
Principles of Computer Game
Design and Implementation

Lecture 13

We already knew

• Collision detection – overlap test and
intersection test

• Detailed view

• Mid-level view

2

Outline for today

• High-level view for collision detection

– Uniform grid

3

High-Level View

Too many objects in the world problem

• Divide the space into regions
• Check for collisions inside regions

• An approximation
• Spatial data structures needed

4

Moving objects

Stationary objects

Spatial Data Structures

• Uniform grids

– Implicit grids

• Non-uniform grids

• Arbitrary space partitions

Used for collision detection
and various other purposes

Camera
frustum

Example: Visibility check
as collision detection

5

Uniform Grid

• Split the volume into 3-
dimentional cells

• For a moving object

– Identify objects in
surrounding cells

– Test for collision with those
objects

From now on all pictures will be
in 2D. Same principles apply

6

Locating Objects

• i = (int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)

• Array of linked lists
– Test for collision for every element of the list at

grid(i,j,k)

i

j

0

0
Linked lists of objects

7

Ray Tracing

• Intersection of a ray with an object

– Computer graphics

– Shooting

8

?

Ray = “half-line”

Ray collision detection:
which object will it intersect with?

Ray Collision Detection

• One can define mathematically

– Ray to triangle collision

– Ray to box collision

– Ray to sphere collision

– …

9

Grid is ideally
suited for tracing
rays

Ray Collision Detection in jME

• jMonkeEngine can detect Ray-Geometry
collisions

• See Examples coming with the library

10

Explicit Uniform Grid

Advantages:

• Very fast

• Easy to implement (especially in C, C++)

Disadvantages

• May be difficult in Java (generic /non-generic
type mixes)

• Use a lot of memory (proportional to the number
of cells)

14

Spatial Hash

• Represent grids implicitly

i

j

0

0
Linked
lists of
objects

(i,j,k)
Hash

• i = (int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)

class Triple {int x,y,z; Triple(..){..}};

HashMap<Triple,LinkedList<Spatial>> grid;

15

Side Remark: Maps

• How to store associations of the form

(key, value)?

– For example,
(gav, 3)
(mike, 5)
(john, 1)

List them

l(gav, 3) (mike, 5) … l(john, 1)

As many elements as pairs 16

Maps As Lists

• Storing information in a list is memory
efficient…

• … but search is expensive

– Queries like “what age is john” potentially will go
through all the stored elements

17

l(gav, 3) (mike, 5) … l(john, 1)

Hash Function

• Let h(x) maps the key to a number between 0
and N

– E.g. name -> number of first letter in alphabet

• gav -> 7

• john -> 10

• mike -> 11 Bad idea!

18

Hash Map

Linked
lists of
objects

1

7

10

h

0

…

gav, 3

John, 1

ann,5 alice, 7

…

26 What’s john’s age?
What’s alice’s age?

Clash

19

Spatial Hash

• Represent grids implicitly

i

j

0

0
Linked
lists of
objects

(i,j,k)
Hash

• For example,

h(i,j,k) = i+j+k mod 100

20

Very bad choice

Good Hash Function

• Ideally, for two keys k1, k2 there shouldn’t be a
clash, that is,

h(k1) ≠ h(k2)

• This is impossible to achieve

• Writing a “good” hash function is hard

• Java has in-built support (but you may wish to
supply your own implementation of hash
function)

(see javadoc on HashMap)

21

Spatial Hash

Advantages

• Moderate memory use (proportional to the
number of objects)

• Fast access

• Easy in Java

Disadvantages

• Slower than array lookup

• Trickier in C/C++

22

Cell Size

• How fine should the grid be?

23

Too fine Too coarse Too coarse and
too fine?

Inadequate

Cell size should roughly be the size of an object.
• Works in some cases
• Does not work in others

Cell Size

• How fine should the grid be?

24

Too fine Too coarse Too coarse and
too fine?

Inadequate

Cell size should roughly be the size of an object.
• Works in some cases
• Does not work in others

