
-- --

AN ADVANCED BINARY ENCODED MATRIX

REPRESENTATION FOR RULEBASE VERIFICATION

Fr ans Coenen

Department of Computer Science,

Liverpool University,

Chadwick Building,

P.O. Box 147,

Liverpool L69 3BX,

England.

email: frans@uk.ac.liverpool.compsci

Tel: 051 794 3698

Fax: 051 794 3715

ABSTRACT

An advanced binary encoded matrix representation to support rule-
base verification is described. The representation has two important advan-
tages over traditional rulebase matrix representation techniques. Firstly the
amount of storage capacity required is substantially less than that required
using traditional techniques; the advantage gained is in the order of 97%.
Secondly the binary representation offers a significant improvement in the
processing of rulebase matrices, to identify various rulebase anomalies,
through the use of logical "bitwise" comparators. Both techniques are
described as implemented in the IMVER (Incidence Matrix VERification)
systems and are fully analysed and compared using a number of complex-
ity measures to illustrate the advantages gained using the binary encoded
incidence matrix representation over the traditional representation.

KEYWORDS: Rulebase verification, Binary encoded incidence matrices

January 21, 1998

-- --

AN ADVANCED BINARY ENCODED MATRIX

REPRESENTATION FOR RULEBASE VERIFICATION

Fr ans Coenen

Department of Computer Science,

Liverpool University,

Chadwick Building,

P.O. Box 147,

Liverpool L69 3BX,

England.

email: frans@uk.ac.liverpool.compsci

Tel: 051 794 3698

Fax: 051 794 3715

1. INTRODUCTION.

Rulebase verification systems based on incidence matrix techniques are well established.
The technique revolves around the representation of rulebases using matrices (or tables)
the elements of which represent propositions that may be present in a rule. The matrices
can then be analysed to establish the existence (or non-existence) of various rulebase
errors and anomalies. The technique was utilised in an experimental rulebase verification
system, the IMVER-1 (Incidence Matrix Verification) system, developed at the University
of Liverpool1,2. The principal criticisms directed at this system are:

1. That a considerable amount of storage space was required to store the matrices
needed to represent any realistically sized rulebase.

2. The processing power needed to carry out the required matrix multiplications and
the necessary comparisons was prohibitive.

These criticisms are applicable to all rulebase verification systems that use incidence
matrix techniques and not just the IMVER-1 system. This paper represents a response to
these criticisms. An advanced matrix representation technique that utilises a binary
encoding to represent rulebase matrices is proposed. The technique has been built into an
updated version of the IMVER-1 system, IMVER-2. The benefits offered by the
advanced binary encoded matrix representation are:

1. A considerable saving in the space required to store rulebase matrices.

2. A significant reduction in the processing required to identify various rulebase errors
and anomalies.

Both the traditional approach to incidence matrix KBS verification, as implemented in the
IMVER-1 system, and the advanced binary encoded approach as advocated here, and
built into the IMVER-2 system, are described in detail.

-- --

- 2 -

2. KBS VERIFICATION

The erroneous operation or failure of KBSs will at best result in lost time and hence
increased costs. In a "worst case scenario" it may result in a complete system shutdown.
Further, in some industries, such as chemical production, the ecological ramifications can
be far reaching; consider the event where a KBS fails to apply an emergency shut down
procedure. The verification and validation of KBS prior to delivery is therefore vital not
only to prevent local financial losses but also to address the, far wider reaching, global
consequences of failure. By verifying a KBS we cannot of course guarantee that it is
error free. However, we can increase the confidence level that we may have in its opera-
tion; we may even attempt to qualify this numerically.

There are many definitions of KBS (rulebase) verification (Satre and Massey3 and Balci
and Sargent4 both give extensive reviews). I have adapted the definition, with respect to
traditional software systems, originally given by Boehm5 and subsequently generally
adopted by the software industry. Boehm defines software verification by posing the
question:

Are we building the product right?

Thus verification is the process of checking that a system meets the requirements defini-
tion/specification. With regard to KBSs, where (in the traditional sense) no meaningful
requirements specification exists, the process of verification described in these terms
becomes meaningless. I have thus defined KBS verification as the process of checking
that the system’s operation is right, i.e. that results are arrived at in the correct manner.
The work described here concentrates on KBS that use a rulebase approach to reasoning,
we are thus primarily concerned with the verification of rulebases.

Verification is an integral part of the the development of all software systems and there
are many techniques available, aimed at a variety of different types of system. Traditional
software verification techniques are generally concerned with software testing. These
techniques can be conveniently divided into black box and white box techniques. The first
includes expediences such as function testing and equivalence testing; and the second
techniques such as statement testing, branch testing and path testing. However traditional
software verification techniques do not translate easily to KBSs. I can point to a number
of reasons for this, two of the most significant are:

• The program flow and control in KBSs is hidden.

• The nature of KBSs is such that exhaustive verification is impractical.

At present there is a great deal of research activity concentrated in the field of rulebase
(and KBS) verification; this is well illustrated by the attendance at the recent
EUROVAV’91 and ’93 conferences. The incidence matrix technique that forms the sub-
ject of this paper is one approach. Other well established approaches include normal form
techniques6, decision table methods7, KB reduction8, generic rule systems9, and the use
of static inspection tools10.

-- --

- 3 -

3. OVERVIEW OF INCIDENCE MATRIX TECHNIQUES

Incidence matrix techniques have been used in a number of well documented KBS V&V
systems. Agarwal and Tanniru11 utilised the technique in their petri-net based system,
Tsai and Jang12 used it in their "framework" for KBS V&V and Botten and Raz13 used a
similar approach in their KBS V&V system which was later extended to support the veri-
fication of cooperating KBSs14.

The deficiencies of the incidence matrix technique have been recognised since its concep-
tion and various methods have been investigated to (a) reduce the overall size of the
matrices involved and (b) ease the associated processing. To date this has focused on the
refining of the initial rule-proposition incidence matrix. One technique is to reduce the
size of this matrix by multiplying it by the transpose of itself; the result is a rule-rule inci-
dence matrix the elements of which indicate the number of propositions shared by pairs
of rules. Such a matrix supports structural verification. However, the approach does not
resolve the basic problems of storage and processing. Firstly the required matrix multipli-
cation adds another level of processing to the technique. Secondly the resulting rule-
proposition matrix does not support the identification of anomalies such as duplication,
subsumption and inconsistency; for this it is necessary to return to the original matrix,
hence the original matrix cannot be "thrown" away and the approach has the adverse
effect of increasing the amount of storage space required not decreasing it.

Alternatively I can rearrange the initial rule-proposition matrix so that the columns and
rows with the most instantiated elements appear towards the top left-hand corner of the
incidence matrix. The effect of this is that, during processing, instantiated elements will
be identified sooner than they might otherwise have been. This approach supports infer-
ence verification in that the connectivity of the rulebase can be established efficiently.
However, the advantage gained tends to be outweighed by the processing required to rear-
range the matrix and the observation that in many cases it is still necessary to process
entire rows and columns.

In the IMVER-1 system no attempt at refinement of the incidence matrix was made. The
resulting efficiency of the approach was considered to be no worse, and in some cases
better, than other KBS V&V systems of its type. It is suggested that the IMVER-2 inci-
dence matrix representation suggested here surpasses all previous attempts at addressing
the problems of storage space and processing efficiency associated with the incidence
matrix technique.

4. ERRORS AND ANOMALIES IN RULE-BASES

There is much discussion concerning the errors and anomalies that can occur in a rule-
base with many authors presenting "definitive" lists7,15. I do not wish to repeat the exer-
cise here, however to provide a common forum of understanding it is essential that I pre-
sent definitions for the anomalies addressed by the IMVER systems.

-- --

- 4 -

Subsumption

Subsumption exists when one rule is a more specialised case of another. Thus if two rule
antecedents are identical except that one antecedent includes one or more additional
propositions, and the consequents are also identical, subsumption is considered to exist.

Duplication

The situation where the antecedents and consequents of two rules are identical (except
perhaps in the ordering of propositions) is a specialised form of subsumption usually
referred to as duplication.

Inconsistency

Inconsistency is defined as the situation where two rule antecedents are identical but their
consequents are different (some authors use the term contradiction to define this
anomaly). Where the antecedents of two rules are such that subsumption may exist but
the consequents are different subsumption and inconsistency are considered to exist
together. The presence of an inconsistent rule may also indicate the start of more general
cases of subsumption resulting from chains of inferences.

Connectivity

A rule in a rulebase is connected if it has at least one downward connection and one
upward connection. If a rule has neither it is unconnected, if a rule has only upward con-
nections it is a leaf rule (or it is unconnected) and if it has only downward connections it
is a root rule (or it is unconnected). A rule that has no upward or downward connections
is sometimes referred to as a redundant rule; while a rule that is not a leaf rule but has no
downward connection is sometimes referred to as a dead end rule. General cases of
redundancy arising from chains of inferences are highlighted by the presence of unex-
pected root and leaf rules.

Circularity

Circularity exists when a rulebase contains a set of rules such that a non terminating loop
can occur when the rules are fired. Circularity presents an urgent problem in backward
chaining systems.

It is generally acknowledged8,15 that the above five types of error/anomaly are the princi-
pal errors and anomalies that need to be identified when implementing rulebase verifica-
tion. In this paper the identification of subsumption, duplication and inconsistency is col-
lectively referred to as structural verification, while that of connectivity and circularity as
inference verification. The above definitions have deliberately been kept short, readers
requiring a more complete explanation for their derivation are referred to Coenen and
Bench-Capon16.

It should also be noted that there is a distinction between errors and anomalies. Errors are
clearly undesirable and will require remedial action to remove them; anomalies in con-
trast may not necessarily represent problems in themselves, but rather symptoms of gen-
uine errors. Further, in some cases the presence of certain anomalies may not be of signif-
icance, because not strictly correct, they may not impair the function of the system. There
is much argument as to what constitutes an anomaly and what constitutes an error, much
depends on the inference mechanism used; whatever the case both errors and anomalies

-- --

- 5 -

are undesirable.

5. TRADITIONAL MATRIX REPRESENTATIONS

Using a traditional rulebase matrix representation each column in the matrix is used to
represent a proposition, while each row represents a rule in which the proposition may
appear. If a particular proposition appears in a rule the appropriate rule/proposition
(row/column) intersection is instantiated with (say) a 1. Otherwise intersections are
instantiated with (say) a 0. To demonstrate connectivity in a rulebase it is necessary to
retain information concerning which propositions appear in the antecedents of rules and
which in the consequents of rules. To achieve this either separate symbols for antecedent
and consequent instantiations can be used or two matrices - an antecedent matrix and a
consequent matrix - can be generated. Botten and Raz13 in their KBS verification system
adopted the first technique and used the symbols I and T to distinguish between
antecedent and consequent propositions. In the IMVER-1 system the twin matrix tech-
nique was adopted.

Consider the balanced rulebase given in Table 1 this can be represented as an antecedent
and a consequence matrix pair of the form given in Tables 2 and 3. In the IMVER sys-
tems rules are "read" from left to right thus in the above rulebases, the root proposition
aa will be represented by the third column in each matrix. The matrix columns in Table
2 and 3 thus represent the propositions ab, ac, aa, ad and so on up to be.

*** Table 1 here ***

*** Table 2 here ***

*** Table 3 here ***

The storage capacity required for an antecedent and consequent matrix pair representing
any rulebase can be calculated from the expression:

2 × N × Nr × Np

Where:

N = The number of bytes required to store a standard unsigned integer.

Np = The number of unique propositions contained in the rulebase.

Nr = The number of rules contained in the rulebase.

Given that both the IMVER-1 and IMVER-2 systems were implemented in the C pro-
gramming language the number of bytes required to store a standard unsigned integer is
equivalent to 4. Thus the above rulebase would require 3720 bytes of storage (2 × 4 × 15
× 31), 1860 for each matrix.

-- --

- 6 -

6. THE ADVANCED BINARY ENCODED MATRIX REPRESENTATION

Inspection of the matrices presented in Tables 2 and 3 indicate that, assuming a single
proposition will appear only once in any individual rule antecedent or consequent, the
elements in the incidence matrices will always be instantiated with 1s and 0s. Thus the
rows in the matrix can be considered to represent binary numbers. The maximum permit-
ted size of an unsigned integer in the C programming language is 32 bits. Thus we can
represent matrix rows of up to 32 propositions using a single 32 bit decimal integer. So
that rulebases with more than 32 propositions can be represented we can support the
notion of blocks of 32 propositions. Consider the rulebase given in Table 4 comprising 31
rules and 63 propositions, and designed to establish the root proposition aa. This rule-
base can be represented as binary encoded antecedent and consequent matrices each con-
sisting of two blocks (the antecedent matrix is given in Table 5).

*** Table 4 here ***

*** Table 5 here ***

The total storage capacity required to represent a rulebase using this binary encoded
matrix format is then given by:

2 × N × Nr × B

Where:

B = The number of proposition blocks (rounded up to the nearest whole number),
i.e. Np/32.

Thus only 496 bytes (2 × 4 × 31 × 2) would be required to represent the above rulebases,
i.e. a considerable saving (96.8%) over the 15624 (2 × 4 × 31 × 63) required using the
above traditional representation. Inspection of the above expressions indicates that this
advantage will hold for any realistically sized rulebases.

7. IMVER ARCHITECTURE AND OPERATION

Before continuing to analyse the advanced binary representation with respect to inference
and structural verification it is appropriate to first consider the structure and operation of
the IMVER systems. A block diagram illustrating their top level architecture is given in
Figure 1. If the systems are viewed simply as "black boxs" the input will be a rulebase
and the output a "commentary". If the system is considered as a "white box" a number of
top-level modules can be identified, notably a translator and a number of rulebase verifi-
cation modules. The translator comprises a lexical analyser, a parser and a matrix genera-
tor. Its overall purpose is to take a "raw" rulebase and translate it into the appropriate
matrix format. During this process details of the rulebase to be investigated are also
stored so that they can be reproduced as part of the commentary that will eventually
result. At present IMVER rulebases are required to be in the following syntax:

*** Figure 1 here ***

-- --

- 7 -

(rule_base) : (rule)
: (rule) (rule_base)
;

(rule) : (propositions) (propositions) n;

(propositions) : proposition
: proposition (propositions)
;

However, translators for other production rule formats can easily be created. For example
the above syntax does not support disjunctions between propositions. A rulebase contain-
ing such disjunctions must therefore first be converted into a conjunctive form.

Once the appropriate incidence matrices have been created the two rulebase verification
modules are applied in sequence and the commentary produced. The commentary con-
sists of two parts. As a result of structural verification groups of rules which subsume one
another or are duplicates or are inconsistent with one another are identified. A listing of
the identified rules then forms the first part of the commentary. As a result of inference
verification each rule is labelled according to whether it is identified as a root, body, leaf
or redundant rule, or part of a circular rule set. The second part of the commentary thus
comprises a complete list of rules each with its associate inference verification label.

The system has been tested using a number of genuine and artificial rulebases. In particu-
lar I have used a rulebase supplied by Merabti et al.17 taken from their KBS for the selec-
tion of LAN architectures. I hav e also used the error seeded "animals" rulebase given in
Coenen and Bench-Capon16. The rules in these rulebase are in the standard production
rule format and hence are immediately compatible with the IMVER format. The algo-
rithms used in both systems, successfully verified these rulebases identifying all errors
and anomalies of the types identified in Section 4 above.

To examine the efficiency of the advanced IMVER-2 binary representation over the tradi-
tional approach incorporated into the IMVER-1 system artificial uniform balanced rule-
bases were used (see below).

8. UNIFORM BALANCED RULEBASES

The rulebases presented in Tables 1 and 4 are perfectly uniform; each rule has two con-
juncted antecedent propositions and a single consequent proposition, and each rulebase
can be presented as a perfectly balanced binary tree. A binary tree representing the rule-
base given in Table 1 is presented in Figure 2. The tree has a depth of 5, a single root
proposition, 16 leaf propositions and 14 body propositions. The advantage of uniform
rulebases of this form is that they can be defined mathematically and, as a result, certain
time complexity measures concerning the matrices used to represent the rulebases calcu-
lated.

*** Figure 2 here ***

I hav e define balanced rulebases according to the depth of the tree that may be used to
represent them. Given the depth (D) of such a rulebase I can calculate the number of
propositions (Np) from the expression:

-- --

- 8 -

Np = 2D − 1

Of these there will always be one root proposition; I say that Nrp (number of root propo-
sitions) = 1. The number of leaf propositions (Nlp) and body propositions (Nbp) can then
be calculated using the expressions:

Nlp =
2

(Np + 1)

Nbp =
2

(Np − 3)

I can also determine the number of antecedent and consequent proposition (Nap and Nac)
from the expressions:

Nap = Np − Nrp

Ncp = Np − Nlp

The number of rules (Nr) in a balanced rulebase can be calculated using the expression:

Nr =
2

2D

− 1

of which there will always be only one root rule, i.e. Nrr (number of root rules) = 1. The
number of leaf rules (Nlr) and the number of body rules (Nbr) can then be found using
the expressions:

Nlr =
2

(Nr + 1)

Nbr =
2

(Nr − 3)

9. INCIDENCE MATRIX PROCESSING

Incidence matrices represented using a traditional representation are usually processed by
testing elements in individual rows to determine whether each element has been instanti-
ated or not. Any instantiated elements are then compared with the elments in other rows
or columns to establish the existence, or nonexistence, of various rulebase errors and
anomalies. Using the advanced matrix representation blocks of 32 propositions can be
tested simultaneously. If a block equates to nonzero one or more of its proposition ele-
ments are instantiated. To compare proposition blocks logical operators can be used. For
example if the result of performing a logical "and" on two blocks is nonzero the blocks
share one or more proposition elements. Examples:

(a) 1 1 1 0 (14) (b) 0 1 1 1 (7)

-- --

- 9 -

& 0 1 0 0 (4) & 0 1 1 1 (7)

------- -------

0 1 0 0 (4) 0 1 1 1 (7)

(c) 1 0 1 0 (10)

& 0 1 0 1 (5)

0 0 0 0 (0)

In case (a) the blocks share a single proposition, in case (b) the blocks are identical and in
case (c) no propositions are shared. To differentiate between result (a) and (b) an "exclu-
sive or" operation can be used. For example:

(a) 1 1 1 0 (14) (b) 0 1 1 1 (7)

ˆ 0 1 0 0 (4) ˆ 0 1 1 1 (7)

------- -------

1 0 1 0 (10) 0 0 0 0 (0)

If the result is zero the blocks are identical. In this manner binary encoded matrices can
be processed much more efficiently than when using a traditional incidence matrix repre-
sentation.

10. STRUCTURAL VERIFICATION

Structural verification comprises the identification of anomalies such as subsumption,
duplication and inconsistency. To implement structural verification every rule in the rule-
base must be compared with every other rule in the rulebase. Thus, at the rule level, the
time complexity of such an algorithm is:

2

Nr 2 − Nr

At the proposition level the algorithm requires that every proposition in each rule is com-
pared with every proposition in every other rule until, for each rule pair, it can be ascer-
tained that subsumption, duplication or inconsistency does or does not exist. To do this
rule antecedent pairs are usually considered first followed by the associated rule conse-
quents where appropriate. Initially there are three possible outcomes:

1. The antecedents are different therefore subsumption, duplication or inconsistency
cannot exist.

2. One antecedent is subsumed by the other therefore subsumption or subsumption and
inconsistency exists.

3. The antecedents are identical in which case the rules are duplicates or an inconsis-
tency exists.

-- --

- 10 -

In the last two cases, to establish the exact nature of the anomaly identified, it is neces-
sary to go on to consider the rows in the consequent matrix associated with the two
antecedent matrix rows under consideration. If the consequent rows are identical sub-
sumption or duplication, as appropriate, exists. If the consequents are different subsump-
tion and inconsistency exist together or, if the antecedents were identical, a simple incon-
sistency exists. In the case of balanced rulebase where subsumption, duplication and
inconsistency will not exist we only need to establish that the rows in an antecedent
matrix are different. Using the traditional, IMVER-1, representation the number of com-
parisons that this will require can be given by the expression:

i =1
Σ

i =N

2(i 2 + i)

Where the value for N is arrived at using:

N =
2

Np − 3

By induction this will reduce to:

12

NP 3 − 3Np 2 − Np + 3

In the case of the IMVER-2 representation, where logical operators are used to compare
blocks of 32 antecedent proposition elements simultaneously, the number of comparisons
is given by:

2

3

i =0
Σ

i =B −1

Nr 2 − Nr + 16i − 256i 2

which, again by induction, reduces to:

2

3BNr (Nr −1) − 4B (B −1)(32B −19)

Consider the balanced rulebase given in Table 4. The number of comparisons required to
carry out structural verification using the traditional IMVER-1 representation will be:

C 1 =
12

633 − 3(63)2 − 63 + 3 = 19840

-- --

- 11 -

compared to:

C 1 =
2

(3×2×31)(31−1) − 8(64−19) = 2430

using the IMVER-2 representation.

From the above it is clear that implementing the structural verification algorithm using a
binary encoding requires significantly fewer comparisons than when using a traditional
approach. In Table 6 some empirical results are presented. The table shows the total num-
ber of comparisons required to carry out structural verification on a number of balanced
rulebases of varying depths. From the table it can be seen that, (a) the results compare
precisely with those produced using the above expressions and (b), for realistically sized
rulebases, the advantages in efficiency gained using the advanced binary encoded repre-
sentation are in the order of 90%.

*** Table 6 here ***

11. INFERENCE VERIFICATION

The term inference verification refers to the analysis of the interconnection between rules,
i.e the connectivity of a the rulebase. Connectivity algorithms generally consist of two
parts, one to establish upward connectivity and one to establish downward connectivity.
To establish upward connectivity rows in the consequent matrix and columns in the
antecedent matrix must be inspected. In the case of a root (or redundant) rule, by defini-
tion, there will be no upward connection. To establish downward connections rows in the
antecedent matrix and columns in the consequent matrix are inspected; leaf rules will
have no downward connections.

Circularity detection algorithms involve the tracing of inference chains either commenc-
ing with leaf rules and forward chaining to root rules or vice versa. If, as a result, the
chain returns to the start rule, or leads up or down to a circular rule set, circularity exists.
It is not necessary to test each individual rule specifically as chains of rules can be tested.

To test for circularity and upward connectivity using a traditional matrix representation,
requires that every proposition element in each row in a consequent matrix is inspected. If
the element is instantiated the indicated column in the antecedent matrix requires exami-
nation. For each instantiated element found in the antecedent matrix an upward connec-
tion for the rule in question exists which must be traced further. If no instantiated ele-
ments are found in the indicated antecedent column no upward connection exists for the
rule under consideration. This process continues until either:

1. A rule with ni upward connection is reached (i.e. a root rule).

2. The start rule is returned to in which case that rule forms part of a circular rule set.

3. The chain leads up to a circular rule set in which case circularity exists higher up in
the rulebase.

With respect to binary uniform rulebases where all rules are connected and no circularity
exists, to carry out inference verification, every element in each consequence matrix row
and each column representing a consequent proposition in the antecedent matrix must be

-- --

- 12 -

examined. Using the IMVER-1 representation the number of matrix element comparisons
that this will require will be equal to:

(Np × Nr) + Nr 2 = Nr (NP + Nr)

The number of comparisons required using the IMVER-2 representation is then given by:

(B × Nr) + Nr 2 = Nr (B + Nr)

Consider the balanced rulebase given in Table 4, the number of comparisons required to
establish upward connectivity and the non-existence of circular rule sets using the
IMVER-1 representation will be:

31(63 + 31) = 2914

Using the IMVER-2 representation the number of comparisons will be:

31(2 + 31) = 1023

Inspection of the above expressions indicates that the advantage gained using the
IMVER-2 representation is in the order of:

32(Np + Nr)

31Np

To establish downward connectivity requires that antecedent matrix rows and consequent
matrix columns are inspected. Leaf rules will have no downward connection, however, to
establish this we must inspect the entire row representing each leaf rule and the columns
associated with any identified instantiated elements. In the case of body and root rules, to
establish downward connectivity, we need only establish that one antecedent proposition
appears in at least one consequent, thus we do not need to inspect entire antecedent rows.
The total number of comparisons required to establish downward connectivity can be cal-
culated using the expression:

(Nlr ×Np) + (Aar 1×Nbr) + 2(Nlr ×Nr) + (Acc 1×Nbr) + 3

Where:

Aar1 = The average number of comparisons required to identify an instantiated
element in an antecedent matrix row representing a body rule.

Acc1 = The average number of comparisons required to identify an instantiated
element in a consequent matrix column representing a body proposition.

-- --

- 13 -

The number of comparisons required using the IMVER-2 representation is then given by:

(Nlr ×B) + (Aar 2×Nbr) + Nr (Nlr +k) + (Acc 2×Nbr) + 3

Where:

Aar2 = The average number of comparisons required to identify an instantiated
element in an antecedent matrix row representing a body rule.

k = A constant expressing the number of occasions that the instantiated ele-
ments of leaf rule are spread over two blocks. This value is comparatively
small and approximates to 0.667×B.

Acc2 = The average number of comparisons required to identify an instantiated
element in a consequent matrix column representing a body proposition.
This is equivalent to Acc1 (see above).

Returning to the balanced rulebase given in Table 4 the number of comparisons required
to establish downward connectivity using the IMVER-1 representation will be:

(16×63) + (29.57×14) + 2(16×31) + (15.79×14) + 3 = 2638

Note that, from empirical data, Aar1 is given as 29.57 and Acc1 is given as 15.79 for a
uniform rulebase of a depth of 6. The total number of comparisons to implement infer-
ence verification will then be equal to 5552 (2914+2638).

Using the IMVER-2 representation the number of comparisons required to check for
downward connectivity will be:

(16×2) + (1.5×14) + 31(16+1) + (15.79×14) + 3 = 804

Note that Aar2 is given as 1.5 and k as 1 for a uniform rulebase of a depth of 6 (Acc2 =
Acc1 = 15.79). The total number of comparisons will then be 1827 (1023+804).

Again it is difficult to compare directly the complexity expressions given in the above two
sub-sections, however, some conclusions can be drawn from the results. Further, in Table
7, some empirical results are presented. The table shows the number of comparisons
required to carry out inference verification on a number of balanced rulebase of different
depths represented using both the traditional and binary encoded representations. Inspec-
tion of these results shows that the algorithm as implemented using the IMVER-2 binary
representation requires approximately 67% fewer comparisons than the same algorithm
implemented using the traditional approach.

*** Table 7 here ***

12. REMEDIAL ACTION

Having established that one or more errors or anomalies exist remedial action must be
taken. A suggested methodology is given in Coenen18. Broadly this comprises the follow-
ing steps:

-- --

- 14 -

1. Global Location

Identify the section of the rulebase that will require attention.

2. Remedial Action

Determine the nature of the remedial action that will be required. In a rulebased system of
the form under consideration here four distinct possibilities can be envisaged, (a) adding
a rule, (b) removing a rule, (c) replacing a rule and (d) modifying a rule. The distinction
between (c) and (d) is that the first consists of the removal of a rule and the adding of a
new rule (b and a) while the second involves attention to an individual element of a rule,
for example a proposition in the consequent. This over simplifies the task, in practice a
number of these possibilities will require implementation in conjunction with one
another, but for illustrative purposes this classification will suffice.

3. Local Location

Identify the specific elements in the rulebase that will require attention as a result of the
proposed change. In the above case, if the remedial action identified consists of the
removal of a single rule, the rules which call and are called by the rule to be removed will
require attention. Alternatively if the rule is a leaf rule the mechanism for handling ask-
able propositions will require investigation. When the specific rulebase elements that
might require attention have been identified the next step is to consider any further reme-
dial actions required with respect to these elements. In the above example of the removal
of a rule this will require the modification of the rules that call it and are called by it.
Thus a feature of the methodology is a loop where steps 2 and 3 are repeated until the
extended sub-set of the part of the rulebase affected by the initial change required has
been identified.

4. Implementation

Implementation should be carried out in a structured manner following the path mapped
out by the looping process described in 3. In this manner the required remedial actions
will be implemented in a logical and sequential manner.

5. Further verification

Once the necessary changes have been made the rulebase must be re-verified. This verifi-
cation need only be implemented on the sub-set of the rulebase which will be affected by
the change. This will not just comprise the individual elements on which some mainte-
nance action has been implemented but will also involve those elements indirectly
effected by the change (in some unfortunate cases this might involve the entire rulebase).
I refer to this group of elements as the jeopardised sub-set. It may be that, during this
testing stage, it is realised that further maintenance is required in which case a return to
step 3 should be instigated.

For a more in depth discussion on the "maintenance" of rulebase systems interested read-
ers are referred to Coenen and Bench-Capon16.

13. CONCLUSIONS

In this paper I have described an advanced binary encoded matrix representation which
will support rulebase verification. This has been implemented in an experimental rule-
base verification system, IMVER-2, which is an upgrade of an earlier system, IMVER-1.
Using this advanced matrix representation, significant storage and processing savings can
be made. More specifically I have conclusively demonstrated that 97% less storage

-- --

- 15 -

capacity is required using the binary encoded representation than that required using
other incidence matrix representations. With respect to the efficient processing of inci-
dence matrices supported by the advanced binary encoded matrix representation advan-
tages of 90% and 67% for structural and inference verification respectively are attained
using binary uniform rule bases. Further experiments indicate that this is in fact a "worst
case" scenario. Where the ratio between the average number of antecedent and conse-
quent propositions for the rules in a rulebase is greater than 2:1 (as is the case for most
genuine rulebases) the processing advantage gained using the IMVER-2 representation
increases proportionatly. This observation has been born out by successful tests using
both genuine and artificial rulebases.

To date the advanced binary encoded incidence matrix representation described here has
only been applied to propositional rulebases. Current investigations are concentrated on
experiments to identify an enhanced binary encoded representation which will support
the decomposition of propositions into their constituent parts. It is hoped that this avenue
of research will allow for rulebase verification at the predicate, rather than the proposi-
tional, rule level.

REFERENCES

1 Coenen, F P, Taleb-Bendiab, A and Forster, R ‘Verification of Rule-bases Using
Incidence Matrices: The IMVER System’ in Rzevski, G, Pastor, J and Adey, R A
(Eds.) Applications of Artificial; Intelligence in Engineering VIII, Vol 1: Design,
Methods and Techniques, Proc. AIENG’93 Computational Mechanics Publications
& Elsevier Applied Science, London (1993) pp248-260

2 Coenen, F P and Forster, R (1993) ‘Matrix Techniques for Rulebase Verification’
in Bramer, M A and Macintosh, A L (Eds.) Research and Development in Expert
Systems X, Proc. ES’93 (1993) pp235-247

3 Satre, T W and Massey, J G ‘Expert System Verification and Validation, Part I:
Defining the Concepts’ in Rzevski, G and Adey, RA (Eds.) Applications of Artifi-
cial Intelligence in Engineering VI, Computational Mechanics Publications,
Southampton, (1991) p859-872

4 Balci, O and Sargent, R G ‘A Bibliography of the Credibility and Validation of
Imulation and Mathematical Models’ Simuletter Vol 15 No 3 (1984) p15-27

5 Boehm, B W ‘Software Engineering Economics’ Prentice-Hall, New York (1981)

6 Charles, E ‘Checking Knowledge Bases for Inconsistencies and Other Anomalies’
Knowledge-Based Systems Verification, Validation and Testing, Workshop Notes
from the 9th National Conference on Artificial Intelligence, AAAI’91 Anaheim CA
(1991)

7 Cragen, B J and Steudel, H J ‘A Decision-Table-based Processor for Checking
Completeness and Consistency in Rule-Based Expert Systems’ International Jour-
nal of Man-Machine Studies Vol 26 (1987) pp633-648

8 Ginsberg, A ‘A New Approach to Checking Knowledge Bases for Inconsistency
and Redundancy’ Proc 3rd Annual Conference Expert Systems in Government IEEE
(1987) pp102-111

9 Chang, C L, Combs, J B and Stachowitz, R A ‘A Report on the Expert Systems
Validation Associate (EVA)’ Experts Systems with Applications Vol 1 No 3 (1991)
pp219-230

-- --

- 16 -

10 Coenen, F P and Bench-Capon, T J M ‘KBS Maintenance Validation Using Simu-
lation’ in Grierson, D E, Rzevski, G and Adey, R A (Eds.) Applications of Artifi-
cial Intelligence in Engineering VII, Computational Mechanics Publications and
Elsevier Applied Science, London (1992) pp215-228.

11 Agarwal, R and Tanniru, M ‘A Petri-Net Based Approach for Verifying the
Integrity of Production Systems’ Knowledge-Based Systems Verification, Validation
and Testing, Workshop Notes from the 9th National Conference on Artificial Intelli-
gence, AAAI’91 Anaheim CA (1991)

12 Tsai, J J P and Jang, H C ‘A Framework for Knowledge-based Systems Verifica-
tion’ Proc IEEE International Conference on Systems, Man and Cybernetics, Vol 2
IEEE New York (1992) pp1700-1705

13 Botten, N and Raz, T ‘Knowledge Base Verification Using Matrices’ Proc 4th
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (1993) pp91-98

14 Botten, N ‘Complex Knowledge Base Verification Using Matrices’ in Belli, F and
Radermacher, F J (Eds.) Lecture notes in Artificial Intelligence 604: Proceedings
of the Fifth International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems Springer-Verlag, Berlin (1992) pp225-235

15 Preece, A D and Shinghal, R ‘DARC: A Procedure for Verifying Rule-Based Sys-
tems’ in Liebowitz, J (Ed.) Expert Systems World Congress Proceedings, Volume 2
Pergamon Press (1991) pp971-979

16 Coenen, F P and Bench-Capon, T J M Maintenance of Knowledge based Systems.
Academic Press, London (1993)

17 Merabti, M, Hutchinson, D and Taleb-Bendiab, A Proc. International conference
on Intelligent Systems (1992) pp218-226

18 Coenen, F P ‘A Methodology for the Maintenance of Knowledge based Systems’ in
Niku-Lari, A (Ed.) EXPERSYS-92 (Proccedings) IITT-International, Gournay sur
Marne, France, (1992) pp171-176

-- --

- 17 -

(0) ab ac => aa (8) ar as => ac

(1) ad ae => ab (9) at au => ar

(2) af ag => ad (10) av aw => at

(3) ah ai => af (11) ax ay => au

(4) aj ak => ag (12) az ba => as

(5) al am => ae (13) bb bc => az

(6) an ao => al (14) bd be => ba

(7) ap aq => am

-- --

(0) 1 1 0

(1) 0 0 0 1 1 0

(2) 0 0 0 0 0 1 1 0

(3) 0 0 0 0 0 0 0 1 1 0

(4) 0 0 0 0 0 0 0 0 0 1 1 0

(5) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

(10) 0 1 1 0 0 0 0 0 0 0 0

(11) 0 1 1 0 0 0 0 0 0

(12) 0 1 1 0 0 0 0

(13) 0 1 1 0 0

(14) 0 1 1

-- --

(0) 0 0 1 0

(1) 1 0

(2) 0 0 0 1 0

(3) 0 0 0 0 0 1 0

(4) 0 0 0 0 0 0 1 0

(5) 0 0 0 0 1 0

(6) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(7) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(8) 0 1 0

(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

(11) 0 1 0 0 0 0 0 0 0 0 0 0

(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

(13) 0 1 0 0 0 0 0

(14) 0 1 0 0 0 0

-- --

(0) ab ac => aa (16) bh bi => ac

(1) ad ae => ab (17) bj bk => bh

(2) af ag => ad (18) bl bm => bj

(3) ah ai => af (19) bn bo => bl

(4) aj ak => ah (20) bp bq => bm

(5) al am => ai (21) br bs => bk

(6) an ao => ag (22) bt bu => br

(7) ap aq => an (23) bv bw => bs

(8) ar as => ao (24) bx by => bi

(9) at au => ae (25) bz ca => bx

(10 av aw => at (26) cb cc => bz

(11) ax ay => av (27) cd ce => ca

(12) az ba => aw (28) cf cg => by

(13) bb bc => au (29) ch ci => cf

(14) bd be => bb (30) cj ck => cg

(15) bf bg => bc

-- --

(0) 3221225472 0 = 11000000000000000000000000000000 00000000000000000000000000000000

(1) 402653184 0 = 00011000000000000000000000000000 00000000000000000000000000000000

(2) 100663296 0 = 00000110000000000000000000000000 00000000000000000000000000000000

(3) 25165824 0 = 00000001100000000000000000000000 00000000000000000000000000000000

(4) 6291456 0 = 00000000011000000000000000000000 00000000000000000000000000000000

(5) 1572864 0 = 00000000000110000000000000000000 00000000000000000000000000000000

(6) 393216 0 = 00000000000001100000000000000000 00000000000000000000000000000000

(7) 98304 0 = 00000000000000011000000000000000 00000000000000000000000000000000

(8) 24576 0 = 00000000000000000110000000000000 00000000000000000000000000000000

(9) 6144 0 = 00000000000000000001100000000000 00000000000000000000000000000000

(10) 1536 0 = 00000000000000000000011000000000 00000000000000000000000000000000

(11) 384 0 = 00000000000000000000000110000000 00000000000000000000000000000000

(12) 96 0 = 00000000000000000000000001100000 00000000000000000000000000000000

(13) 24 0 = 00000000000000000000000000011000 00000000000000000000000000000000

(14) 6 0 = 00000000000000000000000000000110 00000000000000000000000000000000

(15) 1 2147483648 = 00000000000000000000000000000001 10000000000000000000000000000000

(16) 0 1610612736 = 00000000000000000000000000000000 01100000000000000000000000000000

(17) 0 402653184 = 00000000000000000000000000000000 00011000000000000000000000000000

(18) 0 100663296 = 00000000000000000000000000000000 00000110000000000000000000000000

(19) 0 25165824 = 00000000000000000000000000000000 00000001100000000000000000000000

(20) 0 6291456 = 00000000000000000000000000000000 00000000011000000000000000000000

(21) 0 1572864 = 00000000000000000000000000000000 00000000000110000000000000000000

(22) 0 393216 = 00000000000000000000000000000000 00000000000001100000000000000000

(23) 0 98304 = 00000000000000000000000000000000 00000000000000011000000000000000

(24) 0 24576 = 00000000000000000000000000000000 00000000000000000110000000000000

(25) 0 6144 = 00000000000000000000000000000000 00000000000000000001100000000000

(26) 0 1536 = 00000000000000000000000000000000 00000000000000000000011000000000

(27) 0 384 = 00000000000000000000000000000000 00000000000000000000000110000000

(28) 0 96 = 00000000000000000000000000000000 00000000000000000000000001100000

(29) 0 24 = 00000000000000000000000000000000 00000000000000000000000000011000

(30) 0 6 = 00000000000000000000000000000000 00000000000000000000000000000110

-- --

IMVER-1 IMVER-2 %

DEPTH Nr Np Represen- Represen- Difference Differ-

tation (K) tation(K) ence

5 15 31 2.2 0.3 1.9 85.94

6 31 63 19.8 2.4 17.4 87.75

7 63 127 166.7 18.2 148.5 89.08

8 127 255 1365.5 138.9 1226.6 89.83

9 255 511 11054.1 1081.2 9972.9 90.22

10 511 1023 88954.9 8521.4 80433.4 90.42

11 1023 2407 713732.1 67644.8 646087.2 90.52

12 2407 4095 5718237.2 539024.2 5179212.9 90.57

13 4095 8191 45779435.5 4303599.4 41475836.2 90.60

14 8191 16383 366369669.1 34394304.0 331975365.1 90.61

-- --

IMVER-1 IMVER-2 %

DEPTH Nr Np Represen- Represen- Differ- Differ-

tation tation ence ence

2 1 3 9 4 5 55.56

3 3 7 59 23 36 61.02

4 7 15 296 102 194 65.54

5 15 31 1316 426 890 67.63

6 31 63 5552 1827 3725 67.09

7 63 127 22832 7572 15260 66.84

8 127 255 92672 30725 61947 66.85

9 255 511 373568 123589 249979 66.92

10 511 1023 1500416 495872 1004544 66.95

11 1023 2047 6014720 1987819 4026901 66.95

-- --

Rulebase

Lexical

Analyser

Parser

Matrix

Generator

Incidence

Matrices

Inference

Verification

Structure

Verification

Commentary

-- --

aa

ab ac

ad ae ar as

af ag al am at au az ba

ah ai aj ak an ao ap aq av aw ax ay bb bc bd be

-- --

Table 1: Example rulebase 1

Table 2: Antecedent rulebase matrix

Table 3: Consequent rulebase matrix

Table 4: Example rulebase 2

Table 5: Binary encoded antecedent matrix

Table 6: Comparison of structural verification

algorithm implementation

Table 7: Comparison of inference verification

algorithm implementation

Figure 1: Block diagram illustrating IMVER architecture

Figure 2: Binary tree representing a balanced rulebase

-- --

