
Principles of Computer Game 
Design and Implementation

Lecture 11



We already learned

• Vector operations

– Sum 

– Subtraction

– Dot product 

– Cross product

– A few others about jMonkey, eg. User input, 
camera, etc

2



Outline for Today

• jMonkey Bits 

• Collision detection – overlap test and 
intersection test

3



jMonkeEngine Bits and Bobs



Computer Games…

• … are not just about graphics and entity 
manipulation. One needs (among other things)

– Camera control

– Keyboard input

– Mouse events

– Text info

– Textures and materials

– Audio

We are going to look at these issues

5



Just the Bare Minimum

• Much more information can be 
found on the jMonkeyEngine
web site & in the Book

• Examples are based on jME
tests and tutorials

6



Simple Camera

Position of camera

Direction of looking

Viewing angle



HelloCamera

cam.setFrustumPerspective(45.0f, 

(float)settings.getWidth() / 

(float)settings.getHeight(), 1f, 100f);

cam.setLocation(new Vector3f(10, 10, 10));

cam.lookAt(Vector3f.ZERO,Vector3f.UNIT_Y);

Look at
Direction “Up”

Camera location

8

Viewing angle

Min distance Max distance

Aspect
ratio



Key & Mouse Bindings

• Events are mapped to triggers

• Triggers call action/analogue listeners

• Action/analogue listeners are called from the 
main loop

9



Example ActionListener

private ActionListener actionListener = new 

ActionListener(){

public void onAction(String name, 

boolean pressed, float tpf) {

if(name.equals("Move right")){

gBox.move(5*tpf,0,0);

}

else if(name.equals("Move left")) {

gBox.move(-5*tpf,0,0);

}

}

10



Sample AnalogListener

private AnalogListener analogListener = new 

AnalogListener() { 

public void onAnalog(String name, 

float value, float tpf) {

if(name.equals("Move right")){

gBox.move(5*tpf,0,0);

}

else if(name.equals("Move left")) {

gBox.move(-5*tpf,0,0);

}

11



Deceleration

• We will look in more detail later, but for now

– Simulate a slowing ball motion

12



HelloDeceleration

public class Example07 extends 
SimpleApplication {

Vector3f direction = new Vector3f(1,0,0);

float speed = 5;

Geometry gBox;

… … … 

protected void simpleUpdate() {

speed -= 2*tpf;

if(speed < 0.01f) {

speed = 0;

}

gBox.move(direction.mult(boxSpeed*tpf)); }

13

Direction of motion

Velocity

Reduce the speed gradually

Make sure it zeroes



User Control V Modelling

• In these examples, user controlled completely the 
state of the world or there was no user input. 

– How to mix user control and physical modelling?

• Game states

User Auto

Motion simulation stops

User initiates motion simulation

User controls
the world

14



Game States

• jME3 provides good support for game states

• We use a simple switch operator

– enum State {user, auto};

– State state = State.auto;

15



simpleUpdate

public void simpleUpdate(float tpf) {

switch(state) {

case auto: 

boxSpeed -= 2*tpf;

if(boxSpeed < 0.01f) {

boxSpeed = 0;

state = State.user;

}

gBox.move(direction.mult(boxSpeed*tpf));

}

}

16

User Auto

Motion simulation stops

User initiates motion simulation
User controls
the world



onAction

public void onAction(String name, boolean isPressed, float tpf){

switch(state) {

case user:

if(name.equals("Move right")){

boxSpeed = 5;

direction = new Vector3f(1,0,0);

state = State.auto;

}

else if(name.equals("Move left")) {

boxSpeed = 5;

direction = new Vector3f(-1,0,0);

state = State.auto;

}

break;

case auto:

// do nothing

}

}

17



Text Fields

guiFont = 
assetManager.loadFont("Interface/Fonts/

Default.fnt");

BitmapText text = new BitmapText(guiFont);

text.setSize(guiFont.getCharSet().getRende
redSize());

text.move(settings.getWidth() / 2 + 50,

text.getLineHeight() + 20,

0);

text.setText("Ha ha ha!");

guiNode.attachChild(text);

18



Collisions

• Collision detection
– Do moving entities collide?

– Mostly geometry and algorithms

• Collision response
– How to react to a collision

– Mostly physics

• One of common tasks in game development
– Source of errors and “glitches” 

19



Video Evidence

• Add a youtube video showing the error of 
collision

• https://www.youtube.com/watch?v=mYhNvO
g5yJ0

20



Static vs Dynamic Objects

• Static objects don’t move; dynamic 
objects do

• Collision between a static and
dynamic objects
– Easier

• Collision between two (or more) 
dynamic objects 
– Harder

21



Collision Detection: The Problem

• For moving objects

– Did/will they collide? (bullet and target) 

– When did/will they collide? (cars)

– First collision / all collisions (snooker balls / bricks)

– Compute the collision normal vector (for response)

– Depends on the game

Given speed, shape, and time

?

22



Main Loop

Naïve approach:

for(i=0;i<num_obj-1;i++)

for(j=i+1;j<num_obj;j++)

if(collide(i,j)){

react;

}

• Issues:
– How

– Can be very slow

23

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Collision Detection: How

Two basic techniques

• Overlap testing

– Detecting whether a collision has already occurred

– Most common technique

• Intersection testing

– Predicting a collision

?

?

24



B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375
t0.40625

BB B

A

A

A

A
A A

25

Overlap Testing:
Collision Time

• Collision time can be calculated by moving object 
“back in time” until right before collision

– Bisection is an effective technique



26

Limitations

• Fails with objects that move too fast

– Unlikely to catch time slice during overlap

t0t-1 t1 t2

bullet

window

Leads to 
interpenetration and 
tunnelling



Glitches in Games

• Players/objects falling through 

• Projectiles passing through targets

• Players getting where they should not get

• Players missing a trigger boundary

Hard to prevent
due to the 

discrete 
motion

Caused by 
faults in 
collision 
detection

27



Possible Solutions

• Possible solutions:

– Design constraint on speed of objects
• May not always be feasible (bullets, etc.)

– Reduce simulation step size
• Hardware limitations, odd shapes

– Intersection testing

28



29

Intersection Testing

• Predict future collisions

• When predicted:

– Move simulation to time of collision

– Resolve collision

– Simulate remaining time step

• Assume constant speed (over some time)

– Ideal for dynamic-static object collision



Example: Moving Sphere

• Extrude geometry in direction of movement

– sphere turns into a “capsule” shape

• Then, test for overlap!

t0

t1

30



31

Limitations

• Issue with networked games
– Future predictions rely on exact state of world at present 

time

– Due to packet latency, current state not always coherent

• Assumes constant velocity and zero acceleration over 
simulation step
– Has implications for physics model



Making It Work

• It is not feasible to test for every pair of 
entities if they collide

– N2 tests

• Therefore, usually we consider

– Detailed view (colliding triangles and meshes)

– Mid-level view (simplified geometry)

– Global view (data structures to partition the 
entities)

32


