
A Method for the Development of Legal Knowledge Systems

Pepijn RX Vissef, Robert W. van Krafingen2, and TrevorJM. Bench-Capon’

’ LIAL - Legal Informatics at Liverpool
Department of Computer Science, University of Liverpool

PO Box 147, Liverpool, L69 7ZF
United Kingdom

(pepijn. tbc} @csc.liv.ac.uk

* Center for Law, Public Administration and Informatization
Tilburg University, PO Box 90153

5000 LE Tilburg
The Netherlands

R.W.vKralingen@kub.nl

Abstract
In this article we present a four-phased method for the

development of legal knowledge systems. We set out from the
well-studied CommonKADS method for the development of
knowledge systems and tailor this method to the legal domain.
In particular, we propose a generic legal ontology, and describe
the creation of statute-specific ontologies to make the method
more suitable for our purposes. In the construction of these
ontologies we start from a theoretical analysis of the legal
domain. The well-known example of the Imperial College
Library Regulations (ICLR) is used to illustrate the method.

1. Introduction
Several methods are available for the design of

knowledge systems. The essence of these methods
is the division of the system-development process
into a number of comprehensible phases. The result
of each phase is a model of specific aspects of the
system. Examples of such models are organisational
models, addressing the system in its organisational
context, and, functional models, specifying the
tasks of the system.

Despite the attention system-development
methods have received in the field of computer
science, they have not been widely applied in the
field of artificial intelligence and law. Hardly any
research has been reported on the process of
designing legal knowledge systems as such. In this
article, we address the design of legal knowledge
systems from a methodological point of view. In
particular, we present a method for a stepwise

Permission to make digitaUhard copy of all or part of this work for personal or
ctassrwm use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise. to republish. to post on servers or
to redistribute to lists, requires prior specific permission aodlor fee.

ICAIL-97, Melbourne, Australia 0 1997 ACM 0-89791-924-
6/97/06.$3.50

construction of IegaPknowledge systems, showing
four major design phases: analysis, conceptual
modelling, formal modelling, and implementation.
Our point of departure is the CommonKADS
method for knowledge-system development (e.g.,
Breuker and Van de Velde, 1994). We tailor the
method to the legal domain by adding domain-
specific elements. In this article, we focus primarily
on the conceptual and formal models of the system.
Also, we present heuristics for assembling these
models. We illustrate our method by discussing the
creation of a small knowledge system that operates
on a fragment of the Imperial College Library
Regulations (Jones and Sergot, 1992).

The outline of this article is as follows. We
begin with a short description of the legal-
theoretical background in section 2. Next, we
provide an overview of the method in section 3
after which we elaborate on three of the four
phases. In section 4 we address the analysis phase,
in section 5 the conceptual modelling phase, and in
section 6 the formal modelling phase (the
implementation phase is not described in this
article). Finally, we conclude by presenting our
main findings in section 7.

2. Legal-theoretical background
The stepwise construction of knowledge systems

facilitates bridging the gap between knowledge and
knowledge system. The models consecutively
developed during the development process (as
stated, in this article the focus is on conceptual and
a formal models) can be viewed as intermediate
representations. Bench Capon et al. (1987) list three
advantages of such intermediate models. First, they

151

impose structure on knowledge acquisition and
knowledge modelling. Second, they make the
interpretation of the knowledge to be contained in
the knowledge system more accessible. Third, they
allow for a representation of knowledge that does
not have to commit to the quirks of the
implementation language.

In order for an intermediate representation to
fulfil its function, it must meet with certain
requirements. In our opinion, the most important of
these requirements is that the representation must
comply with ideas domain experts have on the
structure of the domain to be represented. Since we
take the legal domain as our research domain, we
have taken legal theory as the point of departure for
the outline of our conceptual and formal models.
We start from institutional theories of law, such as
the ones proposed by MacCormick and Weinberger
(1986) and Ruiter (1993). Both MacCormick and
Weinberger, and Ruiter turn to the theory of speech
acts (Searle, 1969) in their analysis of the legal
domain. In speech-act theory, the concept
‘institutional fact’ plays an important role. An
institutional fact can be seen as ‘an abstract,
socially-defined entity or event’. The legal domain
comprises many of these entities. We name some
instances: legal institutions, legal definitions, legal
performatives, and legal norms all qualify as
institutional facts. In this article, we focus on legal
norms. Other entities are discussed in Van
Kralingen (1995).

Traditionally, legal theory has spent much
attention on the concept of a legal norm (see for
instance Hart, .1961; Von Wright, 1963; Ross, 1968;
and Kelsen, 1991). Since the norm is the most
salient construct of the legal domain, we have
selected it as the point of departure for our
intermediate representations. With Von Wright
(1963, 1983) we define a norm as ‘a statement to
the effect that something ought to, ought not to,
may, or can be done’. From this definition, we can
learn that norms come in different types. Some
norms regulate conduct (‘ought’, ‘ought not’ and
‘may’ norms pose commands, prohibitions and
permissions, respectively), others regulate
competence (e.g., ‘can’ norms establish
competence). However, the distinction between
norms of conduct and norms of competence is not
the only important point of departure for a

152

classification of norms. Classifications can also be
made on the basis of, for instance, the regulated
object, the norm subject, or the conditionality of a
norm (for a complete classification of norms, we
refer to Van Kralingen, 1995). If we consider the
regulated object, the distinction between norms of
the tun-sollen and norms of the sein-soflen type
comes to mind. The former type of norm regulates
what ought to or ought not to be done, the latter
type of norm regulates what ought to or ought not to
be (c$ Von Wright, 1963, p.13). The norm subject
forms another basis for a distinction between
norms; norms can be addressed to individuals, sets
of individuals, or collectivities (Van Kralingen,
1995, pp.42-44). Hence, dependent on the norm
subject, we can distinguish between individual and
general norms. The last distinction we discuss, is
the one between hypothetical and categorical
norms. If a norm has any conditions of application,
we coin it a hypothetical norm, if a norm is
applicable unconditionally, it is a categorical norm.

When creating a comprehensive conceptual
model and, consecutively a comprehensive formal
model, it must be possible to represent all types of
norms. Consequently, in our ontology, the basis of
the conceptual and formal model, we have taken the
above-mentioned classification into account. Before
elaborating on the form of the ontology, we provide
an overview of the method.

3. An overview of the method
Although there are several design methods for

knowledge systems, the application of these
methods to the legal domain is not yet widespread.
Often, the design of a legal knowledge system
(henceforth: LKS) is a rather ad-hoc and ill-
documented process. One of our research aims has
been to tailor an existing knowledge-system
development technique to the legal domain thus
creating a dedicated method for the development of
LKS. Ideally, such a method would provide
guidance for all steps in the design of an LKS,
providing better support for the designers of LKSs
than the more general methods.

The method presented here largely adopts the
CornmonKADS framework (Breuker and Van de
Velde, 1994). An important feature of this method
is the division of the. design process into separate
phases. In the spirit of this method we distinguish:

(1) an analysis phase, (2) a conceptual modelling
phase, (3) a formal modelling phase, and (4) an
implementation phase. AS in CornmonKADS we
specify - in phases 2 and 3, respectively - an
informal and a formal expertise model. In this
model we separate domain knowledge (specifying
the static knowledge in the domain), and control
knowledge (specifying how the domain knowledge
is applied to realise a goal). Control knowledge
consists of specifications of inferences (primitive
reasoning steps), and tasks (a control structure over
tasks and inferences).

The CommonKADS method has been criticised
for a lack of support to specify legal domain
knowledge (e.g., Gardner and Spelman, 1993;
Visser, 1995). For this reason we propose to
supplement ComrnonKADS with a legal ontology,
as developed by Van Kralingen (1995) and Visser
(1995). The most important feature of this (frame-
based) ontology is the distinction between norm
frames, act frames, and concept-description frames
(we elaborate on this ontology in sections 5 and 6).
In addition to the legal ontology, we adopt the
domain-analysis method KANT (Bench-Capon,
1991, Bench-Capon and Coenen, 1992; Visser et
al., 1997). This method is used to create a statute-
specific ontology, defining the vocabulary (viz.
predicate names) with which to instantiate the
frame structures. Below, we discuss the four design
phases in more detail (this method is based on Van
Kralingen (1995) and Visser (1995))‘.

1. ANALYSISPHASE
a. Domain identification: Identify the legal

knowledge that is to be contained in the LKS
in terms of references to legal sources (e.g.,
set of legal cases, articles in statutes,
heuristics).

b. Task identi$cation: Identify the task(s) that
the LKS has to perform using the domain
knowledge. In particular, this should result in
a description of the input, the output, and the
problem-solving goals of the LKS. Both steps,
la and lb, are meant to determine the
competence of the LKS.

I Although the phases are largely executed in the order
listed here, the design steps should not be considered to be
independent. Several iterations through all phases are
likely to be necessary in practice.

2. CONCEPTUALMODELLINGPHASE
a. Method description2: Provide an informal

description of how the system will perform
the task. Otherwise stated, describe the
method used to realise the problem-solving
goals by transforming the input into the
output (use, for instance, the CommonKADS
library of tasks). The method specification
provides guidance in the acquisition of the
relevant domain knowledge (see step 2~). The
result of this step is a hierarchical
decomposition of the main task in a series of
sub tasks. Also, the various tasks are allocated
either to the system or to the user.

b. Domain ontology selection and adaptation:
Select an appropriate legal ontology and tailor
the ontology - if necessary - to support the
tasks and methods described. As stated
before, we select the frame-based ontology as
described by Van Kralingen and Visser (in
the remaining steps of the method we take this
ontology as the standard).

c. Knowledge acquisition and modelling:
Identify the norms, acts, and concept
descriptions in the domain knowledge, and
gather the necessary information that is
needed to instantiate the frame structures (viz.
the domain ontology). The result of this step
is a set of instantiated frame structures, each
with their contents described in (structured)
natural language (shortly: the conceptual
domain specification).

3. FORMALMODELLINGPHASE
a. Determine boundaries of control and domain

knowledge: Identify procedural knowledge
embedded in the conceptual frame structures
(viz. meta-level procedural norms of
competence, and conflict-resolution
knowledge) and decide whether to model this
knowledge in the expertise model as domain
knowledge or as control knowledge. Conflict-
resolution knowledge, for instance, can be
modelled as control knowledge (e.g., in case
we want to conduct explicit meta-level

2 The use of the word ‘method’ here concerns the method of
the LKS, and should not be confused with the system-
design method presented in this article.

153

reasoning about conflicts), or as domain
knowledge (e.g., in case we ‘compile out’
conflicts). More details about this step can be
found in Visser (1995).

b. Define control knowledge: Create a formal
description of the tasks, recognised in step lb
and 2a. This description should specify the
hierarchical decomposition of tasks, and the
information that is passed between tasks in a
formal language. Following CommonKADS,
we refer to the tasks at the lowest level of the
hierarchy as inferences. How they apply
knowledge contained in the frame structures
will be specified in step 3e.

c. Create statute-specific ontology: This step
aims at determining and defining the
predicate relations that are used to express the
domain knowledge in a formal language. It
involves the application of the KANT method
on the legal texts identified in step 1. In
particular, this step involves: (cl) the creation
of a TOO (Test-On-Objects) structure
(identifying entities and the test applied to
them), (~2) the creation of a EAV (Entity-
Attribute-Value) structure . (identifying
entities, their attributes, and the values these
attributes can take), (~3) the creation of a
class hierarchy (grouping the entities in a
class hierarchy), and (~4) the selection of
predicate names to model the class hierarchy.

d. Form&se domain knowledge: Model the
knowledge described in the informal
conceptual domain model by bringing
together the formal ontology and the statute-
specific ontology. This step results in the
formal domain specification.

e. Define inferences: Define the inferences
(primitive tasks) that link the control
knowledge and the domain specification.

4. IMPLEMENTATIONPHASE
a. Select language and plagorm: Select an

appropriate language and platform to
implement the formal descriptions of the tasks
and inferences, and the domain specification.

b. Implementation: Implement the formal model
in the chosen language (and platform).

154

In the remainder of this article we elaborate on
phases 1,2 and 3. The scope of this article does not
allow us to extensively discuss all aspects of the
process. Our primary focus is the modelling of
domain knowledge in phases 2 and 3 (for guidelines
on how to model task knowledge we refer the
reader to Visser (1995)). In section 4 through 6 we
illustrate the method by applying it to the Imperial
College Library Regulations (henceforth: ICLR)
example.

4 Analysis phase
The analysis phase is meant to outline the

competence of the LKS. In our example, the
domain-identification step (step la) yields the
articles and allowances of the ICLR (Jones and
Sergot, 1992):

art. 1. A separate form must be completed by the borrower for
each volume borrowed.

art. 2. Books should be returned by the date due.
art. 3. Borrowers must not exceed their allowances of books

on loan at any one time.
art. 4. No book will be issued for borrowers who have books

overdue for return to the library.

Book allowances: undergraduates: 6,post graduates: 10,
academic staff: 20

In the ICLR example the execution of the tisk-
identification step is merely a matter of choosing a
task since many different tasks can be performed on
the ICLR. We here choose to do an assessment task,
and more in particular, the task of assessing
whether in a given case description any norms of
the ICLR are breached (and by whom). The case
description, being the input of the task, is assumed
to be expressed in terms of the following phrases:
‘university status S of person P’, ‘person P has
borrowed book/volume B’, ‘person P has
book/volume B overdue’, ‘person P has completed
a form for book/volume B’, and ‘the librarian lends
a book/volume to P’ (later on, these phrases will
have to be stated more formally - see section 6).
Note that we do not distinguish between books and
volumes. The output of the task is a list of tuples of
norms and agents, specifying the norms that are
breached and by which agents.

5. Conceptual modelling phase
In the first step of the conceptual modelling

phase we provide an informal description of the
method with which the system will perform its task
(step 24. Our task ‘assessment of breach’ evaluates
a case in retrospect. Space limitations prevent us
from discussing this form of knowledge
extensively. In essence, the control of the task is an
iteration of the following three steps (1) determine
applicable concepts, (2) determine which acts have
been performed, and (3) determine whether norms
are breached. The task returns a list of breached
norms. More details on the description of the
method can be found in Visser (1995).

The second step in the conceptual modelling
phase involves the selection (and adaptation) of a
domain ontology (step 2b). With the legal-
theoretical background described in section 2 in
mind, we have developed three structures for the
representation of legal knowledge. We have named
these structures norm frames, act frames zd
concept-description frames. The structures form the
backbone of our ontology. Here, we discuss only
the norm frame. The act frame is briefly touched
upon in the description of the conceptual model and
in the description of the formal model. The
concept-description frame is not presented in this
article (see Van Kralingen, 1995).

Element Typification

1 Norm The norm identifier (used as a point of reference for
identifier the norm).

The scope (the range of application of the norm).

5 Conditions of II The conditions of application (tie
application which a norm is applicable).

6 Subject The norm subject (the person or persons to whom
the norm is addressed).

7kYl The legal modality (ought, ought not, may, or can).
modality

8 Act identifier The act identifier (used as a reference to a separate
act description).

Table I. A norm frame.

A norm frame is constituted by four primary and
three auxiliary elements. The primary elements are
the norm subject, the legal modality (distributed
over two slots; norm type and legal modality), the

act identifier, and the conditions of application. The
auxiliary elements are the norm identifier, the
promulgation, and the scope. In table 1, the
elements are typified.

A norm frame adheres to the general conception
of what a norm is. We can paraphrase (the four
primary elements of) the structure as: ‘under certain
conditions, the norm subject is obligated, forbidden,
permitted, or empowered (legal modality) to do
something’.

The third step in the conceptual modelling phase
is the acquisition and modelling of domain
knowledge. (step 2~). In essence, this step involves
the creation of the (conceptual) frame-based model
by filling in the frame structures. The language that
is used to fill the structures can be characterised as
‘structured English’. It contains means to represent
textual constructions (e.g., references, rule-
exception structures and application provisions),
means to represent the norm promulgation, means
to typify the legal modality, etc. In this article, we
do not elaborate on the conceptual language (see
Van Kralingen, 1995).

We have developed a number of heuristics to
guide the process of assembling a frame-based
model. The scope of this article allows us only to
briefly discuss the two core heuristics (for more
details, see Van Kralingen, 1995). The first core
heuristic reads: start at the core of a norm, act, or
concept description. This heuristic aims at finding
an appropriate starting point for the modelling
process. The second heuristic governs the extension
of the model. It reads: a new provision should be
added to an existing frame if and only if adding the
provision does not result in changes to more than
one slot of the frame to which the provision is
added (for the application of this heuristic the
norm-identifier slot and the norm-promulgation slot
are not taken into account since they are merely
used as a means of referring to a norm frame and a
means of representing the norm’s promulgation,
respectively). The rationale behind the heuristic is a
representation in a minimal number of frames while
preserving the original meaning of the regulation
represented.

Applying the first heuristic to the ICLR yields
the following (conceptual) norm frame:

(I) norm identifier: ‘norm- I ’
norm type: Norm of conduct
promulgation: ICLR article I
scope: ICLR
conditions of ap.: Subject wants to borrow a book.
subject: Borrower
legal modality: Ought to
act identifier: ‘complete-form’

In this representation, the act identifier
‘complete-form’ refers to a separate act description.
For the elements of such a description, we have
resorted to the work of Rescher (1967, 1970). An
act description comprises elements such as an
agent, an act type, a modality, a setting, and a
rationale. The latter three elements are subdivided
into sub-elements. For instance, the modality has
been divided into a modality of means and a
modality of manner. Due to space limitations, we
do not provide the act descriptions corresponding to
the act identifiers (see section 6 for a formal act
description and Van Kralingen, 1995; Visser,
1995).

If we consider the second article of the ICLR we
find that the second core heuristic prevents the
article from being added to norm frame (1) since
adding the article would result in changes to more
than one slot, namely the conditions-of-application
slot and the act-identifier slot. Consequently, a
second frame is created:

(2) norm identifier:
norm type:
promulgation:
scope:
conditions of ap.:
subject:
legal modality:
act identifier:

‘norm-2
Norm of conduct
ICLR article 2
ICLR
Subject has borrowed a book.
Borrower
Ought to
‘return-book-by-date-due’

The third article presents us with an interesting
interpretation issue. It can be argued that two norms
can be read from the article: one norm forbidding a
borrower to exceed his allowance, and one norm
forbidding the librarian to issue a book if a
borrower has reached his allowance. We can
represent both interpretations in separate norm
frames:

(3a) norm identifier:
norm type:
promulgation:
scope:
subject:
legal modality:
act identifier:

‘norm3a
Norm of conduct
ICLR article 3
ICLR
Borrower
Ought not
‘exceed-rdlowance’

156

(3b) norm identifier:
norm type:
promulgation:
scope:
conditions of ap.:

subject:
legal modality:
act identifier:

‘norm-3b
Norm of conduct
ICLR article 3
ICLR
Borrower has reached
allowance.
Librarian
Ought not
‘issue-book’

In fact, the phenomenon that one article
comprises more than one norm is not uncommon
(e.g., Hart, 1961; Kelsen, 1991). For instance, in
penal law, we often find provisions stating that a
person will be punished if he performs a certain
action. Such a provision can be interpreted as both a
norm of conduct (a prohibition to perform a certain
action) and a norm of competence (conferring a
power onto an official to administer a certain
sanction). Note that, while norm (3a) does not have
any conditions of application, norm (3b) does,

6. Formal modelling phase
The first step in the formal modelling phase

concerns defining more precisely the boundaries of
control knowledge and domain knowledge, the two
major types of knowledge in the expertise model
(step 3~). This step is necessary because legal
sources, intuitively modelled as domain knowledge,
often contain procedural aspects (which suggests to
model them as control knowledge). Visser (1995)
distinguishes two forms of procedural knowledge in
statutes: meta-level procedural norms of
competence, and conflict-resolution knowledge.

In the ICLR there are no meta-level procedural
norms of competence. That is, there are no
procedural norms of competence that express how
other norms should be applied. Consequently, we
do not have to decide how to model this form of
control knowledge for our example system. Also,
because there are no two norms or concept
descriptions that can have conflicting conclusions,
there is no conflict-resolution knowledge required
(a librarian who issues a book where this is not
allowed is considered to breach a norm rather than
cause a conflict). Hence, we do not have to decide
upon how we deal with conflicts. Hence, in the
ICLR domain, all knowledge from the legal sources
can be modelled as domain knowledge in the
expertise model.

The second step in the formal modelling phase
(step 3b) concerns the definition of the control

knowledge. As stated before, we do not address the
specification of this form of knowledge in this
article. A detailed description of the assessment
task control knowledge can be found in Visser
(1995).

The third step in the formal modelling phase
(step 3c) is the creation of the statute-specific
ontology. This is done by applying the RANT
method, the first step of which is the creation of a
TOO structure..For the ICLR, the TOO structure
reads:

borrower completesform (for volume)
borrower borrows volume
book has a date due
borrower has allowance (of books on loan)
burrower has book overdue (for return to the library)
borrower has status
librarian issues book
undergraduate has allowance
post-gruduate has allowance
academic-staff has allowance

In our domain ontology all acts are assumed to
be performed by an actor we have introduced the
notion of a librarian to be able to represent that a
book can be issued to a borrower.

Next step in the RANT method is the creation of
the EAV structure, in which the entities are given
attributes and the potential values of these attributes
are identified. The EAV structure reads (values
marked with an asterisk may have multiple
instantiations):

enttty attribute value(s)
-----s-s- --v--
book has-id book-id
borrower completed-form book-id’
borrower borrowed book-id’
book date-due date
borrower allowance integer
borrower has-book-overdue book-id’
borrower has-status (undergraduate, post-graduate,

academic-staff)
librarian issues (book-id, borrower)’
undergraduate has-allowance integer
post-graduate has-allowance integer
academic-staff has-allowance integer

In the creation of the EAV structure, we have
changed the tense of some of the attributes to obtain
a more uniform terminology (e.g., complete&form).
Note that we interpret the ICLR such that books and
volumes are the same.

For the creation of a class hierarchy we regroup
the entities in the EAV structure and introduce

some abstract entities. An abbreviated version of
the class hierarchy for the ICLR reads (between
brackets we list the attributes, potential values are
left out here):

Thing
Book (id, date-due)’
Person (name, address)

Librarian (name, address, issued)’
Borrower (name, address, completed-form’, borrowed’,

allowance, book-overdue., status)
Undergraduate (name, address, completed-form’, borrowed’.

allowance, book-overdue’. status)
Post-Graduate (name, address, completed-form’, borrowed’,

allowance, book-overdue’. status)
Academic-Staff (name, address, completed-form’, borrowed’,

allowance, book-overdue’. status)

Classes lower in the hierarchy inherit the
attributes of their parents. Note that we introduced
the top level class Thing and the class Person
(which is given a name and address as its
attributes).

The class hierarchy is assumed to distinguish all
relevant entities in the domain. For this reason, we
use it as the basis for choosing predicate names.
This is a process guided by heuristics. Briefly
stated, a predicate attribute-id(Class-id, Attribute-
value) corresponds to the entry CZass-id(attribute-
id) in the class hierarchy. For instance, the
predicate name(Person, Name) corresponds to the
entry Person(name) in the class hierarchy (note that
in the class hierarchy presented above,
Person(name, address) is an abbreviation of
Person(name) and Personfaddress)).

id(Book, Id)
date-due(Book, Date)
name(Person, Name)
addmss(Petson, Address)
issued(Librarian, Book, Borrower)
completed-form(Borrower. Book)
borrowed(Borrower. Book)
aIlowance(Borrower. Allowance)
status(Borrower, Status)
allowance(Status, Allowance) **
undergraduate(Person)
post-graduate(Person)
academic-staff(Person)
book-overdue(Borrower, Book)

Predicates such as borrowed(Academic-Stag
Book) are left out since such predicates are
effectively subsumed under the predicate
borrowed(Borrower, Book). For the same reason,
we have left out predicates such as name(Post-
Graduate, Name). The predicate marked with ** is

157

not found as a direct consequence of applying the
heuristic mentioned. However, we added the
predicate to avoid having to specify for each
borrower what his or her allowance is.

The next step in the formal modelling phase
(step 34 is the formalisation of the domain
knowledge. For this step we need to formalise the
frame structures (in this article we assume that we
have formalised versions of the frame structures
available - not of their contents). For a more
detailed description of the formalisation process,
including a discussion of the differences between
the conceptual and the formal frame structures, we
refer to Visser (1995) and (Visser and Bench-
Capon, 1996). The main objective in this step is to
express the knowledge in the conceptual frame
structures in terms (a) of the general legal ontology
(viz. the formal frame structures) and (b) the
statute-specific ontology (viz. the predicate
relations).

One of the differences between the conceptual
and the formal frame structures is that in the formal
norm frame, the conditions of applications slot has
been split up in an object(-level) conditions slot
(used to state conditions about the outside world)
and a meta-level conditions slot (used to state
(meta-level) conditions about other frame
structures). For the condition slots a special set of
reserved predicates is defined, the most important
of which are: breached(Person, Norm) to state that
a norm has been breached, arithmetic(Ekpression)
to express necessary calculations, truefi-om(T,
Clause) to state that a clause is true at and after a
certain point in time realised(Agent, Event) to state
that an agent has realised an event,
function(FuncfionCaZZ) to refer to an externally
defined function, occurs(Agent, Process, T-begin,
T-end) to state that an agent is involved in realising
a process between two points of time,
capable(Agent, Act) to state that an agent is capable
of performing an act, effectuate(Person, Modality,
Norm, Act) to state that a person ought (not) to do
an act according to a particular norm, and the
predicates alwaysJalse and always-true which
effectively are a contradiction, and a tautology.
Also, we use special predicates to refer to act
frames (these predicates are not discussed here).

Below, we list the formal version of norm 2 and
norm 3b. The time references are used to link

158

predicates - and thus conditions - onto states (it is
assumed that the case description consists of a
chain of states and acts).

norm identifier: norm-2
norm type: conduct
promulgation: (iclr_art2)
scope: (iclr)
time reference: Today
object conditions:

true_from(Today. borrowed(Borrower. Book)) and
true-from(Today. date-due(Book, Date-due)) nnd
arithmetic(Today >= Date-Due)

meta conditions: alwaysJrue
subject: Borrower
legal modality: ought-to
act reference: return-book(Borrower, Book, Dnte-due)

norm identifier: norm-3b
norm type: conduct
promulgation: (iclr-art-3)
scope: (iclr)
time reference: Today
object conditions:

true-from(Today. completed-form(Borrow, Book)) and
true-from(Today, status(Borrower, Status)) and
true-from(Today, allowance(Status. Allowance)) nnd
function(number-of-books_borrowed(Borrower, Today, Number))
and arithmetic(Number c Allowance)

meta conditions: always-true
subject: Librarian
legal modality: ought-not
act reference: issue~book(Libmrian. Borrower, Book)

In contrast to the conceptual model, the formal
model has separate frames for events (acts that
occur instantaneously) and processes (acts that have
a duration). Also, a distinction is made between acts
that occur in the world (e.g., a kills b), referred to
as physical acts, and acts that are legal
interpretations of acts that occur in the world (e.g.,
a murders b, or a manslaughters b), referred to as
institutional acts. Below, we present the physical
event of issuing a book.

event identifier: issue-book
act: issue-book(Libnrlan, Borrower, Book)
promulgation: (iclr~att-4)
scope: [iclr]
agent: Librarian
net type: physical
temporal setting: alwaysJrue
spatial setting: alwaysJrue
circumstant. setting:

true-from(Before, not(borrowed(Borrower, Book)))
time reference: Before, After
Initial state: (completed~form(Borrower, Book)

not(borrowed(Borrower, Book)))
Final state: (not(completed~form(Borrower, Book)

borrowed(Borrower. Book))

Note, that part of the event specification is an
initial state and a final state. The set of clauses in
the initial state are true in the state before the event
takes place (tagged Before) and the set of clauses in
the final state are true in the state after the event
(tagged After). This idea is comparable to so-called
add and delete lists in STRIPS-style planning
systems (Fikes and Nilsson, 1971).

The last step in the formal modelling phase is
the definition of inferences (not done here).
Inferences link the tasks knowledge onto the
domain knowledge (viz. the filled-in frame
structures). They define how, for instance, the
object conditions and the me&level conditions
slots are evaluated (in case of norm frames) and
how initial state is transformed into the final state
(in case of the act frames).

The formal model can be used as the basis for an
implementation. In this article we have chosen to
describe the formal model in a PROLOG-style
language (which eases the implementation of the
formal model in PROLOG), but other languages
could have been chosen as well.

7. Conclusion
In this article, we have illustrated the

applicability of the method with the help of a small
benchmark problem. The article is necessarily a
very brief description and several important issues
have been left unaddressed. In Van Kralingen
(1995) and Visser (1995) several steps from the
method presented here have been applied to a
substantial fragment of the Dutch Unemployment
Benefits Act. This has resulted in a prototype
system called FRAMER (which has been
implemented in PROLOG). In several smaller
research projects, the conceptual ontology has been
used in diverse domains, such as penal law,
administrative law and civil law. Its applicability
has also been shown by Voermans (1995). We
summarise our main findings:

l Legal knowledge systems often have an implicit
conceptualisation. The use of ontologies to make
conceptualisations allows us to compare and
analyse - and thus to assess the merits - of
different conceptualisations;

159

Ontologies are a useful instrument during the
construction of a legal knowledge system, in
particular, for knowledge acquisition;
The CommonKADS method as such provides
little support for the specification of legal
domain knowledge;
Extending CommonKADS with ontologies of
the legal domain makes the method more
suitable for building legal knowledge systems;
The distinction between a statute-specific
ontology and a generic legal ontology proves
useful;
The method presented here provides a guided
way of bridging the gap between domain
knowledge and an operational prototypes;
The method presented here is useful to create
libraries of reusable problem-solving methods,
domain ontologies, and domain models.

Acknowledgements
The research presented in this article has partly

been carried out at the Department of Law and
Computer Science of the University of Leiden (The
Netherlands). The study at the University of Leiden
was supported by a grant from the Foundation for
Law and Public Administration (REOB) which is
part of the Netherlands Organization for Scientific
Research (NWO).

References
Bench-Capon, T.J.M., G.O. Robinson, T.W.

Routen, and M.J. Sergot (1987). Logic
Programming for Large Scale Applications in
Law: A Formalisation of Supplementary Benefit
Legislation, Proceedings of the First
International Conference on Artificial
Intelligence and Law, pp.190-198, Boston,
Massachusetts, United States.

Bench-Capon, T.J.M. (1991). Knowledge-Based
Systems and Legal Applications, APIC series,
No. 36, Academic Press, London, United
Kingdom.

Bench-Capon, T.J.M., and F.P. Coenen (1992).
Isomorphism and Legal Knowledge Based
Systems, Artijicial Intelligence and Law, Vol. 1,
No. 1, pp.65-86.

Breuker, J.A., and W. van de Velde (1994).
CommonKADS Library for Expertise Modelling,
Reusable Problem Solving Components, J.A.
Breuker, and W. van de Velde (eds.), 10s Press,
Amsterdam, the Netherlands.

Fikes, R.E., and Nilsson, N.J. (1971). STRIPS: A
New Approach to the Application of Theorem
Proving to Problem Solving, Artificial
Intelligence, Vol. 2, pp. 198208.

Gardner, K.M., and K.C. Spelman (1993). The use
of KADS to model an intellectual property legal
practice: a case study, Proceedings
Kennistechnologie ‘93, pp.439-443, Amsterdam,
the Netherlands.

Hart, H.L.A. (1961). The concept of law, Clarendon
Law Series, Oxford University Press, Oxford,
England.

Jones, A.J.I., and M.J. Sergot (1992). Deontic
Logic in the Representation of Law: Towards a
Methodology, Artificial Intelligence and Law,
Vol. 1, No. 1, pp.45-64.

Kelsen, H. (1991). General theory of norms,
Translation of ‘Allgemeine Theorie der Normen’,
Michael Hartney, Clarendon Press, Oxford,
England.

Kralingen, R.W. van (1995). Frame-based
conceptual models of statute law,
Computer/Law Series, No.16, Kluwer Law
International, The Hague, the Netherlands.

MacCormick, N., and 0. Weinberger (1986). An
institutional theory of law: new approaches to
legal positivism, D. Reidel Publishing Company,
Dordrecht, the Netherlands.

Rescher, N. (1967). Aspects of action, The logic of
decision and action, appendix II, pp.215-219,
University of Pittsburgh Press, Pittsburgh,
United States.

Rescher, N. (1970). On the characterization of
actions, The nature of human action,
pp.247-254, Miles Brand (ed.). University of
Pittsburgh, Scott Foresman and company,
Pittsburgh, United States.

Ross, A. (1968). Directives and norms, Humanities
Press, New York, United States.

Ruiter, D.W.P. (1993). Institutional legal facts:
legal powers and their efsects, Kluwer
Academic Publishers, Dordrecht, the
Netherlands.

160

Searle, J.R. (1969). Speech Acts. Cambridge
University Press (Dutch translation by F.H. van
Eemeren, 1977, Het Spectrum, Utrecht, the
Netherlands).

Visser, P.R.S. (1995) Knowledge Specification for
Multiple Legal Tasks; A Case Study of the
Interaction Problem in the Legal Domain,
Computer/Law Series, No. 17, Kluwer Law
International, The Hague, the Netherlands.

Visser, P.R.S., and T.J.M. Bench-Capon (1996).
The Formal Specification of a Legal Ontology,
Proceedings of the Ninth International
Conference on Legal Knowledge-Based Systems
(JURIX’96), Van Kralingen et al. (eds.), Tilburg,
the Netherlands, pp.15-24.

Visser, P.R.S., T.J.M. Bench-Capon, and H.J. van
den Herik (1997). A Method for Conceptualising
Legal Domains: An Example from the Dutch
Unemployment Benefits Act, Artificial
Intelligence and Law (to appear).

Voermans, W. (1995). Sturen in de mist . . . maar
dan met radar; de mogelijkheid van de
toegepaste informatica bij het ontwerpen van
regelgeving. Doctoral thesis, Catholic University
of Brabant, W.E.J. Tjeenk Willing, Zwolle, the
Netherlands (in Dutch).

Wright, G.H. von (1963). Norm and action; a
logical enquiry. International Library of
Philosophy and Scientific Method. Routledge Br.
Kegan Paul, London, England.

Wright, G.H. von (1983). Practical reason,
Philosophical papers, Vol.1. Basil Blackwell,
Oxford.

