
Developing Legal Knowledge Based Systems Through Theory

Construction

Alison Chorley and Trevor Bench-Capon

Department of Computer Science

The University of Liverpool

Liverpool

UK

040151 794 2697

{alison,tbc}@csc.liv.ac.uk

ABSTRACT
Bench-Capon and Sartor have proposed that reasoning with

legal cases be seen as a process of theory construction,

evaluation and application. They have proposed a set of theory

constructors to specify the process of theory construction. In this

paper we describe an implementation of these constructors as

part of a system intended to support the development of a legal

Knowledge Based System (LKBS) from a set of cases. The

constructors provide a means of building a theory from a

background analysis. Once a theory has been constructed, the

system generates Prolog code conforming to the theory,

including the priorities demanded by the theory. This code can

then be incorporated into a shell to provide a simple LKBS,

which can be used for testing and evaluation, or upgraded into a

usable application. The process is illustrated by showing how

the tool could be used to develop a LKBS for US Trade Secret

Law, drawing on the analysis used in Aleven’s CATO system.

This case study raises a number of issues which merit discussion

and further exploration.

Categories and Subject Descriptors
I.2.1 [Computing Methodologies] : Applications and Expert

Systems – law.

General Terms
Design, Experimentation

Keywords
Legal Knowledge Based Systems, Theory Construction,

Development

1. INTRODUCTION
In [2] Bench-Capon and Sartor proposed that reasoning with

legal cases be seen as a process of theory construction,

evaluation and application. That paper also provides definitions

of a set of theory constructors that could provide the means by

which theories are constructed given a background describing

the domain in terms of factors and cases. In this paper we

describe a program which implements these definitions so as to

provide a practical theory construction tool. This tool is of use

first as a means of rapidly constructing theories of the domain.

Its main purpose, however, is to form the centrepiece of a

system to support the development of Legal Knowledge Based

Systems (LKBS) from cases. So far, development

methodologies (e.g [3]), have taken as their starting point written

sources, whether statutes or commentaries, so that taking a body

of case law as the starting point is novel. To act as a

development tool the implementation augments the theory

constructors with the ability to generate executable Prolog code

conforming to the constructed theory which can be used as the

knowledge base of a LKBS. This code enforces all the

preferences explicitly made in the theory, and also applies

additional rule preferences consequent on established value

preferences.

The paper is organised as follows. Section 2 outlines the

proposed methodology. Section 3 describes the implementation.

Section 4 offers a case study, using the analysis of US Trade

Secrets cases used in Aleven’s CATO [1]. Section 5 discusses

some questions prompted by the case study. Section 6 provides

some concluding discussion and proposals for future work.

2. A METHODOLOGY FOR

DEVELOPING LKBS FROM CASES

The methodology comprises the following stages:

 domain analysis;

 theory construction;

 code generation;

 evaluation;

 refinement;

 embedding in a system

Each of these stages will be briefly elaborated.

Domain analysis. Inevitably there is no substitute for a thorough

reading of the cases and some systematic representation of them.

The aim of the domain analysis is to establish what [2] refers to

as the background. Two things are required. First we must

establish a set of factors which can be used to describe the cases,

determine the side which they favour, and associate them with

some social value. At this stage one can afford to be fairly

profligate with factors: as there is no commitment to use them in

the theory or the resulting LKBS it is preferable that any

potential factors are made available. This information is

recorded in a file FactorList with the format:

<factorName,sideFavoured,valuePromoted>

Having established the set of factors, the next step is to use them

to describe the set of cases which will be used to build the

theory. These case descriptions are recorded in a second text

file, CaseList, which has the form:

<caseName,setOfFactors,Outcome>

Here again we do not have to be selective: we may represent as

many cases as are available. Some will be used in constructing

the theory, and the remainder will be available to test the

resulting LKBS.

Theory Construction. In this stage the theory constructors

described in [2] are used to build a theory, using the theory

construction tool described in section 3. Possible approaches to

constructing the theory are described in conjunction with the

case study in Section 4.

Code Generation. Once the theory has been built, it can be used

to generate a set of Prolog clauses. The Prolog code contains

each case included as a set of facts of the form

factor(caseName, factorName),

and the rules developed in the theory as a set of clauses of the

form

outcome(X,O):-factor(X,f1),factor(X,f2),… , factor(X,fN).

where X is a variable standing for the case, O is one of p or d

depending on the outcome suggested by the rule, and f1… fN

are the factors in the antecedent of the corresponding rule, and

factor(fn,X) is satisfied if factor n is present in case X. Priorities

are represented by the order of the clauses for the rules: they are

written so as to ensure that the preferred rule always appears

before the rule to which it is preferred. This order may not, of

course, be unique, but this is because the theory itself does not

determine every possible conflict: the order generated is one of

the family of theories consistent with the partial theory

constructed. This point is discussed further in the next section.

Evaluation. We may now evaluate the theory by executing

queries of the form outcome(Case, Result), for those cases which

represent our test data. If the answer Result corresponds to the

actual outcome, then the program handles the case correctly; if

not, the program is incorrect with respect to the case, and needs

to be refined. Tracing the execution of the query determines

which rule produced the incorrect response.

Refinement. We now have a list of rules which led to incorrect

results in test cases. For each of these we need to find another

rule applicable to the case with the opposite outcome, and assert

that this is to be preferred to the problem rule. We can repeat

this cycle of evaluation and refinement until we are satisfied

with the behaviour of the program. Refinement can be

performed either on the theory, or on the program itself.

Embedding in a system: We now have a knowledge base

expressed in Prolog which is correct with respect to the test

cases. The interface provided by Prolog is, however, likely to be

considered unacceptable for normal use as an LKBS. It is

therefore necessary to embed the rule base in a more suitable

interface to produce the final LKBS.

3. IMPLEMENTATION

Figure 1 Screen Shot of Theory Construction Tool

3.1 Description of Implementation
Figure 1 gives a screen shot of the theory construction tool in

action. The large theory window on the left contains the theory

being constructed. It separates the different sections of the

theory and shows any changes made to the theory as they are

made. The smaller case window at the top right holds the

background cases that can be included in the theories. The small

factor window shows the background factors available for use in

the theories.

The theory button panel across the top contains the buttons to

start a new theory, open an existing theory, save a currently open

theory and exit the tool. The theory constructor panel contains

the buttons that implement the theory constructors in [2] and

also includes an extra button to allow the entry of the case to be

solved so that a case already contained in the case background

can be given a different outcome. The removal button panel

contains buttons to remove items from the theory. This enables

mistakes to be corrected, and modifications to the theory to be

made. The maintenance button panel allows changes to be

made to the background case and factor lists without amending

the underlying text files. Finally the execute button generates

Prolog code conforming to the theory.

The theory is created by selecting buttons to include items in the

theory. The tool checks that the theory is consistent whenever a

preference is added. If adding the preference would make the

theory inconsistent then a warning is issued and the preference is

not added. If the user of the tool still wishes to include the

preference then the conflicting preference must be removed first.

The tool also tracks where the rule preferences came from by

labelling each rule preference depending on which theory

constructor was used. When the Preference From Cases

constructor is used the preference is labelled with the case

supporting it and is checked to make sure that the case does

indeed support it. The preference is labelled with <| From

Value Preference |> if the Rule Preference From Value

Preference constructor is used and the preference is labelled

with <| Arbitrary Rule Preference |> when the Arbitrary Rule

Preference constructor is used.

3.2 Description of Code Generation

First the value preferences are converted into the set of

corresponding rule preferences. This is done by converting each

value in the preference into its associated factors. Only the rules

that are contained in the rule section can be used in the rule

preferences so only these are created when converting the value

preferences. These rules, however, will include both those

introduced when a factor is included, and those explicitly

constructed by factor merging. The tool checks for any

inconsistencies and only if the theory is consistent will the code

generation continue.

To illustrate this process consider the following example using

the factors and values of the case study in Section 4, which will

explain what the various abbreviations stand for. Suppose that

our theory contains factors F1, F6, F8, F10, F12, F18 and F27,

all of which relate to the values RE and MW, Suppose we have

included the specific rule preference to express that F1 is

preferred to F8, and hence RE is preferred to MW. This value

Figure 2: Automatically generated rule preferences

preference will give rise to the rule preferences shown in Figure

2.. All of these could have been explicitly included using Rule

Preference From Value Preference, but this is unnecessarily

tedious.

Now the rule preferences are used to order the rules in the

theory. The rules are held in a list and this list is compared to

the rule preferences. If the preferred rule is below the

unpreferred rule then the unpreferred rule is moved below the

preferred rule. The list is thus guaranteed to be ordered

according to the rule preferences but since the theory is not

complete this is does not determine a unique ordering. Conflicts

are resolved using the alphabetical order of the rules contained

in the theory.

Finally the code is generated and output to a file that can be

executed in a standard Prolog interpreter.

4. A CASE STUDY

We now illustrate the methodology with a case study. For our

analysis we draw on the CATO system [1]. CATO uses 26 base

level factors, each associated with either the plaintiff (p) or the

defendant (d), and we will take these as the starting point for our

background. CATO, however, does not make use of values, and

so we need to identify a set of values and associate them with

the factors.

4.1 Domain Analysis
So what values seem to underlie the factors? First a number of

factors relate to confidentiality agreements. Clearly if all trade

secret disputes were governed by a specific agreement, the task

of deciding them would be much eased. We would therefore

expect the law to encourage such agreements to be made. Our

first value then is Confidentiality Agreement: the side favoured

will depend on the nature of the agreement. This value secures

five factors:

 F4 Agreed not to disclose (p)

 F5 Agreement not specific (d)

 F13 Noncompetition Agreement (p)

 F21Knew Info Confidential (p)

 F23 Waiver of Confidentiality (d).

Next it seems that the law does not wish to condone lax

behaviour, so that it wishes people with secrets to take

valpref({RE}, {MW})

 => pref(<{F1}, D>, <{F8}, P>)

 => pref(<{F1}, D>, <{F18}, P>)

 => pref(<{F6}, D>, <{F8}, P>)

 => pref(<{F6}, D>, <{F18}, P>)

 => pref(<{F10}, D>, <{F8}, P>)

 => pref(<{F10}, D>, <{F18}, P>)

 => pref(<{F12}, D>, <{F8}, P>)

 => pref(<{F12}, D>, <{F18}, P>)

 => pref(<{F19}, D>, <{F8}, P>)

 => pref(<{F19}, D>, <{F18}, P>)

 => pref(<{F27}, D>, <{F1}, P>)

 => pref(<{F27}, D>, <{F18}, P>)

reasonable measures to protect them. This gives the second

value Reasonable Efforts. Making such efforts are encouraged if

having made them favours the plaintiff, and having failed to

make them favours the defendant. Six factors share this value.

 F1 Disclosure in Negotiations (d)

 F6 Security Measures (p)

 F10 Secrets Disclosed Outsiders (d)

 F12 Outsider Disclosures Restricted (p)

 F19 No Security Measures (d)

 F27 Disclosure in Public Forum (d).

Third the law wishes to encourage competition by legitimate

means. Therefore if a person can develop the product using

Legitimate Means, this should tell their favour. This covers eight

factors. Note that one of them is pro-plaintiff; the uniqueness of

a product creates a presupposition that it cannot be developed by

legitimate means, and so places an extra burden of proof on the

defendant.

 F3 Employee Sole Developer (d)

 F11 Vertical Knowledge (d)

 F15 Unique Product (p)

 F16 Info Reverse Engineerable (d)

 F17 Info Independently Generated (d)

 F20 Info Known to Competitors (d)

 F24 Info Obtainable Elsewhere (d)

 F25 Info Reverse Engineered (d)

The reverse of this is that illegal or immoral means should be

discouraged. Five factors relate to this value, Questionable

Means, which always favours the plaintiff:

 F2 Bribe Employee (p)

 F7 Brought Tools (p)

 F14 Restricted Material Used (p)

 F22 Invasive Techniques (p)

 F26 Deception (p)

The final two factors are intended to show that the secret had

Material Worth. The law would naturally attempt to discourage

litigation about secrets of no worth, and so will favour the

plaintiff if his secret had demonstrable value. Two factors, both

of which favour the plaintiff, are used here:

 F8 Competitive Advantage (p)

 F18 Identical Products (p).

We have now assigned the factors to five values. Conveniently

the distribution is reasonably equal, with only Material Worth

represented by substantially fewer factors.

We must now select a set of cases. A number are described in

[1], and here we present a fairly arbitrary selection, although

excluding some of the cases flagged as problematic by Aleven.

Our selection includes seven found for the plaintiff, seven found

for the defendant, and two which are discussed as “undecided”

cases. In Table 1 we show the case, the factors present, split

according to whether they favour the plaintiff or the defendant,

the values that would be promoted by deciding in favour of the

plaintiff and the values that would be promoted by finding for

the defendant, as well, as the outcome where given.

Table 1: Cases Used

 Pro-P

Factors

Pro-D

Factors

Pro-P

Values

Pro-D

Values

Outcome

Bryce 4 6 18

21

1 CA

RE

MW

RE P

Televation 6 12

15 18

21

10 16 CA

RE

LM

MW

RE

LM

P

Space Aero 8 15

18

1 19 MW

LM

RE P

Den-Tal-Ez 4 6 21

26

1 CA

RE

QM

RE P

College

Watercolour

15 26 1 LM

QM

RE P

Boeing 4 6 12

14 21

1 10 CA

RE

QM

RE P

Emery 18 21 10 CA

MW

RE P

Yokana 7 10 16

27

QM RE

LM

D

Robinson 18 26 1 10

19

QM

MW

RE D

Ferranti 2 17 19

20 27

QM RE

LM

D

Arco 10 16

20

 RE

LM

D

Sheets 18 19 27 MW RE D

Ecologix 21 1 19

23

CA CA

RE

D

Sandlin 1 10

16 19

27

 RE

LM

D

Mason 6 15

21

1 16 CA

RE

LM

RE

LM

National

Rejectors

7 15

18

10 16

19 27

QM

LM

MW

RE

LM

4.2 Theory Construction

Having established our background, we can proceed to construct

a theory. In previous work, theory construction has typically

been directed towards a particular, as yet undecided, case. Here,

however, we are free to choose our cases. If we are to have a

methodology, we must have some principles for how we will

construct our theory. Here we will consider three approaches.

First we may aim at a safe theory. Here we are willing to include

as many factors as possible, and to produce rules which do not

go beyond the minimum that we are entitled to infer. This latter

effect is given by using the method of Prakken and Sartor for

producing rules from cases given in [4], whereby the

conjunction of pro-plaintiff factors gives one rule, the

conjunction of pro-defendant factors another, and the priority is

determined by the decision. For choosing cases we want to get

the most powerful rules, and this will mean those with the

fewest factors favouring the winner and the most factors

favouring the loser.

The second method will aim at the simplest theory. Here we will

want to restrict the number of factors as far as possible, and will

be willing to make assumptions which enable us to produce

rules not strictly justified by the cases. Hence we will select a

small set of factors which covers all the cases, and choose cases

to establish priorities between them.

Our third approach will be value driven. Here we will first

reflect on the values and produce a ranking. We will then choose

factors to represent these values, and cases to establish the

desired value order.

Let us see what results from these three approaches. In each case

we will restrict ourselves to four cases to construct the theory,

two won by the plaintiff and two won by the defendant. The

other cases will then be used in the evaluation and refinement

stages.

For the first method we select Emery and College Watercolour

as plaintiff cases and Robinson and Sheets as our defendant

cases. Representing the rules from these four cases in the

manner of [4] yields the following rule and value preferences:

Figure 3: Rule and Value Preferences from “Safe” Method

For the second method we must first select our factors. What we

need is a set of factors such that at least one pro-plaintiff factor

occurs in every case decided for the plaintiff, and at least on pro-

defendant factor occurs in every case decided for the defendant.

F21 occurs in 6 of the pro-plaintiff cases, so we choose this

together with F15 to handle Space Aero. For our pro-defendant

factors F19, F20 and F27 will cover all defendant cases. Now we

need express preferences only where we have both a pro-

plaintiff and a pro-defendant factor. In only two cases do we

have a conflict to resolve: Space Aero and Ecologix, so we

express preferences according to the outcomes of these two

cases. For this approach, nothing is to be gained by including

additional cases, so only these two are used in this theory. We

thus get the following rule and value preferences:

Figure 4: Preferences for the “Simple” method

For our final approach we must first decide on a value order. We

do not need to distinguish between Questionable Means and

Material Worth, since these both always favour the same side.

Let us suppose that the most highly rated value is Confidentiality

Agreement, since if all the dealings were regulated by properly

drafted agreements, there would be no problems to decide. Let

us rate Legitimate Means next: in the absence of a specific

agreement, the right to enterprise must be protected. We rate

Reasonable Efforts third, since people must take some steps to

protect themselves. This leaves Questionable Means and

Material Value at the bottom. Is Material Worth so unimportant,

when surely it a sine qua non for an action? Well, it is of little

importance here, since while if it is not present the action seems

pointless, it does not really cast much light on whether the

defendant behaved incorrectly. It does not, in fact, appear in

every case. We assume that this is because it was accepted by

both sides, and so is made explicit only if the matter is raised in

an effort to discredit the action.

In order to establish this order on values we need four cases. In

choosing representative factors we should have an eye mainly to

coverage. First we choose a case where CA > LM. Televation,

and F21 and F16 can play this role. For LM > RE we choose

Space Aero and F15 and F19. We now need RE > QM, for

which we can have Robinson with F19 and F26. Finally for RE

> MW we choose Sheets with F19 and F18. This yields the third

theory.

Figure 5: Preferences from the “Value Driven” Method

Having obtained our first cut theories we can proceed to

evaluate and refine them.

4.3 Evaluation
We now generate Prolog code for each of the three theories. One

choice we need to make is whether we should augment the

theory by including factors not explicitly used in the

construction of the theory. On the one hand, unused factors

might have been held to be irrelevant by the person constructing

Theory Preferences :

 pref(<{F18, F21}, P>,

 <{F10}, D>)

 pref(<{F1, F10, F19}, D>,

 <{F18, F26}, P>)

 pref(<{F15, F26}, P>,

 <{F1}, D>)

 pref(<{F19, F27}, D>,

 <{F18}, P>)

Theory Value Preferences :

 valpref({MW,CA}, {RE})

valpref({RE},{MW,QM}

 valpref({LM, QM}, {RE})

 valpref({RE}, {MW})

Theory Preferences :

 pref(<{F15}, P>, <{F19}, D>)

 pref(<{F19}, D>, <{F21}, P>)

Theory Value Preferences :

 valpref({LM}, {RE})

 valpref({RE}, {CA})

Theory Preferences :

 pref(<{F21}, P>, <{F16}, D>)

 pref(<{F15}, P>, <{F19}, D>)

 pref(<{F19}, D>, <{F26}, P>)

 pref(<{F19}, D>, <{F18}, P>)

Theory Value Preferences :

 valpref({CA}, {LM})

 valpref({LM}, {RE})

 valpref({RE}, {LM})

 valpref({RE}, {MW})

the theory. On the other, they were considered relevant by the

original analyst and users might feel uncomfortable if the system

were giving them no consideration. Accordingly we produced

two tests for each theory, one using only factors explicitly

included in the theory and the other using all 26 factors.

We evaluate our theories by running them against the cases not

used in their construction. The results are tabulated in Table 2.

Table 2: Results from Executing Programs

Case T1 T2 T3

 sel all sel all sel all

Bryce d d p p p p

Televation p p p p p p

Space Aero d d p p p p

Den-Tal-Ez d d p p p p

College Wat p p p p p p

Boeing d p p p p p

Emery p p p p p p

Yokana d d d d d d

Robinson d d d d d d

Ferranti d d d d d d

Arco d d d d d d

Sheets d d d d d d

Ecologix d d d d d p

Sandlin d d d d d d

Mason d d p p p p

National Rej d d p p p d

First we can note that using some or all the factors makes little

difference, although it does get Boeing right in Theory 1 and

changes the decision in National Rejectors in Theory 3. Since

the performance in the test cases is better in one instance, and

never worse, we will do our refinement on the code generated

from the augmented theories.

4.4 Refinement

In order to refine the programs, we first execute the program for

the incorrect case to identify the rule causing the problem. We

then reorder the clauses to fix the problem. We then re-run the

test to ensure that no new problems have been created, and to

see what cases remain incorrect.

To refine Theory 1 we begin with Bryce, the first case showing a

problem. Here we find that F1, associated with the value

Reasonable Efforts was the decisive factor in reaching the wrong

decision. So let us examine the code for outcome, shown if

Figure 6.

Figure 6: Code for Theory 1

The clauses relating to the value Reasonable Efforts are

emboldened, and those explicitly preferred in the theory are also

italicised. Recall that the order of clauses with the same value

which do not feature in explicit rule preferences is determined

by the program, not the theory. We may therefore move the

problem clause (marked by “*”) to be the last clause for

Reasonable Efforts, the position marked by “***”. Rerunning

the program shows that this has dealt with Bryce, and also fixed

Den-Tal-Ez. It has also, incidentally, changed the outcome for

Mason. Only Space Aero now has the wrong outcome. The key

factor here is F19. But moving this below the other factors for

Reasonable Efforts will not succeed here, since in Space Aero,

unlike Bryce, no security measures (F6) were taken, and so no

clause for a factor associated with Reasonable Efforts will give a

decision for the plaintiff. Our choice is therefore either to move

the clause for F19 somewhere below that for F18 (the highest

factor satisfied in Space Aero), or to amend the theory by

explicitly recording the decision in Space Aero. The latter seems

outcome(X, d) :- factor(X, f1), factor(X,

f10), factor(X, f19).

outcome(X, p) :- factor(X, f18), factor(X,

f26).

outcome(X, p) :- factor(X, f12).

outcome(X, p) :- factor(X, f15), factor(X,

f26).

* outcome(X, d) :- factor(X, f1).

outcome(X, p) :- factor(X, f18), factor(X,

f21).

outcome(X, d) :- factor(X, f19), factor(X,

f27).

outcome(X, d) :- factor(X, f10).

outcome(X, d) :- factor(X, f19).

outcome(X, d) :- factor(X, f27).

outcome(X, p) :- factor(X, f6).

outcome(X, p) :- factor(X, f8).

outcome(X, p) :- factor(X, f18).

outcome(X, d) :- factor(X, f1), factor(X,

f10).

outcome(X, d) :- factor(X, f11).

outcome(X, p) :- factor(X, f13).

outcome(X, p) :- factor(X, f14).

outcome(X, p) :- factor(X, f15).

outcome(X, d) :- factor(X, f16).

outcome(X, d) :- factor(X, f17).

outcome(X, d) :- factor(X, f20).

outcome(X, p) :- factor(X, f21).

outcome(X, p) :- factor(X, f22).

outcome(X, d) :- factor(X, f23).

outcome(X, d) :- factor(X, f24).

outcome(X, d) :- factor(X, f25).

outcome(X, p) :- factor(X, f26).

outcome(X, p) :- factor(X, f2).

outcome(X, d) :- factor(X, f3).

outcome(X, p) :- factor(X, f4).

outcome(X, d) :- factor(X, f5).

outcome(X, p) :- factor(X, f7).

most thematic for the approach of Theory 1. The resulting

theory, with the extra value preference valpref({MW,LM},{RE}),

correctly decides the test cases.

When we wish to refine Theory 3, we need to handle Ecologix.

In order to get the correct outcome for this case, we need to

ensure that F21 is given less weight that one of F1, F19, and

F23. In order to be consistent with the value order that we used

to produce this theory, this would require that F23 was preferred

to F21. Accordingly – and given that F23 represents an explicit

waiver of confidentiality this seems reasonable – we make the

clause for F23 the highest relating to confidentiality. Re-running

the resulting program gives the correct answer for all cases.

Note that with the exception of Space Aero which required

special treatment, problems occur when we have both pro-

plaintiff and pro-defendant factors relating to the same value.

Because we do not explicitly determine the order of factors

within a value, we have to hope the program gets it right by

chance, since otherwise we will have to tinker with the program.

Of course, a useful addition to the method might be a declaration

of the order of, at least some, factors within a value, which

would then be used to govern the order of clauses in the

resulting program. Space Aero is a different case: it

demonstrates the need to include an additional preference

between combinations of values in order to explain the cases.

Note that in this case we modified the theory, rather than

choosing a different program conforming to the original theory.

4.5 Embedding in a system
We will not say much about this. The very simplest system

would be something like:

go:-nl, write([input,case,name]),

 nl,read(C),

 write([input,factor,list]),

 nl,read(F),

 asserta(flist(C,F)),outcome(C,O),

 nl,write(O).

factor(C,F):-flist(C,L),member(F,L).

This program does no more than read a case name and a list of

factors, apply the rules to this data and display the result. Such a

LKBS has a very (early) eighties feel, but is sufficient to

demonstrate the principle.

5. Discussion of Case Study
The case study raises a number of questions. We will look at the

following:

 Can we say anything about which method of theory

construction is the best?

 What is the relation between values and abstract

factors as used in CATO?

 Can we say anything about how the “undecided cases”

should be decided?

 Do we wish to consider degrees of strength of factors?

 Do we wish to consider any cumulative impact for

several factors relating to the same value?

5.1 How should we construct theories?
From the case study we saw that Theory 1 (the safe method)

required the most refinement, while Theory 2 (the bold method)

required least. We should not, however, conclude from this that

the bold method is the best. The reason that it works so well is

that it is highly tailored to the data presented. The situation is

possibly akin to rules induced from data by techniques such as

rule induction and neural nets, which can often give good

performance, but which have a tendency to overfit the dataset,

and thus to lack robustness. For example if the defendant was an

employee who was the sole developer of the product (F3) but

had entered into a specific agreement not to disclose (F4), and

the plaintiff had taken other security measures (F6), the program

derived from Theory 2 would find for the defendant, whereas we

might well expect the plaintiff to win such a case, an outcome

produced by the other two theories. The problem here is that our

selection of cases is silent on F3 and F4, and so their impact may

be misinterpreted unless the importance of F4 is recognised via

its associated value. We should therefore be wary about using

the approach of Theory 2.

In comparing Theories 1 and 3, we may note the following. If

comparisons are restricted to one value against another, Theory

3 will supply the correct answers, although we may need to

refine the theory by deciding between factors relating to the

same value. In contrast, Theory 1 is strong on combinations of

values, but leaves many individual comparisons unresolved.

Which is best therefore depends on how we believe sets of

values should be compared. What Theory 3 suggests is that we

always value a set by its most important member, and when the

sets being compared contain the same best member, these are the

factors which need to be compared. An alternative, involving a

small complication to the code generated1, would allow

cancelling of shared values, so that sets of values would be

compared on the basis of their best value not present in both

sets. Theory 1 offers yet another way of comparing value sets, so

that v1 and v2 may together outweigh v3, even though v3

outweighs both v1 and v2 individually. Which method of

constructing theories is required therefore depends on how we

wish sets of values to be compared. This, we believe, is not a

question capable of a general answer, but which needs to be

thought about relative to the domain of application. In the

domain studied in the case example, we feel that the method

produced by Theory 3 is not unreasonable.

5.2 Values and Abstract Factors
In Prakken [5], there was an interesting suggestion that the

argument moves of emphasising and downplaying distinctions

between cases, which motivates the use of abstract factors in

CATO, could be generated using values. We might therefore

expect some correlation between abstract factors and values.

In determining the values to be used for factors, we made use

only of the description of factors given in Appendix 2 of [1]. If,

however, we look at the Factor Hierarchy, we can find

1
 This would involve replacing each factor fa with the

conjunction fa and not f1 and … and not fn, where f1 … fn are

the factors which relate to the same value as fa, but which favour

the opposite side.

considerable similarities to our values. We can associate the

following abstract factors with our values:

Table 3: Values and Abstract Factors

F102 Efforts to Maintain Secrecy Reasonable Efforts

F111 Questionable Means Questionable Means

F105 Info Known or Available Legitimate Means

F114 Confidential Relationship Confidentiality Agreement

F104 Info Valuable Material Worth

F112 Info Used Material Worth

F124 Defendant Ownership Legitimate Means

In most cases the value we assigned to a factor corresponds to

the related abstract factor, although we always assigned factors

to a single value, whereas CATO associates several factors with

two or more abstract factors. Note also that we have conflated

two abstract factors into a single value in two cases. There are,

however, some differences: we assigned F7, Brought-tools, to

Questionable Means, whereas CATO relates it to Info-Used.

This factor appears only in Yokana, and reassigning it does not

alter that case, or substantially change the theory. More

interesting is Legitimate Means. Two factors we assigned to

Legitimate Means, F17, Info Independently Generated and F25

Info Reverse Engineered, are related to Questionable Means in

CATO (favouring the defendant by showing that the means were

not questionable). F25 does not occur in our cases, but F27

occurred in Ferranti, where the pro-plaintiff factor was F2 Bribe

Employee, and so it was likely that it was used in that case to

show that the means were not questionable. Even so, on a literal

reading of the factor names, they suggest to us that they are

better seen as indicating that the information was legitimately

obtained. In CATO, F105 and F111 come together under the

more abstract factor Information Legitimately Obtained or

Obtainable.

Thus, although there is some scope for differing interpretations,

it does seem that abstract factors and values are quite highly

correlated.

5.3 Mason and National Rejectors
As can be seen from Table 2, the various LKBS give varying

answers for these “undecided” cases. Before refinement Theory

1 decided both for the defendant, explaining Mason through F1

and National Rejectors through F27. After refinement, however,

Mason is decided for the plaintiff on the basis of F6 and now

National Rejectors is decided on the basis of F19. Not too much

stress should be placed in the change of explanation for National

Rejectors; both F19 and F27 relate to the same value, and so

their ordering is of no real significance. The precedence of F6

over F1 which reverses the Mason decision was introduced as a

refinement motivated by Bryce.

Theory 2 consistently decides both cases for the plaintiff on the

basis of F15, the uniqueness of the product. Theory 2 is based on

the idea that Legitimate Means is the most important value: but

the use of F15 rather than F16, which appears in the very next

clause, is again determined by the way the code is generated and

is merely consistent with rather than determined by the theory.

Since if these clauses were reversed, both cases would be

decided for the defendant, it is difficult to place much

confidence in these decisions.

Theory 3 decides Mason for the plaintiff using F21, and

National Rejectors for the defendant using F16. That F16

appears before F15, which is what leads to the decision for the

plaintiff, is again a matter of chance.

Thus, although the performance of the three LKBSs is entirely

similar for the cases used to produce them, the sharp differences

in the various underlying theories are revealed when we turn to

the “new” cases. Theory 1 focuses on the factors relating to the

security measures, whereas theory 2 focuses on the legitimacy of

the acquisition of the information. Theory 3 first relies on the

confidentiality of the relationship, before turning to consider the

legitimacy of the acquisition of the information. Most

threatening to the overall approach, however, is that may of the

decisions turn on the precise ordering of the clauses for factors

relating to the same value, which is a by-product of the

automated generation of rules. This could be avoided if we

determined the order of such clauses by a prior ranking of the

factors within each value. This in turn suggests that we ascribe

different strengths to factors. We consider this in the next

subsection.

5.4 Strengths and Cumulative Impact
In the original theory of [2] all factors were supposed to relate to

values with equal strength, and the presence of a value was

considered to have the same weight, no matter how many factors

drove it. Do we wish to stay with this view?

The considerations in 5.3 strongly suggest that we do need to

order factors within a value: otherwise we cannot determine the

outcome in a case where both the plaintiff and the defendants

have factors relating to a particular value. This, however, is only

necessary when a value has factors favouring both sides, and so

we need not worry about Material Worth and Questionable

Means.

Obviously it may prove to be a difficult and debateable task to

form a total order over the factors for a value. We could,

however, propose a general principle. In our case study the

values all seem to lean towards one of the parties (just as

abstract factors favour one of the parties). Thus Confidentiality

Agreement, Questionable Means and Material Worth seem

natural plaintiff values, and Reasonable Efforts and Legitimate

Means seem natural defendant values. Reasonable Efforts is the

most debateable here, but we could resolve any doubts by saying

that a value favours the party favoured by the greater number of

factors within it. But if we look at the factors favouring the other

party, they seem, in general, to represent exceptions that should

be considered before the more typical factors. Suppose then we

designed our knowledge bases so that these exceptional factors

always appeared first. Now, for Reasonable Efforts, F6 would

appear before F1 and so the refinement of Theory 1 occasioned

by Bryce would not have been needed. Also F23 would be

favoured over F21, rendering the refinement of Theory 3 to

accommodate Ecologix unnecessary. Refinement of Theory 1 to

satisfy Space Aero would still have been needed, but note that

this was done as a change to the theory, not the program. Of

course, it is quite possible that this is an over generalisation of

the case example, but it appears to us to be an idea worth testing

further. Certainly, when applied to the case study it is effective.

Thus we feel that identifying factors as exceptions to the

prevailing trend of a value, and prioritising them, may give

sufficient control to the order of factors in values without

needing to resort to notion of assigning different strengths to

factors.

Turning to whether we wish to see factors as having a

cumulative effect when promoting a value, we can see the

preference expressed in Robinson as a test case. Here three

Reasonable Efforts factors were held to outweigh Questionable

Means and Material Worth. Would we need to see Robinson as

weakened were two of the Reasonable Efforts factors absent?

We feel not, as either F10 or F27 would probably have served on

their own. F1, however, would not. This need not, however,

convince us that a cumulative effect is essential: F1 in CATO is

related to two abstract factors, Efforts to Maintain Security and

Questionable Means. It is possible that we have chosen the

wrong value to which to assign the factor.

6. CONCLUDING REMARKS
In this paper we have proposed a methodology for constructing

an LKBS from a set of cases, through the construction of a

theory to explain those cases. We have described a tool which

supports this process and some experiments on a case study to

show how it works in practice.

The case study pointed to three things in particular

 It is possible to construct a variety of quite different

theories to explain a given set of cases: the resulting

LKBSs may well give different results in “new” cases;

 Typically a theory under-determines the LKBS,

especially with regard to factors relating to the same

value, but favouring different parties to the dispute.

We have tentatively proposed a solution to this

problem;

 Given a suitable analysis of the cases to provide a

background it is a straightforward matter to develop

theories and generate LKBS. Potentially this enables

considerable scope for rapid prototyping and

experimentation to test and refine theories.

For future work, we wish to refine the tool to improve its

usability, to incorporate the refinement to the code generation

outlined here, and to provide a more integrated package.

Secondly we wish to explore the scope for the automation of the

process. Following the methodology of Theory 3, it would be

possible to automatically generate theories corresponding to

every possible ordering of values. We presume that only a few

such theories would perform acceptably, and these could then be

presented for consideration and refinement. Finally we need to

examine more domains, to determine the extent to which the

conclusions we have drawn from this single case study are

generally applicable.

ACKNOWLEDGEMENT
Alison Chorley is supported by the EPSRC funded Doctoral

Training Account of the Department of Computer Science at the

University of Liverpool.

REFERENCES
[1] Aleven, V. (1997). Teaching Case Based Argumentation

Through an Example and Models. PhD Thesis. The

University of Pittsburgh.

[2] Bench-Capon, T.J.M., and G. Sartor (2001). Theory

Based Explanation of Case Law Domains. In

Proceedings of the Eighth International Conference

on AI and Law, 12-21. ACM Press: New York.

[3] van Kralingen, R., Visser, P.R.S., Bench-Capon,

T.J.M., and van der Herik, J., (1999). A Principled

Methodology for the Development of Legal Knowledge

Systems, International Journal of Human Computer

Studies, (51) pp 1127-54.

[4] Prakken, H., and G. Sartor 1998. Modelling Reasoning

with Precedents in a Formal Dialogue Game. Artificial

Intelligence and Law 6: 231-287.

[5] Prakken, H., 2000. An Exercise in Formalising

Teleological Reasoning, in Breuker, J., Leenes, R.,

and Winkels, R., (eds), Proceedings of JURIX 2000,

IOS Press, Amsterdam, pp49-58.

