
PRONTO - Ontology-based Evaluation of Knowledge
Based Systems

Trevor J.M. BENCH-CAPON, Dean M. JONES
Department of Computer Science, The University of Liverpool, Liverpool, England, L69 7ZF

Key words: ontology, rule base, conceptualisation, verification, validation

Abstract: In this paper we examine some of the ways in which an ontology can be used to
assist in the evaluation of knowledge-based systems. Key elements of the
support provided by the ontology relate to attempting to give coherence to the
domain conceptualisation; making the role of experts in evaluation more
structured and less at the mercy of interpretation; constraining the number of
test cases required to give good coverage of the possible cases; and structuring
the testing to give better assurance of its efficacy, and provide for a possible
basis for greater automation of the testing process. The discussion is focussed on
the development of a prototype software tool to support the approach and this is
ill ustrated using a simple, well known, example relating to the identification of
animals.

1. INTRODUCTION

In recent years ontologies have received an increasing amount of attention as
a means of supporting the design, development and documentation of
knowledge based systems (KBSs). An ontology can be seen as an “explicit
specification of the conceptualisation of a domain” (Gruber 1995). Interest in
them arises from the growing realisation that the clean separation of
knowledge about the domain from task and control knowledge, on which
many of the original hopes and expectations for KBSs were founded, is really
very diff icult to achieve in practice. Invariably the knowledge base will be
distorted by considerations arising from the task to be performed on the
knowledge, the problem solving method used, the form of representation, and
the ways in which and the sources from which the knowledge was acquired.
See Visser (1995) for a discussion of these problems.

Ontologies can trace their development from domain models. The tools
which we describe are in the spirit of previous tools which took such domain
models as their basis, such as Vanthienen (1991), which modelled the domain
using decision tables. The idea here is that an ontology can provide a
description of the domain which is - as far as possible - independent of the

https://www.researchgate.net/publication/246620547_Knowledge_Specification_for_Multiple_Legal_Tasks?el=1_x_8&enrichId=rgreq-3ac8c8d2-fadb-4b5f-9537-21b2f3ea8443&enrichSource=Y292ZXJQYWdlOzI2MjE1NjE7QVM6MTAxNDEwMjU5NjA3NTY1QDE0MDExODk0OTk5NzQ=
https://www.researchgate.net/publication/2626138_Toward_Principles_for_the_Design_of_Ontologies_Used_for_Knowledge_Sharing?el=1_x_8&enrichId=rgreq-3ac8c8d2-fadb-4b5f-9537-21b2f3ea8443&enrichSource=Y292ZXJQYWdlOzI2MjE1NjE7QVM6MTAxNDEwMjU5NjA3NTY1QDE0MDExODk0OTk5NzQ=

way in which the domain knowledge is to be used, and the task it will be used
for. Hitherto, ontologies have been used mainly for knowledge base
development, knowledge sharing and knowledge reuse. They do, however,
also have considerable potential for use in the verification and validation of
KBSs as well. Some preliminary remarks on the role of ontologies in
verification and validation were made in Bench-Capon (1998); this paper
builds on those remarks and elaborates this role into an implemented
prototype.

Throughout the paper we will use as an illustrative example a very simple
rule base described in a well known text book on AI (Winston 1992). This
rule base, called ZOOKEEPER, is concerned with the identification of
animals. It is a useful example since everyone has a reasonable famil iarity
with the domain, and the example is small enough to be presented in a
complete form (it is recapitulated in Appendix A). Moreover, since it appears
in a text book it represents the sort of rule base which many people see as
their first encounter with a KBS, and thus is responsible for many of the ideas
people have about such systems.

In section 2, we describe the possibilities that an explicit specification of
the conceptualisation of a domain allows for in the evaluation of a KBS.
Section 3 describes in more specific terms the way in which we use ontologies
for this purpose. In section 4 we outline how we go about developing an
ontology for a given rule base and in section 5 we show what this allows.
Section 6 is a discussion of ontology-based evaluation in relation to traditional
notions of verification and validation and we give some concluding remarks
in section 7.

2. USING ONTOLOGIES IN THE EVALUATION OF
KNOWLEDGE-BASED SYSTEMS

In the evaluation of KBSs, a clear distinction can be made between evaluation
of the internal and external consistency of a rule base. A rule base is internally
consistent if it is structurally sound, which can be determined by ensuring that
it free of subsumed rules, contradictions, dead end rules and the li ke. Internal
consistency does not guarantee that a rule base will give the correct answer
for any valid query, only that the rules are logically coherent. Determining
whether or not the identifications produced by the rule-base are correct is the
goal of the evaluation of its external consistency. This typically involves
supplying sets of typical observations to the system and evaluating the results
produced by the system in relation to some external yardstick (commonly the
knowledge of a domain expert.) Additionally, we might present the rules to an
expert and ask for confirmation of their correctness.

Given that we have a rule base which is both internally and externally
consistent, can we say that the rule base is entirely satisfactory? The answer
we give here is no, particularly if we are going to take seriously the possibility
of extending the system with additional rules to cater for a wider range of
cases. What we are suggesting is that evaluation of a rule base should
encompass more than ensuring the absence of structural defects and that the
correct answer is always given for the current set of cases, i.e. more than
ensuring the internal and external consistency as these were defined above.
What we want, in addition, is for the representation to have some kind of
conceptual coherence, for it to be expressed within some well defined
conceptualisation of the domain, which will promote extensibility and
robustness.

Firstly, the distinctions that are made in a rule base should be based on a
single, consistent conceptualisation of the domain. In our ZOOKEEPER
example, distinctions were proliferated as and when they were needed in order
to discriminate amongst the seven particular animals, and without much
regard for distinctions that had already been made. If a system is to be built
correctly, it should make principled distinctions, and make them in a
justifiable manner. For example, spots are “dark” and stripes are “black” . Do
we want a distinction between “dark” and “black”? What other varieties of
spots and stripes might there be? Is there really a good difference between
being white in colour with black stripes, black in colour with white stripes and
whiteandblack in colour? Without a clear conceptualisation to serve as a
reference point, it is futile to ask an expert to say whether rules are correct or
not. For example, it might be that certain markings resemble rosettes. While
one might be prepared to call them “spots” in the absence of an option to call
them “ rosettes” , assent to a rule using “spots” depends on an assumption as to
whether the finer grain distinction is available or not.

We also need the required observations to be relatively easy to obtain, if
the system is to be able to come up with answers consistently. For example,
some of those required by the ZOOKEEPER rule base need judgement to be
applied - in particular, the requirement be that an albatross flies “well” . This
might well raise differences of opinion and interpretation. Others are rather
hard to obtain: “ lays eggs” is an occasional thing which might be hard to
observe (and not observable at all i n the case of a male of the species). At the
very least we need to be aware of what information is likely to be available so
that we resort to the information which is harder to obtain only when it is
essential. In the ZOOKEEPER rule base it is essential that an giraffe or a
zebra be first classed as an ungulate. Both of the observations required to
classify an animal as an ungulate are, however, not always available. If the
designer is unaware of this practical problems may arise in that giraffes and
zebras may not be identified even though sufficient information is available,

whereas if the designer is aware of this problem, rules identifying zebras and
giraffes in terms of more readily available observations can be supplied.

Much of the problem derives from the initial failure to conceptualise the
domain in a coherent fashion. The strategy is first to classify an animal as a
mammal or a bird, then sub-divide mammals into carnivores and ungulates,
and then to discriminate members of these categories in terms of some
observable features which are indicative of the particular animals in the
collection. The higher level distinctions are theory driven, and the rules are
determined by theory: for example Z4 is justified on the grounds that “some
mammals fly and some reptiles lay eggs, but no mammal or reptile does both”
(Winston, p122). But in the context of use of the system, Z4 is applicable only
to the albatross, since the other two birds are flightless, and if it can fly it is an
albatross, so its oviparity is neither here nor there. On the other hand, if we
were to take the notion of extensibility seriously Z9 would be inadequate
since it describes leopards and jaguars as well as cheetahs. As it stands here
the rules are defective, with respect to the standards of a well constructed
system, because they derive from conflicting conceptualisations of the
domain, and confli cting ideas of how the system will be used. Separation of
the animals into mammals and birds, and mammals into carnivores and
ungulates, is obviously useful for a zoological taxonomy, but is of little
practical importance in performing the identifications the system is supposed
to supply.

The problems above derive in part from the lack of a clear specification of
what the system will be used for as a starting point. Viewed simply from the
standpoint of its real use, as an example rule base to illustrate forward and
backward chaining, it is adequate. It is only when we project it into standing
as a real application that we would need to specify whether it was supposed to
identify only seven or an indefinite range of animals; whether it is meant to
incorporate a known theory about animal classification, or to restrict itself to
what can be seen; what kind of judgements the user of the system can be
expected to make, and the li ke. As they stand the rules represent more the
unstructured outpouring of information about the animals, rather than a well
thought out plan for identification.

One major problem that has always existed in checking the external
consistency of rule bases of a substantial size (and in this context even
ZOOKEEPER can be considered substantial), is the combinatorial explosion
that combining the predicates in test cases gives rise to. In the original
ZOOKEEPER there were 20 predicates each of which appeared capable of
being true or false independently, giving more than a mil lion possible
combinations. On this basis exhaustive testing can be considered impossible,
and so test data must be selected by using some selected plausible
combinations. There is, however, no systematic way of generating these and

so coverage of the important cases is not only not ensured, but there is not
even any reliable way of estimating the coverage provided by the test data. In
section 4, we will show how this can be improved through constructing an
ontology for the rule base. First, we will il lustrate how we construct the
ontology for the rule base, continuing to base our on discussion on
ZOOKEEPER.

3. THE DEVELOPMENT OF AN ONTOLOGY FOR
RULE BASE EVALUATION

The question we address in this section is how we go about developing an
ontology for the evaluation of a specific rule base. A recent survey of
ontology development methodologies (Jones et al., 1998) showed that there
are two general strategies that are pursued in the construction of a new
ontology, the stage-based approach and the evolving prototype approach. It
was suggested that where a clear task can be identified and the purpose and
requirements of the ontology are evident at the outset, the stage-based
approach is most appropriate since this allows the ontology to be assessed in
relation to the given requirements at the completion of each stage. In common
with this, and since we have a well defined task, we adopted a stage-based
strategy in the development of an ontology for the ZOOKEEPER rule base.
We will now describe each of the phases in turn.

It was also suggested in Jones et al. (1998) that the initial phase of the
development of a new ontology is commonly concerned with defining the
minimal necessary scope of the ontology, as this allows us to ensure that the
ontology at least satisfies the requirements of the task. The minimal
requirement for our ontology of ZOOKEEPER is that it should permit the
expression of all the facts and rules about the animals found in the original
rules. Consequently, the first scoping exercise is to list the classes in the
ontology, the hierarchical relationships between them (shown in Fig. 1) and
the attributes that can be identified from the rules that are used to describe the
classes. For ZOOKEEPER, the user is expected to be able to answer questions
about the following predicates (note that the predicates relating to whether the
animal is a mammal, bird, carnivore and ungulate are internal to the system;
the user is neither asked questions about these predicates, nor sees any
information about them.)

https://www.researchgate.net/publication/2760967_Methodologies_For_Ontology_Development?el=1_x_8&enrichId=rgreq-3ac8c8d2-fadb-4b5f-9537-21b2f3ea8443&enrichSource=Y292ZXJQYWdlOzI2MjE1NjE7QVM6MTAxNDEwMjU5NjA3NTY1QDE0MDExODk0OTk5NzQ=
https://www.researchgate.net/publication/2760967_Methodologies_For_Ontology_Development?el=1_x_8&enrichId=rgreq-3ac8c8d2-fadb-4b5f-9537-21b2f3ea8443&enrichSource=Y292ZXJQYWdlOzI2MjE1NjE7QVM6MTAxNDEwMjU5NjA3NTY1QDE0MDExODk0OTk5NzQ=

a) has hair
b) gives milk
c) has feathers
d) flies
e) lays eggs
f) eats meat
g) long legs
h) long neck
i) tawny colour
j) dark spots

k) white colour
l) black stripes
m) black and white colour
n) swims
o) flies well
p) pointed teeth
q) claws
r) eyes point forward
s) hoofs
t) chews cud

One problem that can immediately be identified with this list is that, although
some of the predicates seem to imply alternatives, only one option is used in
the rule base because the alternatives are not needed by the current set of
rules. For example, although it is possible to express the observation that an
animal has eyes that point forward, the equally valid observation that an
animal’s eyes point sideways cannot be expressed. As outlined in section 2,
the above predicates are not, as they stand, conceptually coherent. The second
phase of the development of our ontology must be to organise the predicates
into a principled set based on a coherent conceptualisation of the domain.
Those predicates that allow for the addition of alternatives are grouped below
with suitable values:

teeth{pointed, rounded} [p]
eats{ meat, plants, everything} [f]
legs{ long, normal} [g]
neck{ long, normal} [h]

stripes{black, white} [l]
spots{dark, light} [j]
flies{ well ,poorly, no} [d,o]
eyes{ forward, sideways} [r]

animal

mammal

bird

cheetah

tiger

zebra

giraffe
ungulate

penguin

carnivore

ostrich

albatross
Figure 1: Class Hierarchy for ZOOKEEPER

Some of the predicates specify alternative values for the same attribute
and these can also be grouped together:

skin covering {hair,feathers} [a,c]
markings{spots,stripes} [j,l]
movesBy{ swims,flies} [n,o]

In other cases the only values for the predicate are true or false:
gives milk [b]
lays eggs [e]
chews cud [t]

We can retain the remaining predicates (renamed where appropriate):
colour{ white, tawny,black and white} [i,k,m]
feet{hoofs,claws} [q,s]

At the end of the second stage, we have a representation in which no two
predicates describe the same attribute in the conceptualisation. However, the
predicates do not yet form a collectively coherent set. Some of our predicates,
e.g. flying and swimming, are not mutually exclusive (consider ducks and
swans), so they must be separated. Moreover, flying appears to be a
qualitative thing rather than a simple boolean: we could ask whether the same
should apply to swimming as well , and indeed whether we want to include
some kind of land motion such as running. We can also make the markings
and colour situation more coherent by saying that an animal has a basic
colour, and markings, which may be lighter or darker than the basic colour.
Where we have gaps, because the options do not occur explicitly, these need
to be filled. The problem of making the predicates mutually coherent is
addressed in the third stage of development of the ontology. The
rationalisations that occur during this phase are largely dependent upon the
details of the conceptualisation being considered and are consequently
difficult to generalise. However, the tasks carried out during this stage include
(but are not limited to):

1. separation of predicates that are not mutually exclusive;
2. inclusion of additional alternatives to predicates separated during

1.;
3. decide whether values are boolean, qualitative, etc.;
4. decide which predicates have values that are mutually exclusive
At the completion of the third stage, we arrive at the situation where we

can identify a set of attributes, and the possible values they can take. This wil l
provide us with a well defined vocabulary with which to construct a set of
rules. The set of conceptually coherent attributes for the ZOOKEEPER
example is shown in Table 1.

The fourth phase is concerned with ascribing the relevant attribute-value
pairs to each of the classes in our ontology, which provides us with a
definition for the classes, under the current conceptualisation. Firstly, we

construct a table listing each of the bottom-level classes and the relevant
values for each of the attributes, such as that given in Table 2 (Note that some
of the answers are conjectural - we are not experts, and are unsure what
ostriches in fact eat, for example.) This process is likely to identify additional
possibilities for some of the attributes (for example birds do not have teeth,
and penguins eat fish), which will force us to extend the ontology accordingly.
These attribute-pairs can be generalised to higher-level classes where it is
both possible and plausible to do so. Some generalisations are logically
possible given the current set of animals but are not realistic, e.g. all
carnivores have tawny coats.

Next, we need to add some axioms, stating combinations which are
impossible. Some of these combinations will have been identified
during the third stage, especially in task (iv) from the list above.
Examples include:

A1 Not (eats meat and chews cud)
A2 Not (Material feathers and chews cud)
A3 Not (Pattern none and shade not n/a)
In fact we could supply many more such axioms, but at this stage we

need not attempt to be exhaustive. The addition of some axioms allows
us to remove attribute values from the definitions of some of the
classes, e.g. given A1 we do not need to include a value for the
predicate che ws_cud/2 for each of the carnivores.

We now have an ontology which we can use to verify and validate a
knowledge base built on it. First, however, we need to check the quali ty
of the ontology itself. This is where the expert comes in: the expert
should not be shown the encoded rules, but rather the ontology. This
changes the role of the expert significantly. The expert no longer
examines rules, but instead the vocabulary. With respect to the
vocabulary the expert should check:

 Coat :
 Material {hair,feathers}
 Colour {white, tawny, black}

 Markings :
 Pattern { spots,stripes,irregular,none}
 Shade { l ight,dark, n/a}

 Facial Features
 Eyes { forward,sideways}
 Teeth {pointed,rounded,none}

Feet {claws,hoofs}
Flies {no, poorly, well}
Eats { meat, plants, both}

Size :
 Neck { long, normal}
 Legs { long, normal}

Gives Milk { true, false}
Lays Eggs { true, false}
Chews Cud { true, false}
Swims { true, false}

Table 1: Attributes and Values for ZOOKEEPER

1. that the attributes represent sensible distinctions
2. that the values are exclusive
3. that the values are exhaustive

The point about values can be addressed from two standpoints: either from
the point of view of the existing collection, or from the point of view of a
potentially extended collection. The first will i ndicate what is needed to test
the rule base against its current operation, and the other will provide an
indication of its extensibility. Also, to facilitate testing the expert should
indicate whether observations are always available, or only sometimes
available. Following this process we might modify Table 1 to give Table 3.
Here always observable attributes are indicated in bold, as are values required
by the current seven animals. The expert should also examine the table of
attributes (Table 2), to confirm that these entries are correct. The table can be
further verified by ensuring that it does not conflict with any of the axioms.
By concentrating on the ontology rather than the rules, the role of the expert
becomes much more well defined, and more systematic so that there is less
possibility of interpretation allowing errors to go unnoticed.

4. PRONTO -¸A TOOL FOR ONTOLOGY-BASED
EVALUATION OF RULE BASES

Once we are satisfied with the ontology we can proceed to evaluate the rule
base. The ontology allows a substantial improvement on the number of test
cases that were originally identified as necessary in section 2. The grouping
together of attributes in the ontology identifies predicates that are not

Table 2: Attributes of Animals in ZOOKEEPER

 Predicate

Material
Colour
Pattern
Shade
Eyes
Teeth
Feet
Neck
Legs
Gives Mi lk
Fl ies
Eats
Lays Eggs

Cheetah

hair
tawny
spots
dark
forward
pointed
claws
normal
normal
true
no
meat
false

Tiger

hair
tawny
stripes
dark
forward
pointed
claws
normal
normal
true
no
meat
false

Zebra

hair
white
stripes
dark
sideways
rounded
hoofs
normal
normal
true
no
plants
false

Giraffe

hair
tawny
spots
dark
sideways
rounded
hoofs
normal
long
true
no
plants
false

Ostrich

feathers
black
irregular
light
sideways
none
toes
long
long
false
no
both
true

Penguin

feathers
black
irregular
light
forward
none
toes
normal
normal
false
no
meat
true

Albatross

feathers
white
none
n/a
sideways
none
toes
normal
normal
false
well
meat
true

independent. If we allow for 5 colours, coverage of these as booleans would
require 64 cases. By considering them as they are in the ontology, however,
there are only five cases. If we confine ourselves to testing only the attributes
which the expert has identified as always available as observations, and only
the values actually used by our current collection, we have only 1152
combinations. The useful test data moreover, contains only those cases which
conform to the constraints imposed by the axioms. This enables a substantial
further pruning. If we are able to identify a good set of axioms, then
exhaustive testing becomes a possibility. We can now rigorously specify the
minimal set of test cases that are required to exhaustively test the rule base.
The ontology provides the essential input for our automated test harness, a
prototype of which -̧ called PRONTO - has been implemented in Prolog.

Once the minimal set of test cases for a given rule base has been identified,
testing can begin with the evaluation of the results being provided by an
expert. Incorrect output fall s into one of the three possibil ities that are
outlined below with the potential causes of each type:
1. no answer; this can arise in several situations:

a) the case represents an impossible combination, so an axiom should be
added to the ontology to exclude such cases;

b) the case is possible but these animals are not in the collection. The rule
base is correct, and the combination should not be observed in practice.
We can therefore either add a new rule, extending the coverage to
animals outside the current collection, or simply disregard it; or

c) the case is possible, but identification is reliant on some not always
available feature.

2. a single incorrect answer. This indicates either:

Coat :
 Mater ial {hair ,feathers,scales}
 Col our { white, tawny, black , grey, russet}

Mark ings :
 Pattern {spots,str ipes,i r regular ,none}
 Shade { light,dark , n/a}

Facial Features
 Eyes { for war d,sideways}
 Teeth { pointed,r ounded,none}

Feet {claws,hoofs,toes}
[Comment: feet are hard to observe
(Winston)]

Flies {no, poorly, well }

Eats {meat , pl ants, both}
[Comment: meat includes fish]

Size :
 Neck { long, nor mal }
 Legs { long, nor mal}

Gives Milk { tr ue, false}
Lays Eggs { tr ue, false}
Chews Cud { tr ue, false}
Swims { tr ue, false}

Table 3: Validated Attributes and Values for ZOOKEEPER

a) the case is possible and an offending rule requires amendment, or
b) the case is impossible and an axiom should be added to the ontology is

in order to exclude it;
3. multiple answers; here there are further possibilities;

a) if none of the answers are correct, we have a similar situation to 2., i.e.
either
i) the case is possible and more than one rule requires amendment, or
ii) the case is impossible and we need to add an axiom in order to
exclude it.

b) if the solution contains a single correct answer with at least one
incorrect result, the ontology¸ is sufficient to discriminate the correct
result but at least one rule needs to be made more specific (possibly
using not always available features).

c) if there is more than one correct solution the current ontology is
inadequate and requires another predicate to discriminate the cases. The
rule base should then be amended to include this new predicate.
Additional modifications to the rule base may be required if the solution
also includes erroneous results.

We should be careful in modifying the rule base not to introduce new
problems. For example, a test case that produces a solution of type (1c) may
encourage us to remove the antecedent that relies on the hard to observe
feature. This, in turn, may result in the same case producing solutions of type
(2) or (3). If so, we may have to reconcile ourselves to a certain
incompleteness, or find some always available discriminating observation.
Results of type (2) might lead us to introduce antecedents relating to
intermittently observable features, whereas case (3) may motivate us to
remove them.

This classification of the types of erroneous results leads us to the
development of the testing process as represented diagrammatically in Fig. 1.
Note that process 1, generate case, uses the ontology; the decision violates
axioms?, uses the output from process 1 together with the axioms from the
ontology; process 2, execute cases, uses the rule base and the mappings from
the ontology predicates into the rule base predicates; answer correct? and
animal in collection? requires an extensional description of actual animals
such as is provided by Table 2; processes 3 and 4, add axiom and modify
ontology modify the ontology; processes 5 and 6, modify rules and add rule,
modify the rule base; and case possible? and requires input from the expert.
Adding axioms will prune the cases subsequently generated and additional
and modified rules are tested before a new case is generated.

The ontology cannot, of course, work magic: the testing effort required
even with this test harness is substantial and non-trivial, requiring as it does
considerable expert input. It does, however, supply the discipline and

structure necessary for testing a system, and in any event testing is always for
any system an important and lengthy task, typically consuming anything
between 25% and 30% of the development time of a software project.
Moreover, the time spent in getting the initial ontology right, particularly with
respect to a complete specification of the necessary axioms, is handsomely
repaid by savings in testing required. In addition to these possibilities for
evaluation against the ontology, normal structural checks should, of course, be
applied. The quasi-random testing is, however, unnecessary given the more
structured approach permitted by the ontology.

5. DEMONSTRATION OF PRONTO

Once we have defined the ontology for a rule base, we need to map the
predicates found in the rule base onto the terms in the ontology. We can do
this as a set of Prolog rules. A possible set of mappings is given in Table 4.
Note that no mapping rules are given for teeth/2 , eats/2 , eyes/2 ,
colour/2 , legs/2 or neck/2 since those appear both in the rule base
and the ontology. Note also that not always observable attributes are randomly
included in test cases to reflect that they are sometimes available.

1. generate
case

violates
axiom?

4. modify
ontology

5. modify
rule

6. add
rule

3. add axiom

N

Y

N Y

N

N

Y Y

N

>1

0/1

1

0

>1 answer
correct?

2. execute
case

no. of
answers

?

number
correct

?

case
possible

?

 case in
collection

?

add new
animal?

Y

Figure 2: Schematic of Testing Process

Our first example of the use of PRONTO illustrated in Appendix B1, the
rule base identifies the test case of a swimming animal as a giraffe. Although
this case could be eliminated from the evaluation process by adding an axiom,
this would be the wrong option since the conditions are not impossible. It is
simply a matter of fact that giraffes cannot swim, although some other long
necked, spotted, tawny ungulate might be able to. In the classification given in
section 4, this result is of type (2a) - a single incorrect result which is
theoretically plausible. The correct option in this scenario is to add the
condition swims(X,false) to rule Z11 to indicate that giraffes cannot
swim. In our second example, given in Appendix B2, however an animal with
claws is identified as a giraffe. If we look at the original rule base, all of the
conditions in Z11 are satisfied. Since, according to our ontology, all ungulates
have toes, we know that the case is impossible and we have a scenario of type
(2b). The solution here, as can be observed from the example, is to add an
axiom to rules out cases where we have both chews_cud(X,true) and
feet(X,claws) .

For our third example, consider rules Z13 and Z14. On the basis of
the guaranteed observable predicates, which, recall , do not include
swimming and flying, cases will allow both these rules to fire,
identifying the animal as both a penguin and an ostrich. Such a
situation is shown in Appendix B3. Examination of this case reveals
that ostrich is the right answer, since the cases contain
legs(X,long) and neck(X,long) . This situation is classified as
type (3b) - our ontology is suff icient to discriminate the animal that the
case should be identified as but an additional erroneous solution is also
included. We could rectify this situation without recourse to the

¸ M01: hair(X) : - coat_material(X,hair).
¸ M02: gives_milk(X) : - gives_milk(X,true).
¸ M03: feathers(X) : - coat_material(X,feathers).
¸ M04: flies(X) : - flies(X,true).
¸ M05: flies(X,well) : - flies(X,true).
¸ M06: lays_eggs(X) : - lays_eggs(X,true).
¸ M07: has(X,Y) : - feet(X,Y).
¸ M08: spots(X,dark) : - markings_pattern(X,spots),
¸ ¸¸¸ markings_shade(X,dark).
¸ M09: spots(X,w hite) : - markings_pattern(X,spots),
¸ ¸¸¸ markings_shade(X,light).
¸ M10: stripes(X,black) : - markings_pattern(X,stripes),
¸ ¸¸¸ markings_shade(X,dark).
¸ M11: stripes(X,white) : - markings_pattern(X,stripes),

¸ ¸ ¸ ¸¸ markings_shade(X,light).

Table 4: Mappings between ZOOKEEPER Rule Base and Ontology

intermittently observable predicates by adding legs(X,normal) as
an extra condition to Z14. Discriminating between a cheetah and a
leopard would, however, require an extension to the ontology, since in
terms of what is currently in the ontology the two are identical. We
would need to extend the ontology to allow for a condition such as
having the abili ty to climb trees, or having retractable claws.

6. DISCUSSION

Here we begin with Boehm’s well known distinction between verification and
validation (Boehm 1981):

verification: are we building the product right?
validation: are we building the right product?

The purpose of verification is to determine whether or not the implemented
system correctly fulfils its design while the process of validation aims to
ensure that the functionality embodied in the design meets the user’s actual
requirements. Verification is usually performed in one of two ways:

1. domain-independent analysis of relationships between the rules (this
correlates to what we termed the assessment of internal consistency in
section 2);

2. comparison of the behaviour of the system to a (more or less) formal
design specification.

Validation, according to Boehm's definition, should be performed by
comparing the requirements specification (which makes the user's
requirements explicit) with the formal design specification. However, for
KBSs formal requirements specification and design specification documents
are rarely available. In theory, validation of a KBS should only be based on
the results of test cases if the system has already been verified. For this
reason, in the evaluation of KBS systems verification and valuation are often
not distinguished and we find descriptions of V&V techniques, rather than
separate discussions of methods of verification or of validation. When
Boehm's definitions are applied to the evaluation KBSs, the clear distinction
becomes somewhat blurred.

The ontology used in PRONTO specifies the conceptualisation underlying
the rule base rather than the domain and can be taken to form part of the
design specification. Now, whether erroneous results require us to change the
rule base or the ontology indicates whether we are performing verification or
validation. When the ontology is used to determine that the rule base should
be changed, the system is being verified since it does not match the design as
embodied by the ontology. On the other hand, when we are required to
modify the ontology we are performing validation as (this part of) the

https://www.researchgate.net/publication/224483517_Software_Pioneers?el=1_x_8&enrichId=rgreq-3ac8c8d2-fadb-4b5f-9537-21b2f3ea8443&enrichSource=Y292ZXJQYWdlOzI2MjE1NjE7QVM6MTAxNDEwMjU5NjA3NTY1QDE0MDExODk0OTk5NzQ=

specification does not fulfil the requirements of the user. Recall the different
types of erroneous results that were distinguished in section 4; where the rule
base requires modification (types 2a, 3a(i) and 3b) the system does not satisfy
the ontology and we can say that making these types of changes is verification
of the system. However, where the ontology needs refinement (types 1a, 1b,
1c, 2b, 3a(ii) and 3c) we can say that the specification does not match users
requirements and modifying the ontology is validation of the system.

The situation is slightly more complex, however, because if we actually
revisit the descriptions given in section 4, we see that in case 1b the ontology
and the rule base are in fact correct and should only be modified if we want to
extend the coverage of the rule base (thereby extending the user’s
requirements. This is, therefore, neither verification nor validation. Also,
results of type (3c) require that we modify both the ontology and the rule
base. However, as the initial rule base matches the specification in the form of
the ontology, here we are performing validation only. This is summarised in
Table 5.

The question is, do we need to worry about maintaining the distinction?
That is, does our ability to assess whether a particular evaluation technique is
verification or validation help in producing better KBSs? We would say that
the answer is no, since the purpose of the distinction was originally to help
determine whether the problem lies with the implementation or the design. If
knowing whether we are involved in verification or validation requires us to
know whether a test case indicates a problem with the rule base or with the
ontology, we have already addressed the original problem and provided we
recognise that there are two separate forms of difficulty, the terminology used
is not important

7. CONCLUSIONS

In this paper we have shown how an ontology can be used to aid verification
and validation, illustrated by a simple example, and a discussion of an
implemented prototype system. The main conclusions are:

 ̧
 ̧

verification
 ̧
validation

1a

✔

1b

✔

1c

✔

2a

✔

2b

✔

3a(i)

 ✔

3b

✔

3c

✔

3a(ii)

 ✔

Table 5: Case Types as Verification or Validation

– having an ontology provides an objective point of reference for
verification and validation activities;

– much of the interaction with the expert can be done in terms of the
ontology. This means that the role of the expert is better defined, and it is
not necessary to judge rules which may depend for their meaning on
implicit assumptions, and the context within which they will be used.
Essentially the expert can focus on the conceptualisation, free from
implementation details;

– testing can be structured by the ontology;
– when test fail s, the failures can be classified so as to determine the

appropriate response;
– some test results will result in a modification of the program and others in

a modification of the ontology. As was discussed in section 6 this provides
a useful distinction between failures resulting from the way the
conceptualisation has been implemented to the program and failures
resulting from inadequacies in the conceptualisation itself.

For future work we would li ke to extend the Pronto system to incorporate
existing work in the evaluation of KBSs. In particular, we aim to incorporate a
facility that will assist in the identification the rules which need modification
(Coenen and Bench-Capon, 1993).

REFERENCES

Bench-Capon, T.J.M. (1998) “The Role of Ontologies in the Verification and Validation of
Knowledge Based Systems”, Proceedings of the Ninth International Workshop on Database
and Expert Systems, IEEE Press, Los Alamitos, pp64-69.

Coenen, F.P. and T.J.M. Bench-Capon (1993) Maintenance of Knowledge Based Systems:
Theory, Tools and Techniques, Academic Press, London.

Boehm, B.W. (1981) Software Engineering Economics, Prentice Hall .
Gruber, T.R. (1995) “Towards Principles for the Design of Ontologies Used for Knowledge

Sharing” , Int. J. Human-Computer Interaction, 43, 907-928.
Jones, D.M., T.J.M. Bench-Capon, and P.R.S. Visser (1998) “Methodologies for Ontology

Development” , Proc. IT&KNOWS Conference of the 15th IFIP World Computer Congress,
Budapest, Chapman-Hall .

Vanthienen, J. (1991) “Knowledge Acquisition and Validation Using a Decision Table
Engineering Workbench”, 1st World Congress on Expert Systems, Pergamon Press, pp1861-
8.

Visser, P.R.S. (1995) “Knowledge Specification for Multiple Legal Tasks” , Kluwer.
Winston, P.H. (1992) Artificial Intelligence, Third Edition. Addison Wesley, Reading, Mass.

APPENDIX A - THE ZOOKEEPER RULE BASE

The rulebase for ZOOKEEPER is given in Winston (1992), page 121-4. It is explicitl y limited
to the identification of seven animals: a cheetah, tiger, zebra, giraffe, ostrich, penguin and an
albatross. It has15 rules, enabling identification of these seven animals, often in several ways,
to allow for some observations being unobtainable. The rules (expressed here in Prolog form)
are:

Z1: mammal(X) :- hair(X).
Z2: mammal(X) :- givesMilk(X).
Z3: bird(X) :- feathers(X).
Z4: bird(X) :- flies(X),
¸¸ laysEggs(X).
Z5: carnivore(X) :- mammal(X),
¸¸ eats(X,meat).
Z6: carnivore(X) :- mammal(X),
¸¸ teeth(X,pointed),
¸¸ has(X,claws),
¸¸ eyes(X,forwardPointing).
Z7: ungulate(X) :- mammal(X),
¸¸ has(X,hoofs).
Z8: ungulate(X) :- mammal(X),
¸¸ chewsCud(X).
Z9: cheetah(X) :- carnivore(X),
¸¸ colour(X,tawny),
¸¸ spots(X,dark).
Z10: tiger(X) :- carnivore(X),
¸¸ colour(X,tawny),
¸¸ stripes(X,black).
Z11: giraffe(X) :- ungulate(X),
¸¸ legs(X,long),
¸¸ neck(X,long),
¸¸ colour(X,tawny),
¸¸ spots(X,dark).
Z12: zebra(X) :- ungulate(X),
¸¸ colour(X,white),
¸¸ stripes(X,black).
Z13: ostrich(X) :- bird(X),
¸¸ not flies(X),
¸¸ legs(X,long),
¸¸ neck(X,long),
¸¸ colour(X,blackandwhite).
Z14: penguin(X) :- bird(X),
¸¸ swims(X),
¸¸ not flies(X),
¸¸ colour(X,blackandwhite).
Z15: albatross(X) :- bird(X),
¸¸ flies(X,well).

APPENDIX B1

Testing case:
swims: true
lays_eggs: false
gives_milk: true
legs: long
neck: long
feet: hoofs
teeth: rounded
eyes: forward
markings_pattern: spots
markings_shade: dark
coat_colour: tawny
coat_material: hair

One result: giraffe.
Is the answer correct (y/n/q)?
|: n.
You need to modify a rule.
Enter head of rule to modify.
|: animalis.
Enter arity of rule to modify.
|: 2.
Current listing for rule is:
Clause 1:
animalis(A, cheetah) :-
¸ carnivore(A),

 colour(A, tawny),
 spots(A, dark).

Clause 2:
animalis(A, tiger) :-
¸ carnivore(A),
¸ colour(A, tawny),
¸ stripes(A, black).
Clause 3:
animalis(A, giraffe) :-
¸ ungulate(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, tawny),
¸ spots(A, dark).
Clause 4:
animalis(A, zebra) :-
¸ ungulate(A),
¸ colour(A, white),
¸ stripes(A, black).
Clause 5:
animalis(A, ostrich) :-
¸ bird(A),
¸ not flies(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, black),
¸ spots(A, white).

Clause 6:
animalis(A, penguin) :-
¸ bird(A),
¸ swims(A),
¸ not flies(A),
¸ colour(A, black),
¸ spots(A, white).
Clause 7:
animalis(A, albatross) :-
¸ bird(A),
¸ flies(A, well).
Select option:
1. Add clause.
2. Add condition to clause.
3. Remove clause.
4. Remove condition from
clause.
|: 2.
Enter clause number to add
condition
for animalis/2.
|: 3.
Current clause.
animalis(A, giraffe) :-
¸ ungulate(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, tawny),
¸ spots(A, dark).
Enter new condition.
|: swims(A,false).
New clause.
animalis(A, giraffe) :-
¸ ungulate(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, tawny),
¸ spots(A, dark),
¸ swims(A, false).
Re-testing case:
 swims: true
 lays_eggs: false
 gives_milk: true
 legs: long
 neck: long
 feet: hoofs
 teeth: rounded
 eyes: forward
 markings_pattern: spots
 markings_shade: dark
 coat_colour: tawny
 coat_material: hair
No answers.

APPENDIX B2

Testing case :
 lays_eggs: false
 gives_milk: true
 chews_cud: true
 legs: long
 neck: long
 feet: claws
 teeth: rounded
 eyes: forward
 markings_pattern: spots
 markings_shade: dark
 coat_colour: tawny
 coat_material: hair
One result: giraffe.
Is the answer correct (y/n/q)?
|: n.
Is the case possible (y/n)?
|: n.
You need to add an axiom.
Enter attribute and value pairs
for
new axiom.
Enter attribute.
Possibilities:
[coat_material,coat_colour,
markings_pattern,

markings_shade, eyes, teeth,
feet, flies, eats, neck, legs,
gives_milk,lays_eggs,
chews_cud, swims].
|: chews_cud.
Enter value for attribute
'chews_cud'.
Possibilities: [true, false].
|: true.
Enter attribute.
Possibilities: [coat_material,
coat_colour, markings_pattern,
markings_shade, eyes, teeth,
feet,
flies, eats, neck, legs,
gives_milk,lays_eggs,
chews_cud,
swims].
|: feet.
Enter value for attribute
'feet'.
Possibilities: [claws, hoofs,
toes].
|: claws

APPENDIX B3

Testing case:
 swims: true
 gives_milk: false
 legs: long
 neck: long
 flies: false
 feet: claws
 teeth: pointed
 eyes: forward
 markings_shade: light
 markings_pattern: spots
 coat_colour: black
 coat_material: feathers
More than one result: [penguin,
ostrich].
Can you modify a rule (y/n/q)?
|: y.
Enter head of rule to modify.
|: animalis.
Enter arity of rule animalis to
modify.
|: 2.
Current listing for rule
animalis/2
is:
Clause 1:
animalis(A, cheetah) :-
¸ carnivore(A),
¸ colour(A, tawny),
¸ spots(A, dark).
Clause 2:
animalis(A, tiger) :-
¸ carnivore(A),
¸ colour(A, tawny),
¸ stripes(A, black).
Clause 3:
animalis(A, giraffe) :-
¸ ungulate(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, tawny),

¸ spots(A, dark).
Clause 4:
animalis(A, zebra) :-
¸ ungulate(A),
¸ colour(A, white),
¸ stripes(A, black).

Clause 5:
animalis(A, ostrich) :-
¸ bird(A),
¸ not flies(A),
¸ legs(A, long),
¸ neck(A, long),
¸ colour(A, black),
¸ spots(A, white).
Clause 6:
animalis(A, penguin) :-
¸ bird(A),
¸ swims(A),
¸ not flies(A),
¸ colour(A, black),
¸ spots(A, white).
Clause 7:
animalis(A, albatross) :-
¸ bird(A),
¸ flies(A, well).
Select option:
1. Add clause.
2. Add condition to clause.
3. Remove clause.
4. Remove condition from
clause.
|: 2.
Enter clause number to add
condition for animalis/2.
|: 6.
Enter new condition.
|: legs(A,normal).
Re-testing case:
 swims: true
 gives_milk: false
 legs: long
 neck: long
 flies: false
 feet: claws
 teeth: pointed
 eyes: forward
 markings_shade: light
 markings_pattern: spots
 coat_colour: black
 coat_material: feathers
One result: ostrich.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

