlealked state guards and a
sequence of plan automata.

goals = guards plans

CHAPTER 4. SPECIFICATION LANGUAGE 32

4.2.1 State Guards

Guards can be used to ensure that certain plant states grentefed when a corresponding
assertion holds. This assertion is interpreted as an uraiiaiie message. Starting from a
certain state A, when an adjacent state B is to be guardedienmiediate state is created
and inserted between A and B. The grammar is defined as follows

guards = guards’{’ guardlist’}’
guardlist == guard{ guard }
guard = nodecondition guardedby message’;

Note thatnodecondition refers to the token, which was already declared in seetit

Example Code

A gripper may grasp a workpiece only when a correspondinga@esignalises that a work-
piece is actually available. This can be modeled as follows:

pl ant {
hardwar e gri pper {
st at es open, cl osed,;
open <-> cl osed takes [1,1];
}
}
guards {
gri pper. nmovi ng_open_cl osed guardedby gear is_present;

}

This example is visualised in figu#ed. Here, a new guard node is inserted between
the two nodegripper.open andgripper.moving_open_closed.

%pgear_is_present ?moveto_close

gripper.
moving_open_closed

gripper.
open

Figure 4.4: A gripper that may only close if the guard holds

CHAPTER 4. SPECIFICATION LANGUAGE 33

4.2.2 Plans

In this part of the input specification, one can specify oneore plans. A plan describes
which goals should be reached within a certain amount of.téngoal can be any message
that was produced by the plant or sent by the controller. Tamgar looks as follows:

plans == plans’{ planlist’}’
planlist = plan { plan }
plan = plan'{’ [clockdeflist] plancommandlist'} "/
clockdeflist ::= clocks clockdef {', clockdef }';
clockdef ::= clock constant
plancommandlist = [label":"| resetcommand | wait forcommand ';
resetcommand = reset clock
wait forcommand = waitfor wait forlist
wait forlist = message ['— > label |

The top level is alanlist. All plans must be maintained independently from each
other, i.e. that a conjunctive semantics is assumed. Eachgqansists of a definition of
timeout-clocks and a list of plan commands. A plan commamdogdionally have a label.
There are two types of plan-commands: tbset-commandesets a timeout-clock back to
0 and thewaitfor-commandhalts the execution of the plan until the given message sccur
Unless no target label is specified, the execution will cargiwith the following command.

If the end of the plan is reached, an implicit jump to the begimade. At any time, if a
timeout-clock exceeds its given upper time bound, the pléirenter a fail state.

Example Code

Consider a gear checking machine that consists (amongtbihgs) of aninlet that loads a
new gear into the machine ctassifierthat measure some properties of the loaded gear, and
anoutlet that discharges the gear again. The transporting systelreahachine is quite
complex and has some perils due to obstacles in the movimggrand limitations of the
used hardware. The machine should reach the following goals

1. gearid oaded,
2. gearigl assi fi ed,and
3. gearisunl oaded.

While waiting for a certain goal, the other goals must be @®di(e.g. while waiting
for | oaded, cl assi fi ed orunl oaded must not occur). This can be modeled by the
following code:

CHAPTER 4. SPECIFICATION LANGUAGE 34

pl ans {

pl an {
cl ocks tineout 15;

reset tineout;

wai tfor | oaded, classified -> failed, unloaded -> fail ed;
wai tfor classified, |oaded -> failed, unloaded -> fail ed;
wai t for unl oaded, | oaded -> failed, classified -> fail ed;

With this plan, the synthesis algorithm will generate a paog that controls the ma-
chine components in such a way that all the goals are reachiedtlie correct order and
(i) quickly enough.

CHAPTER 4. SPECIFICATION LANGUAGE 35

4.3 Semantics

4.3.1 Automaton Component

The denotational semantics describes how the abstragbsghtin automaton is translated
into the formal representatiof®, =, A, qo, X, I).

Dlautomatonbody(clocksdef, nodesdef, transitionsdef)] =
let
X := Dxlclocksdef]
(@, qo, I) := Dg[nodesdef]
(3, A) := Daltransitionsdef]
in
(Q7 %, A> q0, X, I)

Dxlclocksdef(x1, ..., xp)] = {z1, ..., Tp}
Dglnodesdef((q1, In), -y (qn, 1n))] = ({q1, -+ an}s @1, Uiy {6 — Delail})

Dal[transitionsdef((q1, ¢}, T1, a1, €1, M), oy (Gns Gy Ty Oy Py An))] =
({Oél, ceey an}a {(Qn <Oé7;, Ti, DC[QOZL)‘Z>7 Q;) | 1 S 1 S TL})

Dcll] == Av.true
D¢ constraintlist(cy, ..., ¢n)] == M. A\l Dele](v)

Dcconstraint(clock, 1b, ub)| :=
Av.Dellowerbound(clock, 1b)](v) A
M. D¢ [upperbound(clock, ub)](v)

Dgllowerbound(clock, type, const)] =
if type =' [then \v.const < v(clock) else Av.const < v(clock)

Dplupperbound(clock, type, const)] =
if type ='" then \v.v(clock) < const else Av.v(clock) < const

Dx returns the set of clock. D, returns the set of nodé&g, the root nodey, which is the

first declared node, and the invariant-functibthat maps each nodgto its corresponding
clock constraints;. If no clock constraints are presertyg;) returns alwaygrue. The

function Do generates for a given clock constraint a correspondingti@ns function.

The functionDp generates an inequality function for a given interval bound

CHAPTER 4. SPECIFICATION LANGUAGE 36

4.3.2 Hardware Component

The denotational semantics shows how a hardware-unitisfsamed into a timed automa-
ton:

D[hardwarebody(statesde f, movesdef)] =
let
(Qr, qo) = Dglstatesdef]
(Qum, X, A, I) := Dyr[movesdef]
in

(QR U QM7 27 A7 q0, {Omoving}7 I)
Dr(statesdef(s1, ..., sp)] := ({s1, -y Sn}, S1)

Dyr[movesdef((s1, si, b1, ubt), ..., (Sn, Sh, lbp, uby))] =

let
Q = {moving(s;,s;) |1 <i<n}
Y = {moveto(s}), reached(s;) |1 <i < n}
Ay = {(si, (moveto(s]), 7, Av.true, {Croving}), moving(s;,s;)) |1 <i<n}
Ay = {(moving(si, s;), (reached(s}), !, Dc[lowerbound(Cpoving, '[, 1bi)], 0), si) |1 <1i<n}
I = {moving(s;, s;) — Dc|upperbound(Cpmoving, "', ubi)] |1 <1 <n}

in
(@, 2, Ar U Ay, 1)

For each declared resting state in the hardware descrjgticorresponding node in the
target automaton is inserted. The cloCk,..ing IS Used to measure the time that passes
during a movement between two resting states. A declarafiarmovement between two
resting states A and B implies a generation of

1. anintermediate moving stateoving(A, B) (movi ng_A_B),

2. acontrollable transitiofimoveto(B) (?movet o_B) from A to moving(A, B), re-
setting the clockCy,oving, and

3. an uncontrollable transitiolreached(B) (! r eached_B) from moving(A, B) to
B.

Let T}, andT,,,. denote the lower- and upper bound of the time that takes tivement
from A to B. The invariant ofnoving(A, B) is set toAv.v(Crioving) < Tmaz, iIMplying
that the execution may remaininoving(A, B) for at mostT,,,,, time units. The guard of
the lreached(B) transition is set to\v.T5,in, < v(Crnoving), iMplying that this transition
may only be taken after thak,,;, time units since?’moveto(B) have passed. So, the
destination state B can only be reached if the invaridt,,oping) < Tma. and the guard

CHAPTER 4. SPECIFICATION LANGUAGE 37

Trmin < V(Croving) hold true:

7)(movmg) < Tnae N Tmin < U(Omoving)
= 'U(momng) S [0 Trna] (mom'ng) S [Tmm,OO)
<~ 7)(movmg) S [07T] [min OO)
= 'U(momng) S [Tmma mam]

sinceTinin < Tinaz, Dy definition.

4.3.3 Operator Component

D(operatorbody(statesde f, movesdef)] =
let
(QRr, qo) = Dg[statesdef]
(Qur, 2, A, I) := Dyr[movesdef]
in
(QR U QM» E, A, q0, {Omom'ng}, I)

Dr[statesdef(s1, ..., sp)] == ({S1, -, Sn}, S1)

Dys[movesdef((s1, sy, b1, ub1), ..., (Sn, Sh, b, uby))] =
let
Q = {moving(s;,s;)|1<i<n}
Y = {occurred(s)), reached(s;) |1 <i<mn}

A =
{(si, (occurred(s;), !, Av.true, {Cmomng}> moving(s;,s;)) |1 <i<n}U
{(oving(s;, s;), (reached(s)), !, Av.0 < v(Croving) < 1, 0), si) |1 <i<n}
= {moving(si, s;) — v. v<0mmng> <1l[1<i<n}
in

(@, %, A1)

CHAPTER 4. SPECIFICATION LANGUAGE 38

4.3.4 Assertions

A Q" — {false, true} represents the safety predicate function to identify expfail
states. The denotational semantics is formally defined as:

)
)

D 4lconstant(c)

D 4[state(unit, node, substr Aq.q ~ (unit,node, (substr = x))

Dlnodeconditionlist(cy, ca, ..., cn)] = Aq. /\ Dyleil(q)
=1
Danever(z)] = Ag.—Dalz](q)
Dylalways(x)] = Ag.Dalz](q)
Dalonlyif(z,y)] = Ag.=Dalz](q) vV Dalyl(q)
Dalor(z,y)] = Ag.Dalz](q) vV Dalyl(q)
Daland(z,y)] = Ag.Dalz](q) A Dalyl(q)
Dalnot(xz)] = Ag.—Dalz](q)
]
]

= Aq.c
Where the matching operateris defined as follows:

(q1,92, -, qn) ~ (unit,node, substr) :=
true : substr A dq; : label(A;) C unit A label(q;) C node
{ true : —substr A 3g; : label(A;) = unit A label(q;) = node
false : else

The statement; C s, stands for a test, whether the string is contained ins; as a
substring.

4.3.5 Dependencies

Let D C ¥ x ¥ be a dependency relation, then we say

e; andeg aredependentw.r.t. D < (ey, e2) € D V (e, 1) € D
e andey areindependentw.r.t. D < ¢; ande, arenot dependentw.r.t. D

The denotational semantics of the dependency grammar reededis:
Dldependencylist(dy, dy,dn)] = | JDldi]
D[dependency(message, events)] := {(message,e) |e € events}

4.3.6 State Guards

G = {Gy, Gy, ...G, } denotes a finite set of guard functions where gadch G is a function
G : Q" — X U {L} that represents a guard of a combined node tuple. The dematiat
semantics of the guard grammar is defined as:

D[guardliSt(QOLQM"'7gn)] = {DG[QO],DG[Ql],...,DG[gn]}
D¢lguard(node, message)] := Aq.if Dy[node](q) then message else L

CHAPTER 4. SPECIFICATION LANGUAGE 39

4.3.7 Plans

The final mathematical representation of the plans is a feitef vector® = { Py, ..., P, },
where each iten®; represents a single plan automaton.
The denotational semantics is defined as follows:

Diplans(Pi, ..., P,)] := ({Dp[P1], ..., Dp[P,]})

Dplplan(clocksdef, plancommandlist)] =
Dclclocksdef, plancommandlist)

WhereD¢ [plancommandlist] is computed by algorithrd.

Input : Set of timeout-clock§” = {(X1,T1), ..., (X,,T,)}. List of plan
commands, represented by a veatoe= ((I1,C4), ..., (Im,Cn)). Each
command(;, C;) is a pair consisting of a labé] and the command itself
C;.

Output: Timed plan automato(Q, X, A, qo, failed, X, I) that describes the
plan.

1 (2, A) — (0, 0)
2 X — {X;|ied{l,...,n}}
3Q «— {failedyU{l;|ie{1,....,m}}

4 I «— Mv.true

5 fori € {1, ..., m} do
6 if C; = reset(R) then
7 L A — AU {(lh <€7 $7)\U'truea R>7l(z’+l) mod m)}

else ifC; = waitfor((e1,d1), ..., (ep, dp)) then

L forall j € {1, ..., p} do

10 L A — AU{(li,(ej, $, Mv.true, 0),d;)}

11 forall j € {1, ..., n} do
12 L A — AU{(l;, (e, $, wo(X;) >Tj, 0), failed)}

13 return (Q, X, A, Iy, failed, X, I)
Algorithm 4: Generation of a plan automaton

Chapter 5

Game Solving

This chapter describes an efficient algorithm that compilesvinning controller strategy
as described in sectidhl.3 In combination with the discretisation ideas as show2 2
the product state space is explored on-the-fly.

In the input specification, it is described which behaviolthe plant is forbidden. For
example, the assertions describe certain combination®rmaponent states that must be
avoided. Therefore, theombinedstate space must be considered. This makes it possible
that undesired state combinations can be excluded.

A plant state is the combination of the configurations of thmponents, the configu-
rations of the plans, and the current clock assignment.eR#tlan combining the automata
step by step (i.e., firs#h; with A5, then the resulting automata with; and so on...), all
automata are combined at a time.

5.1 Zenoness

Recall that the basis for finding winning strategies aretgajames, i.e. that within a con-
troller winning strategy, no fail state can be reached. Buathappens if there were loops
in the strategy? Hereby, we distinguish between two typésopfs: loops where time grad-
ually elapses and loops where no time elapses. The lattps lae calledzeno-loopsand
represent a fundamental issue in synthesis since such ¢aogdse infinitely often executed
without exceeding a time bound.

Of course, since we are using timed automata, time alwapsetan the clocks. How-
ever, this is only technically true. If a clock is not usedhirit some parts of a timed
automaton, no time elapses effectively with respect todhwk. Also, if a transition in a
loop resets a clock, no time elapses for that clock as well.

One way to avoid zenoness is just by not allowing zeno spatidits. A precompu-
tation step could determine if there are zeno-loops andy,ifrgject the input. Another
possibility is to declare zeno-loops in particular as ftatss and only to avoid them in the
winning strategy. This can be done by keeping all visitedestgince the last goal state
in mind. If the plant part of a new discovered state is alsdaiord in the already visited
states, then that new found state becomes a fail state. Hlaggeached, this set of visited

40

CHAPTER 5. GAME SOLVING 41

states is cleared again. Even though this causes a blow iyeanyt practical experience
has shown that this works with real world case studies. Liatsection5.3, this technique
is explained in detail.

la
2in °-° lout

Figure 5.1: The plant can force an infinite loop

Figure5.1 shows a simple zeno example. If the controller issue&iarrequest, the
execution comes to staté. From there, the plant may produce a spontanéaws/ent
that brings the execution to stai& There, either atout event can occur that causes the
execution to leave that zeno part, or elsé)) avent leads back td. Using the zeno-loop
avoiding technique as described above, one would iderii#yit transition as erroneous,
since no plan goal has been achieved since the last visi. irBecauseb can happen
spontaneously, we must declafeas a fail state, which causes aldoto become a fail
state since there is the uncontrollable transitioteading fromA to B. Thus, sinced is
identified as a fail staté;in is discarded as a decision for the controller.

One may say that this method copes only with zeno-behavibtlvreglant, while con-
troller zenoness is not considered. This is true but it i®ptd. Consider a machine that
processes workpieces, which are sequentially loaded ovetake transporting belt. After
the processing, the processed workpiece is unloaded amkxgiece is loaded. Now, if
one would specify that problem by modelling the plant in saclhay that the processing
consumes no time, and the plan is formulated as "for eachpieck w: process w”, a valid
program could be "load workpiece w, do forever: process wtleled, this program satisfies
the specification because processing consumes no time,emoee,ht can be executed in-
finitely often without exceeding any given upper time bouRdrthermore, this zeno-loop
cannot be detected by the technique that was described almmesprocessing is the only
goal of the plan, actually. In order to avoid the generatibeuch senseless programs, the
plan has to be formulated more precisely. For this examplepgpropriate plan could be
"for each workpiece w: load w, process w, and unload w”.

5.2 Precomputation

Prior to the actual state space exploration, two precontipatateps were applied. In order
to reduce the state space explosion, a clock usage analgsiné. Hereby, it is computed in
which locations of a timed automaton its clocks are beingallt used. For those locations
where a clock: is not used, we do not need to consider any assignment tharesprecisely
than0 < ¢ < oco. This reduces the amount of distinct clock zones for thaatioos, and
therefore, the overall amount of states.

The unique choice interval split-up of the input timed ausdenensure that they do
not have any implicit temporal behaviour. 1@]][it was firstly explained that the usual

CHAPTER 5. GAME SOLVING 42

model-checking simulation graph of a timed automaton issa@tble for synthesis, since
letting time pass is neither controllable nor uncontrddalHence, the possibility that an
uncontrollable event occurs that lies in the future becoocasdrollable if letting time pass
is controllable as well.

5.2.1 Clock Usage Analysis

The current value of a clockis seldom needed in each location of a timed automaton. It
is straightforward to declareaslocally used in a locatior.: namely, if some execution-
decisions, i.e., the invariant or the guards of the outg@dges ofL, depend orc. But
when is it actually possible to declaresglobally unused in a certain location?

Whenever is being resetted, its old value is lost. So, in the preceftingtions before
the clock reset that not locally usegit is irrelevant what value has (since: will be resetted
anyway).

More formally, a clock constrainp : (X — Rj) — {false, true} depends on a
clockc € X if Ju(c) € R§ : ¢(v) = false. Inthis case¢ € ¢ denotes this dependence.
The set of used locationB(c) is computed by a backward least fixed-point computation
starting at those locations that usdscally, Ry (c):

Ro(c):={seQ|cel(s) vV (s, {a,7,0,\),t) €A : c€ ¢}

LR(c) (Ro(c) U {s€Q|3s {a,mp A\ t) €A : tER(E) A cd)\})

A clock ¢ is unusedin a locationL iff L ¢ R(c).

In figure 5.2, an example clock usage computation is showed. The noddetendth
Ry represents the location where the clgcks locally used. The nodes labelled wiih
show the locations whereis (transitively) used.

Figure 5.2: Clock usage example

5.2.2 Unique Choice Intervals

A Timed Automaton may contain implicit temporal behavioGonsider a locatior, with
invariant0 < ¢ < 4, an outgoing edg&a, and an outgoing eddeé that is guarded by the
constraintc > 2. When the execution is d& andc = 0, then?a can be taken instantly
while !b becomes firstly possible if > 2.

CHAPTER 5. GAME SOLVING 43

Now, it might turn out thatb leads to some fail state. If would be treated as one whole
location, it would have to be removed in order to avoid theuo@nce oflb at all. But this
would be inappropriate because the controller can issUe aaquest as long as< 2 and
prevent the occurrence & either. So it gets clear why a precomputation is needed that
splits the locations with implicit decisions into explicihes.

+
Formally speaking, the set of the decision-internvls C 22" of a clocke of a timed
automaton induce a set ohique choice interval#/’(c) such that

U u = [0,00)

uelU(c)

This closure-propertymeans that the unique choice intervals do not overlap argeraver
the complete domain of clock-valued. is computed by collecting all constraints of the
clock ¢ in the invariants and guards df. The following computational steps describe how
to obtain a valid partition such that the closure propersaissfied.

First of all, the bounds of the decision intervals are indeagd collected into an ordered
setBy C NU {o0}:

By:= |J {ld)} u{u(d)}

deD.
e tinf(d) : inf(d) = min(d)
id) := { 4inf(d) 4 2 else -
and
oo : Psup(d)
u(d) : =< 4sup(d)+1 : sup(d) = max(d)

4sup(d) —1 : else

Note that the lower bound-indexes are always even, whileugper bound-indexes are
always odd. The casaf(d) = min(d) (or sup(d) = max(d), respectively) stands for a
closed interval bound, i.e. that the bound lies within therval. Based o), the index-set
B = (bg, by, ..., b,) of U(c) is computed as follows:

B:=By U {bi+1 -1 ‘ Vbi,bit1 € Bg : by mod 2=0 A bjy; mod 2= O}
U {bz +1, biy1 —1 | Vbi,biy1 € Bgp : by mod2=1 A b;41 mod 2= 0}
U {bz +1 ‘ Vbi,bit1 € Bg : by mod 2=1 A bjy; mod 2=].}

For convenience, it is defined that mod 2 = 1. It is obvious to see tha® contains only
sequences of bound-indexes of the form

Vboi, boiy1 € B : byy mod2=0 A byy; mod2=1
Therefore, théby;, by;11)-pairs represent the unique choice intervalé/ot):

Ulc) := {17 (bgs) 0w (boig1) | i € {0..n+2—1}}

CHAPTER 5. GAME SOLVING 44

where
1) = {reRf |z>i+4} : i mod4=0
0= {zeR) |z>i+4} : else
and
Rf : i=o0
u (@)= {reRf|z<(i+1)=+4} : (i+1) mod4=2

{zeRf|z<(i+1)+4} : else
Note that+ stands for integer-division.

?a

co2 i P

Figure 5.3: Unique choice split-up

In the overall synthesis process, the unigue choice spliakes place after the clock
usage analysis and prior to the state space exploration.ust tve done for each plant
component, each clock, and for each location. Of course, thieise locations where the
clocks are actually used must be considered for split up.urgi§.3 shows the split-up
for the example that was described above. For each choes/aht a new sub-location is
added. These new sub-locations are linked by explieliay-edgesFormally speaking, the
sub-location for the interval; is linked with the succeeding sub-location fgr.; with the
event(e, D, \v.v(c) € ujr1, 0).

Let I be the value-interval of the invariant of a locatiénthat has to be split up. If
sup(l) < oo, i.e. that the invariant has an upper bound, then the clgsugerty would
not be satisfied, sincér > sup(I) : fu € U(c) : = € wu. Indeed, if an invariant
has an upper bound for a cloekthen this means that it was specified that it is impossible
thatc exceeds this limit. But on the other hand, it is also impdsdihat every exceptional
behaviour is covered by the specifications.

Imagine a location that models a machine process that takae §me. This "being-
in-process” location A would have a guarded outgoing edgelifgy to some "process-

CHAPTER 5. GAME SOLVING 45

done” location B. While the guard of this edge models the idweeind of the process-time
¢ > min, the invariant of A ensures that the execution remains in K antil the upper
bound of the process-time has not yet exceedgdmnaz. Most of the running-time of this
machine, the process actually takes that specified amouimi@f But in the (seldom) case
that something goes wrong (e.g. due to malfunctioning hardyy thenc would advance
beyond the upper time bound.

Of course, one could model such an exceptional behaviouuatigradditional to each
"being-in-process” location. But this would, on the one thaimply more complexity for
the programmer (modeller), and on the other hand, modedliray exceptions as uncon-
trollable reactions that lead to a fail state would be inappate because all those "being-
in-process” locations would not be part of the controllenming strategy since it might
happen that this exception holds, sometimes.

So it gets clear why another type of exceptional delay-edgeeded; a delay-edge that
leads to a fail state (explicit or timeout) becomeai@eout-edgeA location can be part of
the winning strategy despite the fact that it has (uncolatiotg) timeout-edges. Automati-
cally, timeout-edges can be generated by invertiiig):

LetT C R{ be the timeout interval of a set of unique choice interéa(s), then

T:=Rf\ |J u

uelU(c)

If T # (), then a timeout-edge is generated from the sub-locati@mesenting the last
unique choice interval to a dedicated timeout-locatiorhvifite event{ ¢, 7', Av.v(c) €
T, 0).

Later, in the final synthesised program, these timeoutsdge treated as exceptions.
Comparing with the "fleeing-robber”-analogon, timeouges can be seen as trapdoors in
the corridors: after some time, they open spontaneouslyedrioe robber fall through such
that he gets into the floor that lies right under the currerg @ihe sub-location with the
succeeding choice interval). So falling downwards comess to advancing in time. The
robber can take a lift (that can move only upwards) to retaithé higher-level floors again.
This corresponds to the resetting of some clocks.

5.3 Winning Controller State Space

The winning controller state space is the basis for any ggitled program. It contains all
winning strategies of the controller such that no decisi@y thead to a state, in which the
plant can produce an uncontrollable event that brings thehma into an undesired state.
As already mentioned iB.1.2 the computational model is a two-player safety game. Com-
puting all reachable good states in a first pass and then;sadyeremoving all fail states
from that set in a second pass would be, because of the gaetsiace, inappropriate.
That is why instead of that, a combined forward/backwarargm is used to find the
winning controller state space. Since each distinct statsited at most twice (discovery
and removal), the complexity of the algorithm is linear te gize of the combined state
space.

CHAPTER 5. GAME SOLVING 46

5.3.1 Basic Functions and Operators

In the following, letq = (q1, ¢2, --., ¢») be a tuple ofr locations such that eacf belongs

to an timed automatod; = (Q;, X;, A;, root;, X;, I;).

The functionM : Q* — 2>*{"!} returns the set of all controllable and uncontrollable
messages af:

n

M(Q) = U {(04,7') | (l'v <O‘>7—790>)\>7y) EA Ne=q NTE {'77}}
=1

The functionD : Q* — 2¢(X)>{D.T} returns the set of all delay and timeout-eventg:of
D(q) == J{(e.7) | (@ {0, 7,0, 0),9) € Ay A w=g; A T€{D, T}
i=1

The operator returnstrue if two messages are synchronised.

true : a1 € X Nag g X A com(ag,az) £
(a1,m) ~ (ag,m2):=¢ true : (M=SARZ) V (Mn#S A =9) A (0q =a2)
false : else

Recall that if ano is not in X, then thisa is a clock-zone, representing the condition for
an explicit delay or timeout-edgeom (a1, a2) yields the set of commonly used clocks in
both clock-zonesy; andas. Note that~ is commutative:

(a1,m1) ~ (a2, 72) = (a2, 72) ~ (a1,71)

The functionA returns the set of all clocks that are being simultaneousdgtted among
the locations iny when a given event is executed.

A(Q> (Oé,T)) = U A (l‘, <a/>7—,7907)‘>7y) € Az N x= qi A (Oé,T) ~ (0/77—,)
i=1

The functionsink returnstrue if the given states has only outgoing timeout or no edges
at all in the givenA.

false : Iz, {a,T,A\)y) €EA: x=s NT#T

sink(s, A) ::{ true : else

The set of all applicable events¢das computed by

®(q) :== {{a, 7, Mg, (v, 7))) | (@, 7) € M(q) U D(q)}

The functionapply applies a given event to a given discrete combined state thatthe
components of the state are updated accordingly.

o (¢ 2[A=0]) : aeX
apply((q, 2), (o, 7, A)) = { (g, (Zﬁ Na)A—0]) : else
whereq’ = (¢}, ¢5, ..., q},) such that

I y 3($,<&,T,QD,)\>,:L/)EAZ': rT=q; N (avT)EM(Q)
% q; : else

CHAPTER 5. GAME SOLVING 47

5.3.2 Forward Exploration

The forward exploration algorithmb) explores the product state space of the plant and
the plan automata by computing the least fixed-point of wigrdgombined configurations
(states) that are reachable from the root nodes of the pt@hpkn automata. Whenever
this exploration reaches a fail state, the reverse statevanalgorithm is called and all
configurations that lead to this found fail state are remdxeut the state space, which was
explored so far.

The traversal order of the exploration algorithmBeeadth-First SearciBFS). This
means that, starting at the root state, all neighbourinigstiat are not yet explored are
pushed in a FIFO-queue. In the next loop cycle, the explumationtinues at those new
found states. The loop ends when there are no new statessedheh queue.

ql
1

Figure 5.4: Breadth-First Search

Figure 5.4 shows the BFS traversal order with a simple example grapre ufiper
label of the nodes are the actual node names, while the l@abetd denote the number of
iterations when the nodes are (firstly) discovered. Tiigighe root nodey, is explored
after O iterations. After 1 iteratiom; andg- are found. Then, after 2 iterations,, ¢4, and
g5 are found. And finally, after 3 iterationgg is found.

Letq = (e1,...,en, p1,-.-,bm), Where eacle; is a node of a plant automaton and each
pj is anode of a plan automaton. Then, the two functions: (QF x ... x QF x Q¥ x ... x
QY — (QF x...xQF)yandplan : (QF x..xQEx QT x..xQF) — (QF x...xQF)
are defined as follows:

env((€e1,...,lny PiyeesDm)) = (€1,...y€n)

plan((ela”'7en7 p17'°'7pm)) = (pla"'7pm)
env(q,z) = env(q)

plan(q, z) = plan(q)

CHAPTER 5. GAME SOLVING

48

1 root « (rootf’) rooty ..., rootf, root! rootl, ..., rootl)
2 (S, %, A, so) — ({(root, Zp)}, U, SE UL, S USY, 0, (root, Zy))
3 fail « ()
4 L — {(s0,{env(root)})}
5 while L # () do
6 L — 0
7 forall (q,z),vis) € {((¢,7),vis") € L|(¢,7') ¢ fail} do
8 forall e = (o, 7,\) € ®(q) do
9 (new = (g™, 2"")) « apply((q, 2),e€)
10 if new is valid then
11 if new € S then
12 L A — AU{((q,2),e,new)}
13 else
14 S — SU{new}
15 if 3G € G : G(env(¢"™")) = g then
16 ¢4 — createNewState()
17 S — SuU{(e?,2)}
18 A = AU{((g,2), (9.%,0), (¢, 2))}
19 A — AU{((¢%,2), e, new)}
20 else
21 | A — AU{((g:2), e new)}
vig' {4 visUlenv(@")} : plan(q) = plan(q"”)
22 {env(¢"*™)} : else
23 | L'~ L'U{(new,vis')}
24 el_se ifr =!then
25 (S, A, fail) — removeReversé(A, fail, (q, z))
26 | continue with next item irl,
27 else ifr = D then
28 LA — AUu{((g:2), (T, \), (¢%, 2))}
29 if isSink(gq, z), A) then
30 | (S, A, fail) — removeRevers&(A, fail, (g, z))
s | L« L
32 return (S,%, A, sp)

Input

Output: Controller winning state spade, >, A, sg)

: Basis containing plant automaf#’;, Es, ..., E,, } and plan automata
{Py, Py, ..., P,,}. EachE; is a timed automaton with
E; = (QF, XE AF rootf, XF, I¥) and eachP, is a timed plan
automaton withP; = (QF, XX AP rootl’, failed?, X, IF). Safety
predicated : Q* — {false, true}. Set of state guards = {G1, G, ...},
where eacly; is a functionG; : Q* — X¢ that associates combined state

with a guard, namely an uncontrollable event.

tS

Algorithm 5: State space exploration main algorithm

CHAPTER 5. GAME SOLVING 49

The root node of the combined state space is the combinatiait plant root nodes
root?, all plan root nodesootf, and the zero clock zong, (lines 1-2). The message
alphabet> of the state space is the union of the message alphabets méailautomata
©F, all plan automat&?’, and the set of the guard messagés(line 2). The set of found
fail statesfail is initialised as the empty set (line 3). The getepresents the BFS search-
gueue. The search-items that are stored are tuples, consisting of a new explored state
and a set of already visited combined plant nodess initialised with the root state; and
the plant part of the root node as the only item of the alreasiyed set (line 4).

The main loop runs until no new states were added anymorehatL is empty (line
5). For each new found state in line 7, all neighbouring statev = (¢"“", z"¢") are con-
sidered that are reachable by applying all possible aggéoavents (line 9). The functions
®, as described in sectidn3.], return the set of all applicable message- and delay-events
The functionapply returns the new combined state that evolves from the origie svhen
applying an event. In line 10, the new found combined state is valid if all of the
following conditions hold true:

1. new ¢ fail

2. A(env(new)) = true

3. plan(q) # plan(q™™) V env(q™") ¢ vis

The first condition just means that the new state must not i@pie set of the already
known fail states. Condition 2 ensures that the new fountg staust be a safe one (i.e., no
explicit specified fail state). Condition 3 is a bit more sisibated; it says that redundant
movements of the plant are not allowed without any progré$iseoplans. It gets clearer if
one negates condition 3: a statengalid if

—(plan(q) # plan(q"’) V env(q"") & vis)
= plan(q) = plan(q"*") A env(g™") € vis

So a state is actually invalid if we reach an already visitedhloined plant state without
that any plan state has changed meanwhile. This is the agahsof the zeno-avoidance
technique as sketched $nl

Figure 5.5 shows a simple combined state space, consisting of some qi&es ¢,
e1,...), plan statesp(, p1), and clock zonesz(, z1). The initial state igeq, po, zo). From
there, the controller can make amtransition to get tde;, po, 20). Then, time can elapse
via the®D transition, which leads t¢e;, pg, z1). A spontaneous reactidh may follow
that brings the plant te; and the current combined state (i@, py, z1). Because the
current goal of the plan does not care abbubr !b, the plan component of the combined
state remains aty. Thus, the controller must not issue anotherequest frone, back to
e1, since this action would not bring a progress w.r.t. the plastead, it turns out that the
controller has to wait untilc occurs, which is the current goal. Now fras, p1, 21), the
controller can executés and return ta, since a goal was reached.

CHAPTER 5. GAME SOLVING 50

Goal pO
accomplished

Figure 5.5: Forward exploration of reachable states

If new is actually valid, then it is checked if it was already explbin the past (line
11). Is this also true, only a new transition is added (ling Ttherwise, if it is a new state,
then it is added to the set of stat€gline 14) and a new search-itefnew, vis’) is added to
L’ (line 23). If a plan has reached its next gaals is being resetted (line 22). Otherwise,
if no goal is reached, the plant partg®® is added to the set of already visited plant states
of the search item. If there exists a guard associated ghfth, an intermediate staig, is
additionally generated that ensures thatv is entered only if the guard-condition allows
that (lines 16-19).

If new is not valid ande is controllable, then we can avoittw just by discarding:.

But if e is uncontrollable, then the origin stafe, z) is also invalid since we can get from
there tonew spontaneously. In order to remove every other state, whih aiso lead to

(¢, z), the reverse state removal algorithm is called with origirz) (line 25). After that,
since(q, z) is no longer part of the state space, no other events apfditaty, z) have to

be considered yet and we may continue with the next seanchiité, (line 26). In the case
thatnew is not valid anct is a delay-edge, then we add a timeout-edge with the samile cloc
constraint instead of (line 28).

In case thafq, z) is a sink, i.e. that there are no or only timeout-edges goutgrom
(¢, 2), then(q, z) becomes invalid as well since no goals can be reached anymarghat
state (line 29). Consequently, the reverse state remagyafitim must be called again (line
30).

5.3.3 Reverse Fail State Removal

Once an invalid state has been discovered in the forwardegmn, all states that may
lead to this invalid state must be removed from the so faraergl state space. In order to

CHAPTER 5. GAME SOLVING 51

avoid all invalid states in the future, they are also addethéoset of already known fail
states.

Algorithm 6 represents the functioremoveReverse(S, A, fail, origin). It back-
tracks on all transitions in the transition syst¢f) A) that lead toorigin and removes
them.

Input : So far explored state spadewith transitionsA. Nodeorigin, identifying
the origin of the removal process. Set of fail stafes!.
Output: Triple (S’, A’, fail’) containing the adjusted state space with transitions
and the supplemented set of fail states.
1 (S A, fail') «— (S, A, fail U {origin})
2 L « {origin}
3 while L # () do
4 L — 0
5 forall s € L do
6 fail! — fail' U{s}
7 forall 6 = (z, (o, 7,A),y) € {(«/,€,y) € A| 2" ¢ fail Ny = s} do
8 switch 7 do
9 case!
10 | L' — L'u{z}
11 case? or %
12 A — AT\ 4
13 if sink(x,A’) then
14 | I/ — L'U{z}
15 case’
16 A — N U{(z,{(a, ,\), timeout}
17 if sink(z, A’) then
18 L L' — L'U{x}
19 A — A\{(@,e,y)e A2/ = s}
20 S S\ {s}
21 | L« L
22 return (S’ A’, fail’)

Algorithm 6: Reverse fail state removal

In line 3, the iteration runs until the least fixed-point ofatid states leading torigin
is found. Our interest lies only in the transitions betweeatoa fail stater and a fail state
y (line 7). We call thosdail transitions If such a fail transition$ is uncontrollable (lines
9-10), then the origin state is identified as a further fail state. This is caused by thé fac
that a plant in state may spontaneously execuieand the controller cannot do anything
to prevent that. Sa@ must be already avoided. dfis controllable or a guarded transition
(lines 11-14), thernx is not necessarily also a fail state. Initially, it is su#ict to remove

CHAPTER 5. GAME SOLVING 52

only § from the state space (line 12). Doing so, the controller moll be able to execute
that transition. If there were no further transitions (otti@n timeout-edges) starting from
x, thenz has now become a sink and must also be removed since no godie caached

from x anymore (lines 13-14).

reverse
removal

Figure 5.6: Reverse state removal

Figure 5.6 shows an example reverse fail state removal. Startingpat, either 7a
before 7 or, vice versa, firstb then?a can be executed. Both alternatives lead to the
states,. Now, the controller can executeto get to statess. In s3, only the spontaneous
reaction!d can occur, that lead to statg. It turns out thats; is a fail state. So, the
reverse state removal is called with origin Since the exploration got fromy to s; by the
uncontrollable transitioiid, s3 must also be removed. Furthermosgwas reached frora,
by executing the controllable transitiGn. Therefore, the option of executing in so must
be removed. Since, has yet another outgoing transitibihto s4, we can stop removing
here.

5.3.4 Special "Guarded State” Transition Type

In line 18 of algorithmb, it would be inappropriate to declare the new guard-trarsirom
(¢,2) to (g9, z) as uncontrollable. Doing so, wrong fail states would befified. Consider
the following problem: One can get from a stateo a stateC' by executing a request.

In the specification, a guard is declared that matetiet says thatC' can only be entered

if it is ensured that a conditiom holds true. Then, in the final state space, a transition from
A to B having!z and a transition fronB to C' having?y are added. If it turns out later that
C'is afail state, the following objects will be removed:

1. the state”,
2. the?y transition fromB to C,
3. the guard stat& (sinceB is now a sink), and finally

4. the stated (since the uncontrollable: transition leads frond to B)

CHAPTER 5. GAME SOLVING 53

Without protectingC' by the guarde, only a transition fromA to C' carrying 7y would be
added. Now, ifC is identified as a fail state, only the stateand the?y transition are
removed but not the staté (unlessA becomes a sink, of course). So it is obvious that a
special transition type for guards is needed. Fiduileshows an illustration.

A A

Q G

.
.
Q
Q Q
° - e 5 ° ‘: - .: 5 '

Figure 5.7: !- vs. %-state-guards

Chapter 6

Code Generation

In this chapter, it will be shown how a generation of a cotgrgbrogram can be done from
a winning controller state space.

6.1 Intermediate Controller Language

Before any precise controller code of a real-world PLC spstecompiled, an intermediate
controller program is generated first. Later in secton) it is shown how this code can be
compiled into concrete assembler code.

program = command
command = label’ ' instruction | resetclocks]'s
instruction = (do | goto |if | waituntil)
do == do’(' outmessage’)
goto = goto label
if == if’(’ condition') then goto label
waituntil = waituntil’(’ condition ')’
condition = inmessage | delay
delay ::= clocklist wait constant
resetclocks := and reset clocks clocklist
clocklist == "{"clock {') clock }'}

A controller program consists of a sequence of commandsh Eammand must have
a label (line number) and an instruction. Optionally, comdsamay also have a sequence
of reset clocks. There are four instructions:

1. DO (x) Execute the actiow / send a reque$tx to the plant.

2. GOTO | Unconditional jump td / continue program execution at the command
with labell .

54

CHAPTER 6. CODE GENERATION 55

3.1 F (x) THEN GOTO | Conditional jump td /if x is true, continue program
execution at or else continue at the succeeding line.

4. WAI TUNTI L (x) Halt program execution untd becomesrue. Then continue at
the succeeding line.

Indeed, practical experience has shown that the four basinuctionsDO, GOTO, IF,
andW AITU NTIL are sufficient to model a wide range of controller programsoAdi-
tion that is queried in the instructiond” andW AITU NTI L may either be an uncontrol-
lable message, sent by the plant or a clock-constraint.

Semantics

A controller program is defined as a vector of controller camdsP = (C1,Cy, ..., Cy).
Each command is a triple€ C L x S x 2% containing a label (line number), an instruction,
and a set of clocks that should be resetted when executibgdhanand. The set must
provide a partial ordering and support the following operat

VijloeL:li <l eL:l; <l <l

In other words,L has to bedense The symbollL, denotes the label of the first command
in a program. There are four instructions:

S :={DO(action), I F(cond,then), GOTO(dest), WAITUNTIL(cond)}
The semantics is defined by the function
E: (X — {false, true}) x (X —=L) x (2¥ L) xLxIxL—L

E(in,out, reset,ly, s,1l2,) returns the label of the command that should be executed
next by the controller wheré, s) is the current command ariglis the label of the subse-
guent command. The functiom corresponds to the input-layer of a controller. It returns
true if the given event was sent by the plant and can be receivetidgdntroller. The
functionout is purely imperative, which means that it returns nothingofresponds to the
output-layer of a controller that takes an event and sertdslie plant. The functiomeset
represents an abstraction of the timer contreket(\) resets the clocks/timers x

CHAPTER 6. CODE GENERATION 56

The precise denotational semantics is defined as follows:

E(in,out,reset,ly, DO(action),la, \) = let out(action); reset(\) in Iy
E(in,out,reset,ly, [F(cond,dest),lo, \) := if in(cond) then
let reset(\) in dest
else
l2
E(in,out,reset,l, GOTO(dest),la, \) = let reset(\) in dest
E(in,out,reset, ly, WAITUNTIL(cond),lz,\) := if in(cond)then
let reset(A) in Iy
else
I

A real controller works as shown in algorithm

Input : Controller programP = (C4, Co, ..., Cy,). Input/Output functionsn / out.
Timer control functiornreset.
Output: Nothing, since this algorithm never ends.

1] «— L(]
2 while ¢true do

3 | (li,s1,M) < P[]
4 (I3, 52, A2) «— succ(P[l])
5 I — E(in,out,reset,ly, s1,l2,\1)

Algorithm 7 Principle of a real controller

Note that a singléV AITU NTL instruction can also be expressed by/dn and a
GOTO-instruction. More precisely, this:

L1: WAITUNTIL (x);
L2: (succeedi ng command);

is semantically equivalent to that:

L1: IF (x) THEN GOTO L3;
L2: GOTO L1;
L3: (succeedi ng conmand);

However, théV AITU NTI L instruction is useful for post-optimisations, as we see lat
section6.6. Furthermore, many industrial controllers have an analegostruction, which
makes the final compilation easier.

CHAPTER 6. CODE GENERATION 57

Example code

Consider two hardware componeri§ and H,. H; can move between the two resting
states A and B, whiléZ, can move between X and Y. It is possible that both components
can move at the same time. Bringing the machine in a stateewtiers at B andH. is at

Y, it is more efficient to move{, and H, simultaneously than moving them sequentially.
The following controller code will do this movement:

VWAI TUNTI L (reached_B)

0: DO (noveto_B)

1: DO (noveto_Y)

2. | F (reached_B) THEN GOTO 5
3: IF (reached_Y) THEN GOTO 7
4: QGOTO 2

5: VWAITUNTIL (reached_Y)

6: GOTO 8

7:

8:

In the lines 0 and 1, the controller sends the two requestset o_Bandnovet o_Y.
Now, the two components/; and H, will start moving. The lines 2-4 represent a wait-
block, that is, a sequence b6F instructions with a succeedingOT'O instruction jumping
to the beginning of that block. ifeached_B occurs before eached_Y, then the con-
troller will jump to line 5, where it waits for eached_Y. If r eached_Y is received
first, then the controller will jump to line 7, waiting fereached_B. Figure6.1 shows a
flow-chart of this controller program.

6.2 Basic Functions and Operators

Firstly, in this section, some basic functions and opesa#we defined that makes the suc-
ceeding code generation and -optimisation algorithms monepact and easier to under-
stand.

The following access operations on controller programsiefmed:

Let P = (..o, (lim1, i1, Ni—1)s (Liy siy Ni)y (L1, Sig15 Aig1), -..) DE @ controller program,
represented by a vector over triples consisting of a labstruction, and reset-clocks. Fur-
thermore, let;_ < I; < l;11, then

P[ll] = (ll, Si,)\7,)
Plli4++] = (lit1,5i41, Nig1)
Pll; — =] = (Li—1,8i-1,X\i—1)

The inserting operator on controller programs is definechba@fi's:
LetP = (, (lz'—I, Si—1,)\i—l)y (li+1, Si+1,)\2'4_1),) andl,'_l <l; < li+1, then

Pll;] — (55, A) = (oo, (lic1, Si—15, Mi—1), (L, Siy Ai)s (lige1s Sig1, Aig1) s -n)

CHAPTER 6. CODE GENERATION 58

DO (moveto_B)

DO (moveto_Y)

Figure 6.1: Controller program as a flow-chart

The replace operator on controller programs is defined &sisi
LetP = (, (l’i—].7 Si—1,)\7;_1), (lu Si,)\Z), (l’i-‘rl7 Sit+1,)‘i-i-l)a) andl;_1 <1[; < li+1, then

Pll] — (s, X)) i= (ooy (lim1s sim1, Nim1), (L Sty D)y (i1 Sict1s A1) --2)

79

The remove operator on controller programs is defined asvsl|
LetP = (, (lz'—h Si—1,)\i—l)y (li, Si,)\Z'), (lz'—i-h Sit1,)\Z'+1),) andli_l <l; < lz'_;_l, then

Pl —L = (o, (lic1,si—1, A1), (lig1s Sise1, Aig1)s --)

The functionRy : P x L — N returns thebasicreference-count of a given label. It returns
1 if the label is the root entry-point or if the preceding coamd was no GOTO command.

1 . =1L
Ro(Pl):=< 1 : 3F(,s,\)=P[l——]: s#GOTO(.)
0 : else

Remember thaf, denotes the label of the first command in the program.
The functionR;,, : P x L — Nreturns the number of commands that refer a given label.

Rjump(P,1) := [{(l,s,\) e P|s=1F(.,l) Vv s=GOTO(l)}
The functionR : P x L — N returns theotal reference count of a given label.

R(P,1) :== Ro(P,1) + Rjump(P, 1)

CHAPTER 6. CODE GENERATION 59

6.3 From Strategies to Controller Programs

A state space represents a description of the behaviour afitaodable timed system. In
each state, the plant listens for some external requestsragxkecutes some spontaneous
reaction by its own. Switching the point of view to the coligoside, the requests are now
possibilities to influence the behaviour and the reactisashan-deterministic alternatives
that must be observed all the time, in order to be up-to-détethe state of the plant.

An execution cycle of a modern programmable logic contrallerks as follows: First,
all states of the sensors are read and stored in an intedaiffer Subsequent read in-
structions will access this in-buffer instead of directlyegying the sensors. Then, some
instructions are executed until some wait condition is nedc Here, all write requests are
buffered in arout-buffer The duration of executing an instruction is negligible Brpa 1
msec). Finally, the out-buffer is flushed (i.e. that the atdts are controlled at a time).

In the definition of timed automata (secti@i?), it was defined that transitions are
instantaneous, meaning that no time can elapse when takiog-delay transition. Only
staying at some node makes it is possible that time can pasisdmking at the working
principle of a real logic controller, indeed, it can be assdrnthat when executing a non-
delay transition, no time elapses.

The basic idea of constructing a program that controls adetarministic plant, repre-
sented as a state space, looks as follows:

e Each state in the state space corresponds to a state in tinelleorprogram.

Each transition in the state space corresponds to a comnmahd jamp to another
state in the program.

Uncontrollable transitions correspond to querying sensor

Controllable transitions correspond to activating acitsat

Resetting clocks in the state space is interpreted asirgsgther-objects in the pro-
gram.

e Querying clock constraints corresponds to querying timers

Querying timers means testing if they have passed a ceittain In a controller state, when
there is only one uncontrollable edge, this state shoulliai&to "wait until some time has
passed”, which is actually controllable again. Before aiest] from the controller can be
sent to the plant, it must be tested firstly if a spontaneoasti@ has occurred. Therefore,
being at a certain program state, the input-signals mushéeeked first and only after that,
a request can be sent.

6.4 Selection of Controllable Transitions

In the previous section, it was established that sendingj@est corresponds to activating
an actuator and jumping to some other program state. Simcéotnd winning strategy

CHAPTER 6. CODE GENERATION 60

is non-deterministic, i.e., in some states there might lversé controller decisions, the
controller could pick any arbitrary request. Indeed, a baléciion could not bring the
machine into some undesired state, but time could be unsertlgsvasted, anyway.

Therefore, a selection-heuristic is introduced that wak$ollows: Having the choice
between some requests to execute in a certain state, thesginest, which leads as fastest
to the next state where the plan advances, is to be taken, iTlusssumed that the machine
responds in an optimal way. Note that it is not possible toha@b $election already during
the exploration phase. Because it might turn out that sontleeofequests are invalid and
must be removed. So we must keep the other valid requests stdte space as long as we
are not finished.

Figure 6.2: Controller request selection heuristic

Figure6.2 shows an example state space. The current stétg,i%o). Now, one has
to choose one of the three requesis?h, or 7c. Selecting’a or ?¢, the nearest state where
the plan changesgz, p1) is four transitions away. When selectiiig one gets tdqz, p1)
with only three transitions. Thereforé) is selected and can stay in the state space while
?a and?c are removed.

Algorithm 8 traverses a given state space in a BFS manner and removesltilen
request transitions from the states such that the new gtate shas at most one request
transition per state. It works as follows: The new root stgteorresponds to the original
root statesy (line 1). L represents the BFS search set, which is initialised Yt}} (line
2). The main loop runs as long as new states were added (lih8k For each statein L,

s is also added t&’ (line 6) and the two setd), and A’ are computed (lines 7-8). These
two sets contain the outgoing uncontrollable, (Quarded- %), delay- ¢), and controllable

(?) edges starting from. If A7 has more than one element, the (optimal) request is chosen
w.r.t. the above mentioned heuristic (line 10). Then, dileotrequest edges are removed
from A’ (line 11). In line 12, the (possible modified)? and A, are added ta\’. In the

lines 13-14, the neighbouring states are added’ texcept those which are already in the
new state space.

The functionnextGoal() is computed by the BFS based algorittin It works as
follows: Here, the search sétcontains 2-tuples consisting of the current search state an
the distance to the origin statg. It is initialised with the first neighbouring statg and the

CHAPTER 6. CODE GENERATION 61

Input : Control state spacgs, X, A, sp).
Output: State space with at most one outgoing request transitioatate
(8.2, A sp).
(8", 3, A) — (0, 2,0, so)
L — {so}
while L # () do
L — 0
forall s € L do
S — S'U{s}
AL — {(z, o, \y) €EAjz=s A (r=!VT=DV 1=T)}
Al {(x,{a, T, \),y) EAlx =5 A T =2}
if |A?| > 1then
Pick a(z, e, y) € A’ such that
V(' e y') € A nextGoal(A, (x,e,y)) < nextGoal(A, (2, ¢, y'))
11 Al — (x,e,y)

© 00 N o 0o b~ W N P

=
o

12 A — ANUALUA?

13 forall (z,e,y) € ALUA?:y ¢ S’ do
14 | L' — L'u{y}

15 | L« L

16 return (S', X', A/, sp)
Algorithm 8: Request transition selection

distancel (line 1). The sebis contains all states that were already visited. It is inged
with the empty set (line 2). Again, the main loop iteratesoag)las no new states were found
anymore (lines 3-12). For each search item), it is checked if the plan part of differs
from the plan part ok (line 7). If it is so, the algorithm is done antlis returned (line
11). But if the both plan parts are equal, then the BFS will @etioued on the neighbours
of s (line 9). If no state can be found whose plan part differs fitbi origin state, then
the exceptionL is returned (line 13). Note that when callingztGoal() with a A from a
winning control state space, the function will always ratarvalid result since there can be
no dead ends.

6.5 Intermediate Code Generation

The actual code generation phase is quite straightforwacg she produced code does not
have to be compact or optimal. The subsequent optimisirfiniques that are applied to
that code yield finally a more satisfying representatione $at of the rational numbers is
chosen as the label domaih:= Q with Ly = 0.

Algorithm 10 works as follows: At first, for each state in the input constate space,
an integer label is generated (lines 1-5). These staté/fsies are stored in a hash-map.

CHAPTER 6. CODE GENERATION 62

Input : Set of transitiong\ and origin transitiord € A with 6 = (so, e, s()).
Output: Shortest distancé € Ny U { L} to the next changing plan state.

1 L — {(sp, 1}

2 vis «—

3 while L # () do

4 L' — 0

5 forall (s, d) € L do

6 vis «— visU {s}

7 if plan(s) has advanced w.r.plan(sg) then
8 | return d

9 else

10 forall (z,e,y) e A:x=s N y ¢ visdo
11 | L' — L'U{(y, d+1)}

12 | LI

13 return L

Algorithm 9: Search for the nearest state that shows a progress intitpata

The integer labels represent taetry-pointsof the states in the code. The root state has
always the entry-point 0.

In the following, for each transition starting from a statec S, a corresponding
command is generated. All commands that are produced uncietains are called the
command-bloclof s. Taking a transitior(s, e, y) in the input state space corresponds to
executinge and then jumping t&ash[y] in the output program.

The main loop iterates over all statesdn(lines 7-23). For each state, the uncontrol-
lable transitions are synthesised first (lines 11-13). Ehisiportant because the controller
must react on certain plant behaviodrsforeit can execute any action by its own. For
all uncontrollable transitions, an IF-instruction is geated that queries the message of the
event. The state may have at most one controllable transition, which is sysiged as
a DO-instruction and inserted after the IF-instructionsed 14-23). If there are were no
controllable transition starting from, then the controller must remain in the command-
block of s until any uncontrollable event becomes.e. This is achieved by inserting a
GOTO-instruction at the end of the command-block. The dastin of that command is
the entry-point of the current command-block again (ling 23

Assuming that "first uncontrollable, then controllableng#ions”-semantics, it is im-
portant that the command-blocks do not overlap. Which méaatseach command-block
must have only one entry-point at its first command. The otletrmay only enter another
command-block via jumping to other entry-poinig.represents the entry-point of the cur-
rent states. i1 = [y + 1 represents the entry-point the subsequent command-bRickhe
labels of the command-block gfmust lie in[ly, ;). This is done by inserting every new
command at label; + 7)/2 and reassigning this value backi/tavhere initially/ is set to

CHAPTER 6. CODE GENERATION 63

Input : Winning control state space, given by, 3, A, sq).
Output: Intermediate controller prograf = (C1, Cs, ..., Cy,).

1n «—1

2 forall s € S\ {so} do
3 hash[s] < n

4 n <« n+1

5 hash[sg] < 0

6 P — ()

7 forall s € S do
8 lo < hash][s]
9 ll — lo+].
10 [— lp—1

11 forall (z,{a,7,\),y) €A : 2=5 A (t=!VT=%V 7=°)do

12 [— (l1+l)/2
13 LP[Z] — (IF(a,hash[y]), \)

14 AZ — {(x7<a77—7)\>7y)EA’aj:S/\T:?}
15 if A? = {(z, (o, 7,)\),y)} then

16 [— (ll +l)/2

17 Pll] « (DO(a),\)

18 [— (ll +l)/2

19 B P[l] <« (GOTO(hashly]),0,0)
20 else

21 I — (lh+1)/2

22 | P[l] «+ (GOTO(ly),0,0)

23 re_turn P

Algorithm 10: Intermediate code generation
lo — 1.

6.6 Post Optimisations

When talking about code optimality, code size optimalitadsually meant. Running time
optimality is implicitly assumed due to the bounded livenesnstraints, as specified in the
plan. The produced intermediate code holds a lot of optitimisgpotential w.r.t. the code
size.

The main reason why optimisation takes place after (and mang)) the construction
of the state space is that the control state space as a whodeded. For example, it is
necessary to know all reachable states in order to compatantiegree of a state. This
indegree corresponds to the reference-count, which is pariant part of the precondition

CHAPTER 6. CODE GENERATION 64

1: | F (A) THEN GOTO 2

1.5: | F (B) THEN GOTO 3
— 1.75: |F (C) THEN GOTO 4

1.875: DO (X)

1.9375: GOTO 5

1: | F (A) THEN GOTO 2
1.5: | F (B) THEN GOTO 3

— 1.75: |F (C) THEN GOTO 4
1.875: |F (X>4) THEN TI MEOUT
1.9375: GOTO 1

Figure 6.4: Code extraction example 2

for many optimisations.

In this section, some basic simplification rules are intomtly which are applied step-
by-step by a fixed-point algorithm to the initial non-optincantroller program. We have
reached code optimality when no simplification rule is aggilie anymore. This multi-pass
approach is necessary because some optimisations thaerdgghucode size may lead again
to new optimisation potential. Algorithrbl shows the main post-optimisation algorithm.

Input : Non-optimal intermediate controller prografth= (C4, Co, ...,Cy,).
Dependency relatio.
Output: Optimal intermediate controller program.

1 repeat
2 P — P
3 P — simplify(P',D)
4 until P =P’
5 return P
Algorithm 11: Controller program post-optimisation algorithm

The functionsimpli fy in line 3 applies the following simplification rules.

CHAPTER 6. CODE GENERATION 65

6.6.1 WAITUNTIL-replacement

Whenever a command-block only consists of an IF- and a GQBBtiction, then it can be
substituted to a command-block containing a WAITUNTILtmstion and another GOTO-
instruction with the same destination as the IF-instrurctiduch command-blocks are gen-
erated when a state in the state space has only one trartbiéibis uncontrollable.

(..., (I, I F(cond,dest), \), (I1, GOTO(lp), D), ...)

(..., (lo, WAITUNTIL(cond), \), (I, GOTO(dest), 0), ...)

This replacement seems quite senseless, since we do naeréticode-size in the first
place. But looking at the next simplification rules, it geterenclearly that in the further
optimisation passes standalone WAITUNTIL-instructioas be much better handled than
IF- with GOTO-instructions.

Example:

1. IF (A THEN 10 . 1: VAITUNTIL (A
2: GOro1 2: GOro 10

6.6.2 Inlining

The idea is quite simple: GOTO-instructions that refer toyepoints of command-blocks
that only contain one WAITUNTIL- or DO-instruction and a GOdinstruction, can be
replaced by the referenced command-block.

Let s be an arbitrary non IF-instruction ai®l P, l») = 1, then

("'7 (107 GOTO(Z2)> (Da ®)7 (lh)7 ey (127 S,)‘)7 (l?n GOTO(dGSt)> (Da @),)

—

(e (loy 8, A), (I + 11) /2, GOTO(dest), 0,0), (11, ...), -..)

Example: . DO (A)
1. GOTo 10 1.5: GOTO 20
2: DO (B) 5. DO (B)
LR —
10: DO (A 10 DO (A)
11: GOTO 20 :

11: @GOTO 20

6.6.3 Reference-inlining

When an IF- or GOTO-instruction refer to another GOTO-instion, then the destina-
tion of the actual instruction can be replaced by the dettinaf the referenced GOTO-
instruction.

(... (lo, GOTO(11),), ..., (I, GOTO(dest), 0), ...)

—

(..., (lo, GOTO(dest), \), ..., (I, GOTO(dest), D), ...)

CHAPTER 6. CODE GENERATION 66

respectively:

(..., (lo, [F(cond,ly),\), ..., (I1, GOTO(dest), D), ...)

—

(..., (lo, [F(cond,dest), \), ..., (I, GOTO(dest),), ...)

Example:

1: IF (A THEN 10 1: IF (A THEN 20
10: GOTO 20 10: GOTO 20

6.6.4 Unreachable command-block removal

Entry-points of command-blocks, whose total referenagat@s zero can never be reached
during execution. Therefore, they can be removed withoostiution. Letl; be a label of
PandR(P,l;) =0, then

("'7 (l0> 50,)‘0)7 (lla 51,)‘1)7 (127 52,)‘2)7)

—

("'7 (l07 50,)‘0)7 (127 52,)\2)7)

Example:

1(1): DO OA13 10: GOTO 13
) (A) — 12: DO (B)

12: DO (B) 13- DO (Q)

13: DO (O ’

6.6.5 Redundant GOTO removal

A GOTO-instruction is redundant if it refers to the very negimmand. Therefore, a re-
dundant GOTO can be removed because this would not changsebation order of the
commands in the controller program. Letbe a label ofP? andR(P, ;) < 1, then

("'7 (l()a 50,)‘0)7 (lh GOTO(Z2)7 ®)7 (127 52,)‘2)7)

—

("'7 (l07 50,)‘0)7 (127 52,)\2)7)

or Ie:(A)

11: GOTO 12 - gf ggg
12: DO (B) 1% DO (O
13: DO (Q) '

6.6.6 Redundant IF removal

Some events are in relationship with each other. This méwtstspecific event may only
occur if another related event occurred before. Hence, $brATestructions in the program

CHAPTER 6. CODE GENERATION 67

can be removed because we can surely assume that the conditioever becomeérue.
Also, when a condition of an IF-instruction is onteue, it will remain ¢rue until some
other event occurs, which influences that condition. No#& ligtting time pass is also an
event, i.e., one can model that the result of a test is infleefast by waiting.

These dependencies are a matter of the problem definitiorcamabt be found au-
tomatically. Thus, they must be provided a priori. See sack? for a formal language
description of the dependency relation. We define the "rewibdependent” operator
S:2"x D x Y — 2%

Mo (D,«a):= M\ {f € M| «andg are dependent w.r.D}

Algorithm 12 shows a recursive approach for finding and removing redurBanstructions
in a given controller progran®? with a dependency relatiob.

Input : Controller programP = (C4, Cs, ..., C,,) containing redundant
IF-instructions. Dependency relatidn.
Output: Adjusted controller progran®?’ = (C1, C%, ..., C/,) containing no
redundant IF-instructions.
1 (P vis) « removel F(P,D,0,0,0,0)
2 return P’
Algorithm 12: Removal of redundant IF-instructions

Before looking at the functionemovel F', we define two auxiliary functions: the func-
tion B : P x L — 2¢ returns all commands within a given command-block, refesdrby
its entry-point:

B(P,1) :=
{ {5, \)}UB(PI") : (I,s,\) =P[ll]As#GOTO(z) NIP[l++] = (U',s",\)
{P]l]} : else

The functionW : 2¢ — {true, false} returnstrue if the given command-block contains
only IF-instructions (except the last GOTO-instructiohen we say that the given block
is await-block

W({(ll7 81,)\1)7 E) (ln7 Sn;s)\n)}) =
true : s, =GOTO(l}) AN Bs € {s1,....,8n_1}: s # IF(x,y)
false : else

Example wait-block:

1: IF (A THEN 10
I|F (B) THEN 15
IF (C) THEN 20
GOTO 1

BN

CHAPTER 6. CODE GENERATION 68

The recursive functionemovel F(P, D, ly,vis, T, F') works as follows: Redundant
IF-instructions should be removed out of the given corgrgtirogramP. WhereD is a
dependency-relatioriy the entry-label of the command-block to examinés the set of
already visited labels]" is a set of conditions, which must eue, and F' is a set of
conditions, which must bgalse due to prior jumping decisions.

At the beginning, it is checked i, was already visited (lines 1-2). If it is so, the
unchanged program is returned. If the command-block retet byl is a wait-block (i.e.
that it waits for some events to occur) and the referencetcoll, is greater than 2, then
the two setd” and I are resetted to the empty set (line 5). Because then, we Kraivthiis
command-block is referenced by at least three other comsndieb of them do we know:
the basic reference @ and (since this is a wait-block) the loop GOTO-instructiarthe
end of the block.

If [p has only two references, then we can be sure that this comiriaokl is not ref-
erenced elsewhere. We do not need to résaehd F' completely, but we must remove all
conditions that are related 6/ M E (line 7). This is because we are in a wait-block and
time can pass as long the controller is waiting for any ewventtur. If this is no wait-block
and the reference-count ff is greater then 1, we must completely résednd £, since it
is very likely that the other referencing command does net ltlae sam&” and F’ sets (line
9).

The main loop iterates over all commands of the given comntdoek (lines 11-33).
Here, the label of each passed command is addedstoThen, in dependence on the in-
struction s, the following steps are performed: dfis a GOTO-instructionremovel F' is
called recursively on the destination label (line 15).slis a DO-instruction, all condi-
tions that depend on the action of this command are remowed Tf and F. If s is a
WAITUNTIL-instruction, all conditions that depend dhl M E are removed from¥" and
F (line 22). If the condition of this instruction is i, then we can remove the current
command fromP, since the instruction (WAITUNTILfue)) would not have any effect
(line 24).

If sis an IF-instruction with conditiorond andcond is in I, then we can also remove
the command (line 27), since the controller would never jumfhe destination label (IF
(false) THEN GOTO dest). Otherwise, tfond is inT', we can replace the IF-instruction
by a GOTO-instruction (line 30), since the succeeding condran that block are never
reached (IF#{ue) THEN GOTO dest). lfcond is neither inf' nor in’T", we must recurse
again on the destination label and extdndith cond for that function call (line 32). After
that, we addcond to F', since in this branch we did not take the IF-instruction aad,c
therefore, assume thadnd is false (line 33).

CHAPTER 6. CODE GENERATION

69

N

g b W

N o

© o

10
11
12
13
14
15

16
17

18
19
20
21

22
23
24

25
26
27

28
29
30

31

if lp € visthen

| return (P, vis)

if W(B(P,lp)) then

if R(P,ly) > 2then
| (T,F) < (0,0)
else
| (T,F) — (T (D, TIME), F & (D, TIME))

else ifR(P,ly) > 1 then
| (T,F) < (0,0)

P — P

foreach (I,s,\) € B(P,lp) do

vis «— vis U{l}

switch s do

caseGOTO(dest)
L return removel F(P’, D, dest,vis, T, F)

caseDO (action)
L (T,F) «— (T'©(D,action), F & (D, action))

caseW AITUNTIL(cond)
(T,F) «— (T & (D, TIME), F & (D, TIME))
if cond € T then

o

| Pl — L

asel F'(cond, dest)

if cond € F then

L

Pl « L

else

if cond € T then

L P'[l] <« (GOTO(dest),\)

else
(P',vis) < removel F(P', D, dest,vis, T U{cond}, F)
F — FU{cond}

return (P’ vis)

Function renovel F(P, D, ly, vis, T, F)

CHAPTER 6. CODE GENERATION 70

6.7 Assembler Code Generation

The final step in the synthesis algorithm is the compilationEC 1131-3 conforming
assembler code?ll] from the optimised intermediate code. Such an assembti can be
uploaded without any modifications into a real Siemens S@raramable logic controller
(PLC), which is the current industrial standard.

6.7.1 Target System

As we have seen, prior to the assembler code generationteemietiate program is gener-
ated. Because of this abstraction, we are able to implemeidearange of target systems.
In order to give a proof of concept of the developed synthegssoach, a compiler was im-
plemented that translates the intermediate programs tallE32-3 conforming assembler
code P1].

The current standard PLC is a Siemens S7. Using the speoigtgmnming software
Siemens Step7, one is able to upload IEC 1131-3 assemblerictsuch a controller.
The machine-sensory is attached as HIGH/LOW input-sigoalthe controller. The con-
troller executes the synthesised assembler program thas these input-signals and con-
trols some output-signals. These output-signals aredimkéh machine-actuators that per-
form some movements. Reading and writing of input and og@rals works as follows:

e Before the controller program (also called as the main ¢yislexecuted, all input-
signals are cached in an input-buffer. The main cycle doeszaal any input-signals
directly from the sensors but from the input-buffer. Durioge cycle, the input-
signals do not change.

o All'writing requests are cached in an output-buffer. Aftez termination of the main
cycle, this buffer is flushed such that all actuators arerotiat at the same time.

In the memory of an S7 controller, there are so called datd-famction-blocks that rep-
resent the data- and code-segments. The synthesisedmrigmaced into such a code-
segment.

6.7.2 IEC 1131-3 Code Compilation

Because of the input/output-caching functionality of ang@s S7 controller, as described
in the last section, it is necessary that the main cycle neustihate if it waits for a specific
event from the sensors. Since only then, state-change® afiplat-signals can be noticed
by the controller. Thus, the assembler program must notgotdops. For example, it is
not allowed to compile the following "wait-for” intermed&code

10: I F (<sensor X>) THEN GOTO 20
11: GOTO 10

20:

CHAPTER 6. CODE GENERATION 71
just by syntactical replacement of equivalent assemblestions:

aaaa. A <sensor X>

JC bbbb
JU aaaa
bbbb:

This would result in a hang-up of the controller because tlegygcommand <sensor X>
will never return a distinct result since the input-buffered not get refreshed. Note that
the assembler commaid stands for a conditional, whil@éU stands for an unconditional
jump.

Unfortunately, an S7-controller has no built-in functitrat allows to terminate the cur-
rent cycle and resume later on the same position. Also, ngrano counter, containing the
current position in the code-segment, is accessible by ssgnabler command. Therefore,
as a matter of fact, the synthesised assembler program B&m¢athe current position in a
helper variable, a so called marker-byte. Now, on a re-eo&radepending on that position-
variable, the program can jump to the command where the @zacuas terminated during
the last cycle.

The compilation of an intermediate GOTO-command dependtsatestination; if the
destination address ligehindthe current position, then this GOTO-command is compiled
as an unconditional jumpl{J). If the destination address liéeforethe current position,
in order to avoid possible loops, an assembler code is gexktiaat loads the destination
address into the position-variable and then terminatesyhke. The compilation of IF-
commands works analogously. The conditions of the IF-conttmand the actions of the
DO-commands are compiled with respect to a given assenudm&rdp table in which all
symbolic events are mapped to some concrete assembler catama

The labels of an assembler program may only contain lettetgjigits, and can have at
most a length of four. Because it is not possible to storeahels as dynamical references
in a marker byte, a so called "Jump to Labeld'L] code-sequence must be generated at
the beginning. There, the contents of the position-vagiablqueried from the dedicated
marker byte, and then, depending on the (numerical) valyamna to the corresponding
label is made.

The following example intermediate program:

0 : WAl TUNTI L (occurred_pressed);
1: DO (turn_on_| ed);

2 . WAl TUNTI L (occurred_rel eased);
3 DO (turn_off_I ed);

4 GOT0 0;

with the following symbolic look-up table:

A1124.0
AN 1124.0

occurred_pressed
occurred_rel eased

CHAPTER 6. CODE GENERATION 72

SET: S QL25. 6
SET; R QL25. 6

turn_on_led
turn_off |ed

is compiled to this assembler program:

L MBO
JL ud
JU aaaa
JU aaac
JuU end

ud: JuU end

aaaa: L 0
T MBO
A 1124.0
JCN end
SET
S Q125. 6
aaac: L 1
T MBO
AN 1124.0
JCN end
SET
R QL25. 6
L 0
T VBO
JuU end

end: NOP 0

I 124. 0 is an input-signalQ125. 6 is an output-signal, and in the marker b0, the
current program position is stored.

Chapter 7

Practical Experience

7.1 Tool Implementation

Within the scope of this diploma thesis, the synthesis @lgorhas been also implemented
in C++. The back-end synthesis functions were efficientygpammed using STL func-
tions and classes. For the parser routines, the standdedffl®moandyacc[17] were used.
As a front-end APlwxWidgetg22] was used such that a platform independent GUI im-
plementation was possible. The tool graphviz from AT&®B][was used as a rendering
back-end for the plant components.

7.2 Real World Examples

The following sections describe three real world examgiasdould be successfully solved
with the developed synthesis tool. At first, the lamp exanphown, which has, on the
one hand, a quite simple plant but, on the other hand, showsaon problem when one
tries to model instantaneous reactions. The second exahples a modelling approach
for a gear checking machine, which is a standard examplenfandustrial machine. The
last example shows how a program for a round table can beaeder

7.2.1 Lamp

A simple example that shows a fundamental issue in modeléagtive components is the
Lamp Example. There are two components: a lamp and a buttoa.L&mp has the two
states ON and OFF while the button can be in a RELEASED or PRBSSate. It is
required that the lamp should be turned ON when the buttoREISED and, vice versa,
it should be turned OFF when the button is RELEASED again.

So the conjunctive assertions are formulated as follows:

e never. lamp is turned OFR&nd button is PRESSED
e never. lamp is turned ONand button is RELEASED

The plan is defined as:

73

CHAPTER 7. PRACTICAL EXPERIENCE 74

b, 518 g
Ele Edit Synthesis Help
E = @] = <f B e P (7]
New Open Save as Print Cut Copy Paste Synthesise Help
environment { R Reportl Intermediate Code PLC Code : files/dots/button, dot. gif (¥

operator button {
states released, pressed;
released <-> pressed; button.moving_pressed_released

h

automaton led { Ireached_released 0 <cl < |
nodes loff, lon;

loff -> lon ?turn_on_led;

lon -> loff ?turn_off_led; button.released-1

b5

H
loccured pressed / CL:=0 loccured_released / C1:=0

assertions { l

never led.lon and button.released; :

never led.loff and button.pressed; | || buttonmoving released pressed
i
dependencies { Ireached_pressed 0 <cl <1

occured_pressed dependson TIME;

occured_released dependson TIME;
} button.pressed-1

plans {

plan {
waitfor occured_pressed;
waitfor occured_released;
¥
} £

Figure 7.1: Screenshot of the synthesis tool

e wait for button becomes PRESSED
e wait for button becomes RELEASED

Modelling the plant, a first straightforward approach wobé<o model both compo-
nents, lamp and button, as two-states automata as showmie 7i¢.

One observers that turning the lamp ON and OFF is contrelaliile changing the
state of the button is uncontrollable since this dependsxterreal user interaction that is,
in fact, unpredictable. The combined state space looksasrsim figure7.3.

It is obvious that, starting at OFF, RELEASED) , there is no strategy that leads to
the next target stat¢,ON, PRESSED) , without entering a fail state. So this first straight-
forward specification is actually unrealisable, which c#so&e demonstrated using the
developed synthesis tool. Recall that our target-comtraln onlyreact on certain plant
events. Therefore, it is necessary to give the controllenamce of reacting tb pr ess.
Since we can make use of timed automata, we can introducelacltwm give the controller
the time to react ohpr ess: if ! pr ess occurs at locatiofREL EASED, before the execu-
tion enters the target staRRESSED, an intermediate stalRELEASED is entered having
the invariant”' < 1. FromRELEASED |, the intermediaté pr ess’ -transition, having the
guardC > 0, leads tdPRESSED. The same is done for tHtRRESSED — RELEASED case.
This new (reactive) button is shown in figured.

CHAPTER 7. PRACTICAL EXPERIENCE 75

Lamp Button

?turn_on ?turn_off

Figure 7.2: Lamp Example: naive approach

Ipress Irelease

Ipress

OFF , RELE ASED OFF , PRESSED

Irelease

?turn_on ?turn_off ?turn_on ?turn_off

Ipress

ON, RELE ASED ON, PRESSED

Irelease

Figure 7.3: Lamp Example: naive approach combined statespa

As one can see, there exists a winning strategy, now. SindengsasC' = 0, the
controller has enough time to send?aur n_on-request after & pr ess-event was no-
ticed. After that, it can let time pass untl > 0, i.e., it waits an arbitrary small time
e > 0. Then, the intermediatepr ess’ -event happens immediately that brings the plant
to (ON, PRESSED) .

The final intermediate controller program is generated bavis:

WAI TUNTI L (press);
DO (turn_on);

WAI TUNTI L (rel ease);
DO (turn_off);

GOT0O 0;

A WNPEFO

Note that all clock, delay, and intermediate events areadiksx.

7.2.2 Gear Checking Machine

The objective of a gear checking machine is to load workpi€gears) that come over an
intake transporting-belt and to classify them. After tressification, the gears are unloaded

CHAPTER 7. PRACTICAL EXPERIENCE 76

Button

Lamp

Irelease’

?turn_on ?turn_off

Figure 7.4: Lamp Example: reactive approach

Ipress’ Irelease

in a dedicated outtake. A gripper arm transports the gedhgnithe machine to the various
locations. It can be controlled independently in two dii@ts: vertically (up or down) and
horizontally (intake, classification, or outtake). There also some other components as
well: a mandril that fixes the loaded gear during classiftcgta PC-software that performs
the actual classification, a loader that loads the gear @@tipper at the intake, and an
unloader that unloads the gear from the gripper into an keitta

The mechanical setup of the machine induces some constrirthe components:

The gripper can move horizontalgnly if it is in the upper position
The software can classifynly if the mandril is strained

The gripper can move verticallgnly if the mandril is relaxed (since only then, the
workpiece is released and can be transported away)

The loader can loadnly if the horizontal position of the gripper is at the intae
the vertical position is down

The software can classifgnly if the horizontal position of the gripper is at the pro-
cessing statioand the vertical position is down

The mandril can change its staiely if the horizontal position of the gripper is at the
processing statioand the vertical position is down

The unloader can unloahly if the horizontal position of the gripper is at the outtake
and the vertical position is down

Note that the last four constraints define, which componernabled when the gripper
(and so the workpiece) is at a certain position.

CHAPTER 7. PRACTICAL EXPERIENCE 77

The plant can be modelled in a straightforward manner. Thigdmtal movement of the
gripper is given by a hardware unit (as introduced in sect®rthat has four resting states
(i nt ake, process, andout t ake) plus the implicitly generated intermediate states (e.g.
nmovi ng_i nt ake_process). The vertical movement is also modelled by a hardware
unit. But this one consists only of the two resting staipsanddown. The mandril is
the third hardware unit that contains the resting statelsaxed andst rai ned. The
software, loader, and unloader are defined by explicit timeghmata that are shown in
figure7.5.

Software
Loader Unloader
?classify
C:=0 ?reset
?load lload_end 2unload lunload_end
Cc:=0 c=1 C:=0 c=1
loading unloading

Iclassify_end

Cc=1

Figure 7.5: Components of the Gear Checking Machine

The actions of the components are modelled such that tinpsetavhen they are ex-
ecuted. For the sake of simplicity, the plant is modelledhstiat each action will take
exactly one time unit. Because it is not allowed that a preiogscycle of the machine
takes arbitrarily much time, a global timeout-clock is pafrthe goal-definitions that lets
the plan fail as soon as this clock exceeds 15 time units. Teeige plan-definition is
defined as:

pl ans {

pl an {
cl ocks timeout 15;

reset tinmeout;
wai t f or | oaded;
wai tfor classify_end;
wai t f or unl oaded;
3
}

Based on that, the synthesis tool generates:

0 : DO (| oad);

CHAPTER 7. PRACTICAL EXPERIENCE 78

WAI TUNTI L (I oaded);

DO (noveto_up);

WAI TUNTI L (reached_up);

DO (novet o_process);

WAl TUNTI L (reached_process);
DO (novet o_down) ;

WAl TUNTI L (reached_down);

DO (novet o_strai ned);

X WAl TUNTI L (reached_strai ned);
10 : DO (classify);

11 : VWAITUNTIL (classify_end);

12 : DO (noveto_rel axed);

13 : DO (reset_software);

14 : WAITUNTIL (reached_rel axed);
15 : DO (noveto_up);

16 : WAITUNTIL (reached_up);

17 : DO (novet o_outtake);

18 : WAITUNTIL (reached_outt ake);
19 : DO (noveto_down);

20 . WAITUNTIL (reached_down);

21 : DO (unl oad);

22 © WAITUNTIL (unl oaded);

23 : DO (noveto_up);

24 © WAITUNTIL (reached_up);

25 : DO (noveto_intake);

26 . WAITUNTIL (reached_intake);
27 : DO (rnovet o_down);

28 ' WAITUNTIL (reached_down);

29 : GOIO 0;

O~NO O, WN P

©

7.2.3 Round Table

A round table is an often occurring design-pattern in meid@engineering. It consists of
n bins that are located on the rim of a cycling disc. The binsuarrmly distributed such
that the angle between two binsyis= % If the table gets &cycl e-request, it rotates
by ~ in clockwise direction such that the bin that was at positipis now at(i + 1). At
each position, a certain action can be applied to the binh Beccan hold a workpiece that
is, by cycling the table, processed through the variousqasiog stations of the machine.
In this example, we have a round table with eight bins€ 8 / v = 45°). The
workpieces are marbles having the colors red, green, arel Bblihe positions have the

following functionality:
e At position 0, a new marble is loaded into the bin.

e At position 2, the color of the loaded marble is determinedilsgnsor.

CHAPTER 7. PRACTICAL EXPERIENCE 79

At position 4, the marble is unloaded into the "red”-outtake

At position 5, the marble is unloaded into the "green”-oketa

At position 6, the marble is unloaded into the "blue”-oudak

At position 7, the marble is unloaded into the "undef’-okéa

At the positions 1 and 3, nothing happens.

l loading

<« () i\

sensor
/unloading if green

unloading if blue

l unloading if red

Figure 7.6: Round table with eight bins

The formal specification can be given in a straightforwarchnes; the round table itself
is represented by an automaton having the two locati@isE andCYCLI NG. At | DLE, it
waits for a?cycl e request that brings the table-automaton B¥CLI NG. At CYCLI NG,
a! cycl i ng_end-event back td DLE can occur spontaneously, indicating that the next
position is reached.

All the bins are modelled by automata that have the sametgtaicOnly the initial
locations vary. They have eight position-locatid?3S0 to POS7 and aRESTART location.
The position-locations are linked sequentially witl$aycl e_end-transition such that

CHAPTER 7. PRACTICAL EXPERIENCE 80

every time the table rotates for one position, the bin-aatanadvance in the next position-
location as wellPOS7 is not linked directly withPQSO0. In order to notice whenever a bin
returns to positiorPOS0, after POS7 an intermediate locatioRESTART is added. From
there, via d r est ar t -transition, the bin-automata reaP@S0 again.

The sensor and the classification information is repredebjea marble-automaton.
Starting at locatiotUNDEF, it waits for ar est ar t -event to get into the locatioBVPTY.
There, it waits for d oad_end-event to get into the locatiodNCLASSI FI ED. Being
in that location, the controller can send?al assi f y-request, and after some time, a
I cl assi fy_end is sent by the plant back to the controller, signalising that classi-
fication of the color is done. Then, the automaton will be ia tbcationVALI DATI NG
and the controller can reques®at or e_cl ass that safes the measured color informa-
tion into the controllers’” memory. After that, at locati@LASSI FI ED, the controller
can send eithePunl oad_a, ?unl oad_b, ?unl oad_c, or ?unl oad_d to go into
UNLQADI NG_AT_A,UNLOADI NG_AT_B,UNLOADI NG_AT_C, or UNLOADI NG_AT_D,
respectively. The unloading process ends with the feedivessagé unl oadi ng_end.
Then, the automaton is in the locatitiNL OADED where a prioritised unl oaded event
occurs that signalises the plan that the marble was unloadkgdlant automata are shown
in sectionA.

Let0 < i < 7, then the conjunctive assertions are formulated as follows

e never. table is CYCLINGand any marble is CLASSIFYING, VALIDATING, or
UNLOADING

e marblei can CLASSIFYINGonly if bini isin POS2

e marblei can UNLOADINGAT _A only if bind isin POS4
e marblei can UNLOADINGAT _B only if bin 7 is in POS5
e marble; can UNLOADINGAT _C only if bini is in POS6
e marblei can UNLOADINGAT _D only if bini is in POS7

The four last assertions associate the four outtakes A, Bn@,D to the corresponding
positions.

For each bini, the state guards specify whenever a marble should be wdoaida
certain position:

e marblei in UNLOADING _AT _A along with bin in POSd4is guarded bycO_is_blue
e marblei in UNLOADING _AT _B along with bini in POSSs guarded bycO.is_green
e marblei in UNLOADING AT _C along with bin i in POS6is guarded bycO.is_red

e marblei in UNLOADING AT _D along with bini in POS7is guarded bycO_is_undef
For each bin, the plan says:

e wait for bin: sends restart

CHAPTER 7. PRACTICAL EXPERIENCE 81

e wait for any unloader sends unloaded if bin ¢ sends restart prior to any unloaded
event, then the plan has failed

The precise specification code is giverAinThe intermediate code for controlling one
bin in this round table of eight positions is givenAn

7.3 Benchmarks

The following benchmarks have been measured on an Intelupemti Mobile 1.2 GHz
with 512 MB RAM, running Linux 2.6.12, compiled with GCC 3.&yd -O3 optimisations
enabled.

Example| Visited Winning Code size Time [seq]
Lamp 11 10 5 0
GCM 1660 483 30 6.0

RT 1/8 60 51 53 0

RT 2/8 206 138 141 0.4

RT 3/8 656 330 312 11

RT 4/8 2118 841 773 55

RT 5/8 Out of memory

In this table, for each example from the sections beforentimaber of totally visited
states, the winning states, the number of lines of the irgdiate program, and the actual
generation time are shown. RiW/8 stands for round table with eight positions but only
n bins considered. GCM means gear checking machine. The ralnhel examples are
untimed, while the lamp and the gear checking examples raeiti

The round table results with one to four bins illustrate howmyg controller decisions at
the beginning are firstly detected at the very end of a comglatle; Recall that, hereby, the
controller has to decide whether a bin at a certain positidhe cycle should be unloaded
or not. The plan was formulated quite vaguely: "Each bin ningstinloaded within one
complete cycle”. As a result of this specification, some sdssnloading requests can only
be detected very deeply in the decision tree by the gamengphlgorithm. Thus, the round
table example with five bins exceeds the memory limit.

All actions of the components in the gear checking examphsame time. Therefore,
clock zone operations are needed that lead to an increake of/erall time. The discrep-
ancy between code size and winning states is due to theie#ieess of the applied post
optimisations.

Chapter 8

Conclusions and Outlook

8.1 Conclusions

This diploma thesis presents an innovative synthesis apprthat uses optimal model-
checking techniques that have already been successfuliieinented in standard model-
checking tools. With a new developed specification langu#igeuser can easily specify
component based industrial problem setups. Along withrasee and goal-definitions, a
controller program is automatically generated, or elsthdfe exists no valid program, it is
reported that the specification is unrealisable.

The two basic computational models are timed automata detysgames that were
adapted from related work and appropriate extended in @oderatch the purpose of this
thesis, synthesising industrial controller programs. Atee forward/backward fixed-point
algorithm finds a non-deterministic winning strategy fa tontroller in the spanned safety
game. It runs on-the-fly on the locations of the plant autanaaid the clock assignments,
symbolised by clock zones, encoded by difference boundiceatr

Because the standard simulation graph of a timed automato iabstract for a linear
game solving algorithm, a precomputation transforms thmlicit representation to an
explicit one. A local, component based, approach for damgis firstly introduced in this
thesis. Hereby, instead of transforming the whole prodtatesspace, the various plant
components are transformed independently from each dthes, the overall running time
is linear to the size of the product state space.

Instead of directly generating concrete assembler codenarg intermediate code is
synthesised first. Thus, it is possible to reduce the cateksi applying generic optimisa-
tion steps. Because of this abstraction, the synthesi®agplpiis applicable to a wide range
of platforms since porting means just implementing an appate compiler.

In order to get a proof of concept, a prototype was implentemteC++. At the end of
the synthesis process, a compilation step compiles themet#iate code in concrete IEC
1131-3 assembler that can be uploaded into a real SiemeB88®Gprogrammable logic
controller, which is the current industrial standard. loperation with the Laboratory of
Process Automation at Saarland University, real world lemmbtasks could be solved and
implemented on a training S7-300.

82

CHAPTER 8. CONCLUSIONS AND OUTLOOK 83

A typical life-cycle of an industrial machine looks roughilge this:
1. Create specification.

2. Do manual programming.
3. If verification reports an error, goto 2.

4. Put machine into production (until customer changesipation, then goto 1).

With the synthesis approach no manual programming is nagessymore. Similarly to
the classical development approach, a formal specificatiost be created that describes
the actual problem task. But after that, in contrast to tlassital approach, the program
generation works completely automatically. This brings oy a boost with the initial
development, but also with later customisations. Furtleeenthe question, whether or not
a certain component-setup is sufficient to solve an indalgiroblem task, can be answered
at the very beginning, since it can be automatically chedkihe specification is realisable
or not.

8.2 Outlook

Indeed, for the various parts of the synthesis algoritherglkexists some improving poten-
tial. In this section, some ideas are sketched that outlirssiple future work. Independent
to each extension, the primary requirement that the syistpescess should run completely
automatically, must be always maintained.

8.2.1 Language

A major task in the future will be the improvement of the sfieation language such that
modelling of industrial program tasks will become as intifgy as possible. In order to do
S0, a preprocessing step prior to the actual parsing of thafgmation could be applied. By
using macros and preprocessor directives, the languade lbeleasily extended by loops
and conditionals.

In order to increase expressivity, the specification lagguaould be extended by further
data types other than time, which is the only data type at tbmemt, actually. Possible
new data-sensitive elements range from simple scalarblasidike integers or floats up to
complex objects like sets, lists, or vectors.

8.2.2 Computational Models

In this thesis, an extension to the classical theory of timed automata is introduced. By
distinguishing between controllable, uncontrollabled aynchronisation events, one ob-
tains timed game automata that form the basis for the syistiaégorithm. Indeed, with
these modelling techniques, one can model a wide range o$indl problem tasks. How-
ever, practical experience with the implemented synthesishas shown that some further
extensions might be useful to the user. For example, iniaddid synchronising two com-
ponents via events one could also include a state-basetrgyigation.

CHAPTER 8. CONCLUSIONS AND OUTLOOK 84

8.2.3 State Space Exploration

The core part of the synthesis algorithm is the state spgaeration. The overall running
time is dominated by that process. Thus, speeding up the@mtjgn phase results in a
major speed up of the whole synthesis algorithm.

With the synthesis approach that is shown in this thesisi@spnous components that
interleave each other form the basis of the state spaceitaigorThis means, if, for exam-
ple, two events A and B may occur concurrently, then on thehamal, the “first A, then
B”-case must be considered as well as the "first B, then A&cakhus, both paths must
be part of the combined state space, in order to have an dxkfeacembined model. How-
ever, in practice, it is often not necessary to consideratlzinations of parallel occurring
events. Using such an a priori knowledge, which events tnatim parallel do not need
to be considered in every possible combination, can be wsddhttically reduce the size
of the combined state space, and thus, the size of the gedgyaigram and particularly
the overall running time of the synthesis algorithm. Thishtd@que is callegartial order
reduction[9] that is already quite well known for model-checking. A pbgs future work
could be integrating such techniques in synthesis.

As shown in sectiorb.3, all controller decisions that lead to a valid state are lept
the state space. After the exploration, the deterministining strategy is obtained by
removing all non-optimal controller decisions out of theplexed state space. A further
future work could be bringing the selection heuristic irite ictual exploration phase. This
could be done by extending the pureadth-first-searchio aninformed depth-first-search
algorithm. Hereby, when there are several controllabl®astin a discovered state, only
one of them is traversed, the others are only marked as p@sdibrnatives for that state,
in case that the picked decision becomes invalid.

8.2.4 Code Generation

Looking at the generated intermediate programs, one o&séhat there exists still min-
imisation potential. For example, one could introduce threcept of subprograms by iden-
tifying identical code-parts and replacing them with a fime call to a corresponding sub-
program. Also, in correspondence to the ideas of includeg data-sensitive elements as
mentioned above, the size of the intermediate programsi@sb be reduced by making
use of a variable environment.

In order to get a more canonical assembler code, one coueheéxhe assembler-
compilation at the end of the synthesis algorithm such #festract syntaxs generated
instead ofconcrete syntaxas it is done right now. Based on that abstract syntax, anseco
assembler-code based, optimisation could be applied.

Appendix A

Round Table

Components

Marble

$restart lload_end

unloading_at_b
lunloading_end_b
lunloading_end_c
unloading_at_c
unloading_at_d

?classify

unclassified

!unloaded

lunloading_end_a ?unload_a

?unload_b

unloaded

?unload_d

lunloading_end_d

85

APPENDIX A. ROUND TABLE

Table

?cycle
Icycle_end

$cycle_end

Irestart $cycle_end $cycle_end

Specification

pl ant {
autonat on tabl e {
nodes idle, cycling;
idle -> cycling ?cycl e;
cycling -> idle !cycle_end;

s

aut omat on pos_0 {
nodes restart, pO0, pl, p2, p3, p4, p5, p6, p7;
pO0 -> pl $cycle_end;
pl -> p2 $cycl e_end;
p2 -> p3 $cycl e_end;
p3 -> p4 $cycl e_end;
p4 -> p5 $cycl e_end;
p5 -> p6 $cycl e_end;
p6 -> p7 $cycl e_end,;
p7 -> restart $cycl e_end;
restart -> p0 !restart instant;

s

aut omat on marble_0 {

86

APPENDIX A.

nodes

ROUND TABLE 87

undef, enpty, unclassified,
classifying, validating, classified,
unl oadi ng_at _a, unl oadi ng_at b,

unl oadi ng_at _c, unl oadi ng_at _d,

unl oaded;

undef -> enpty $restart;

enmpty -> unclassified !l oad_end instant;
uncl assified -> classifying ?classify;
classifying -> validating !classify_end;
validating -> classified ?store_cl ass;

classified -> unl oading_at_a ?unl oad_a;
classified -> unl oading _at_b ?unl oad_b;
classified -> unl oading_at_c ?unl oad_c;
classified -> unloading _at_d ?unl oad_d;

unl oadi
unl oadi
unl oadi
unl oadi

ng_at _a -> unl oaded !unl oadi ng_end_a;
ng _at b -> unl oaded !unl oadi ng_end_b;
ng_at_c -> unl oaded !unl oadi ng_end_c;
ng _at _d -> unl oaded !unl oadi ng_end_d,;

unl oaded -> undef !unl oaded i nstant;

b
}

assertions {
never table.cycling and
(mar bl e_0. cl assifying or
mar bl e_0. val i dati ng or
mar bl e_0. unl oadi ng=*) ;

mar bl e_0.
mar bl e_0.
mar bl e_0.
mar bl e_0.
mar bl e_0.

}

guards {
mar bl e_0.
mar bl e_0.
mar bl e_0.
mar bl e_0.

classifying onlyif pos_0.p2;

unl oadi ng_at _a onlyif pos_0. p4;
unl oading_at _b onlyif pos_0. p5;
unl oadi ng_at _c onlyif pos_0. p6;
unl oading_at _d onlyif pos_0. p7;

unl oadi ng_at _a and pos_0. p4 guardedby cO_i s_bl ue;
unl oadi ng_at _b and pos_0. p5 guardedby cO_is_green
unl oadi ng_at _c¢ and pos_0. p6 guardedby cO_is_red;
unl oadi ng_at _d and pos_0. p7 guardedby cO_is_undef;

APPENDIX A. ROUND TABLE

}

dependenci es {
cO0_is_blue dependson store_class_0;
cO0_i s_green dependson store_cl ass_0;
c0_is_red dependson store_cl ass_0;
c0_is_undef dependson store_cl ass_0;

}

pl ans {
pl an {
waitfor restart;
wai t for unl oaded, restart -> failed;
b
}

Intermediate Code

DO (cycl e);

WAl TUNTI L (cycl e_end);

DO (cycl e);

WAI TUNTI L (cycl e_end);

DO (cl assify);

WAI TUNTI L (classify_end);

DO (store_cl ass);

DO (cycle);

WAI TUNTI L (cycl e_end);

: DO (cycl e);

10 : VWAITUNTIL (cycle_end);

11 : |IF (cO_is_blue) THEN GOTO 26;
12 : DO (cycle);

13 : WAITUNTIL (cycl e_end);

14 : |IF (cO_is_green) THEN GOTO 35;
15 : DO (cycle);

16 : VWAITUNTIL (cycle_end);

17 : |IF (cO_is_red) THEN GOTO 38;
18 : DO (cycle);

19 : WAITUNTIL (cycl e_end);

20 : WAITUNTIL (cO_is_undef);

21 : DO (unload_d);

22 : WAITUNTIL (unloadi ng_end_d);
23 : DO (cycle);

24 : WAITUNTIL (cycl e_end);

O oOoO~NOULDd WDNPEFO

88

APPENDIX A. ROUND TABLE

25 :
26
27
28 :
29 :
30 :
31 :
32 :
33 :
34
35 :
36 :
37
38 :
39 :
40

GOr0 0;

DO (unl oad_a);

WAI TUNTI L (unl oadi ng_end_a);
DO (cycle);

WAI TUNTI L (cycl e_end);

DO (cycl e);

WAl TUNTI L (cycle_end);

DO (cycl e);

WAI TUNTI L (cycle_end);

GOr0 23;

DO (unl oad_b);

WAI TUNTI L (unl oadi ng_end_b);
GOTO 30;

DO (unl oad_c);

WAI TUNTI L (unl oadi ng_end_c);
GOT0 32;

List of Figures

11
1.2
1.3
1.4
15

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5

Two concurring robotarms L 2
Verificationvs. Synthesis, 3
Synthesis algorithm overview. 6
Standard simulationgraph oo 7
Time abstracted quotientgraph. 8
An example timed automaton. 12
Partofaplanautomaton 21
Simple untimed parallel composition. 23
Untimed synchronised parallel composition. 24
A hardware component with three resting states. 28

Figure 4.1 represented as an automaton 28
Two dimensional moving robot arm with obstacle 31

A gripper that may only close iftheguard holds 32

The plant can force aninfiniteloap. 41
Clockusageexample 42
Unique choice split-up. 44
Breadth-First Search. o oL 47
Forward exploration of reachable states. 50
Reverse stateremoval. oo 52
I-vs. %-state-guards. 53
Controller program as aflow-chart. 58
Controller request selection heuristic 60
Code extractionexample 1. 64
Code extractionexample 2 64
Screenshot of the synthesistoal 74
Lamp Example: naive approach 75
Lamp Example: naive approach combined state space. 75

Lamp Example: reactive approach. 76
Components of the Gear Checking Machine 77

90

LIST OF ALGORITHMS 91

7.6 Round table with eightbins. 79
List of Algorithms

1 Computing the controller losing states 11
2 Tightening a difference bound matrix 18
3 Computing the combined edge relation. 22
4 Generation of a plan automaton. 39
5 State space exploration main algorithm. 48
6 Reverse fail stateremoval 51
7 Principle ofarealcontroller. 56
8 Request transition selection 61
9 Search for the nearest state that shows a progress inntpata. 62
10 Intermediate code generation 63
11 Controller program post-optimisation algorithm 64
12 Removal of redundant IF-instructions. 67
13 Function removel®, D, lp,vis, T, F) 69

Bibliography

[1]

(2]

[3]

[4]

Karine Altisen and Stavros Tripakis. Tools for conteslisynthesis of timed systems.
2002.

Rajeev Alur. Techniques for automatic verification of real-time systeRisD thesis,
Stanford, CA, USA, 1992.

Rajeev Alur. Timed automata. 1998. NATO ASI Summer SdlaoVerification of
Digital and Hybrid Systems.

Rajeev Alur and David L. Dill. A theory of timed automatdheoretical Computer
Science126(2):183-235, 1994.

[5] Tobias Amnell, Elena Fersman, Paul Pettersson, Hon@am and Wang Yi. Code

synthesis for timed automatlordic Journal of Computing2003.

[6] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsgeaul Pettersson, and

[7]

[8]

[9]

[10]

[11]

Wang Yi. UPPAAL - a tool suite for automatic verification ofatdime systems.
In Hybrid Systemspages 232—-243, 1995.

Marius Bozga, Conrado Daws, Oded Maler, Alfredo OliveBtavros Tripakis, and
Sergio Yovine. Kronos: A model-checking tool for real-tirmgstems. INCAV '98:
Proceedings of the 10th International Conference on CosrpAtded Verification
pages 546-550, London, UK, 1998. Springer-Verlag.

Franck Cassez, Alexandre David, Emmanuel Fleury, Kirh&sen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed gasn2005.

Edmund M. Clarke, Orna Grumberg, and Doron A. Pelédodel Checking MIT
Press, jan 2000.

T.H. Corman, C.E. Leiserson, and R.L. Rivelsttroduction to Algorithms McGraw
Hill, 1989.

David L. Dill. Timing assumptions and verification of fie-state concurrent systems.
In Proceedings of the International Workshop on Automatidfi¢ation Methods for
Finite State Systempages 197-212. Springer, 1989.

92

BIBLIOGRAPHY 93

[12] A.Pnueli E. Asarin, O. Maler and J. Sifakis. Controlgmnthesis for timed automata.
In Proc. System Structure and Contr&lisevier, 1998.

[13] Bernd Finkbeiner and Sven Schewe. Uniform distribuggnthesis. INEEE Sympo-
sium on Logic in Computer Scienqeges 321-330, June 2005.

[14] S. Finn, M. Fourman, M. Francis, and R. Harris. Formaitegn design—interactive
synthesis based on computer-assisted formal reasonihgcl@laesen, editoftMEC-
IFIP International Workshop on Applied Formal Methods fooréct VLSI Design,
Volume 1pages 97-110, Houthalen, Belgium, November 1989. Els8cience Pub-
lishers, B.V. North-Holland, Amsterdam.

[15] Emden R. Gansner and Stephen C. North. An open graptaliziation system
and its applications to software engineering§oftware — Practice and Experience
30(11):1203-1233, 2000.

[16] Gerard J. Holzmann. The model checker sglBEE Trans. Softw. Eng23(5):279—
295, 1997.

[17] John R. Levine, Tony Mason, and Doug Browlex & yacc (2nd ed.) O'Reilly &
Associates, Inc., Sebastopol, CA, USA, 1992.

[18] X. Liu and S. Smolka. Simple linear-time algorithm formmal fixed points. pages
53-66. Springer, 1998.

[19] Oded Maler, Amir Pnueli, and Joseph Sifakis. On thelsgsis of discrete controllers
for timed systems. 1995.

[20] Zohar Manna STeP: the Standford Temporal Proy&e94.

[21] Siemens AG.SIMATIC - Statement List (STL) for S7-300 and S7-400 Progrizg
Reference Manuall2/2002 edition.

[22] Julian Smart, Kevin Hock, and Stefan Csom@ross-Platform GUI Programming
with wxWidgets Prentice Hall, 2005.

[23] Douglas R. Smith. KIDS: A semiautomatic program depeb@nt system.|EEE
Transactions on Software Engineerjrig(9):1024-1043, 1990.

	Introduction
	Motivation
	Correct Programs
	Overview
	Related Work

	Preliminaries
	Infinite Games
	Game Arena
	Safety Games
	Solving a Safety Game

	Timed Automata
	Infinite State Transition Graph
	Clock Zones
	Difference Bound Matrices
	Complexity Considerations

	Computational Models
	Timed Game Automata
	Plan Automata
	Parallel Composition
	Combined State Space

	Specification Language
	Plant Definition
	Automaton Component
	Hardware Component
	Operator Component
	Assertions
	Dependencies

	Production Goals
	State Guards
	Plans

	Semantics
	Automaton Component
	Hardware Component
	Operator Component
	Assertions
	Dependencies
	State Guards
	Plans

	Game Solving
	Zenoness
	Precomputation
	Clock Usage Analysis
	Unique Choice Intervals

	Winning Controller State Space
	Basic Functions and Operators
	Forward Exploration
	Reverse Fail State Removal
	Special "Guarded State" Transition Type

	Code Generation
	Intermediate Controller Language
	Basic Functions and Operators
	From Strategies to Controller Programs
	Selection of Controllable Transitions
	Intermediate Code Generation
	Post Optimisations
	WAITUNTIL-replacement
	Inlining
	Reference-inlining
	Unreachable command-block removal
	Redundant GOTO removal
	Redundant IF removal

	Assembler Code Generation
	Target System
	IEC 1131-3 Code Compilation

	Practical Experience
	Tool Implementation
	Real World Examples
	Lamp
	Gear Checking Machine
	Round Table

	Benchmarks

	Conclusions and Outlook
	Conclusions
	Outlook
	Language
	Computational Models
	State Space Exploration
	Code Generation

	Appendix
	Round Table

