
Principles of Computer Game
Design and Implementation

Lecture 14

We already knew

• Collision detection – high-level view

– Uniform grid

2

Outline for today

• Collision detection – high level view

– Other data structures

3

Non-Uniform Grids

• Locating objects
becomes harder

• Cannot use
coordinates to identify
cells

• Use trees and navigate
them to locate the cell.

4

Idea: choose the cell size
depending on what is put
there
• Ideal for static objects

Quad- and Octrees

Quadtree: 2D space partitioning

• Divide the 2D plane into 4 (equal size)
quadrants

– Recursively subdivide the quadrants

– Until a termination condition is met

5

Quad- and Octrees

Octree: 3D space partitioning

• Divide the 3D volume into 8 (equal size) parts

– Recursively subdivide the parts

– Until a termination condition is met

6

Termination Conditions

• Max level reached

• Cell size is small enough

• Number of objects in any sell is small

7

k-d Trees

k-dimensional trees

• 2-dimentional k-d tree
– Divide the 2D volume into 2

parts vertically
• Divide each half into 2 parts

horizontally
– Divide each half into 2 parts

vertically

» Divide each half into 2 parts
horizontally

• Divide each half ….

8

1

1

3

2

2 3

k-d Trees vs (Quad-) Octrees

• For collision detection k-d trees can be used
where (quad-) octrees are used

• k-d Trees give more flexibility

• k-d Trees support other functions

– Location of points

– Closest neighbour

• k-d Trees require more computational
resources

9

Grid vs Trees

• Grid is faster

• Trees are more accurate

• Combinations can be used

10

Cell to tree Grid to tree

Binary Space Partitioning

• BSP tree: recursively partition tree w.r.t.
arbitrary dividing planes

11

How To Partition

• Depend on the task

– Originally for hidden-surface removal optimisation

– Used in ray tracing

– Used where octrees or k-d trees are used

• In many cases are precomputed in advance

– DOOM, Quake,… for collision detection (among
other things)

12

Solid-Leaf BSP Trees

• Build to represent “solid volume” occupied by
the geometry

– How to keep our hero in the room?

13

Floor plan

Space Partitioning

Y

15

X

Space Partitioning

X

Y

(0,0,0)

(0,0,0)
(0,1,0)

(0,0,0)
(-2,1,0)

(0,5,0)
(-1,1,0)

(0,5,0)
(-1,2,0)

Empty

Empty

Empty

Solid

Solid

Left branch: in front
Right branch: behind

1

1

2

4

3

16

+
-

+ -

(-1,2,0)

(0,1,0)

(0,5,0)

(-1,-1,0)

(-2,1,0)

BSP Code (1)

17

class Plain {

private Vector3f myPosition, myDirection;

public Plain(Vector3f position, Vector3f direction) {

myPosition = position;

myDirection = direction;

}

public boolean isInFront(Vector3f pos) {

if(pos.subtract(myPosition).dot(myDirection)>0) {

return true;

}

else {

return false;

}

}

}

Does not take the
boundary into account

BSP Code (2)

18

enum NodeType {solid, empty, internal};

class BSPTree {

NodeType myType;

Plain myPlain;

BSPTree myInfront, myBehind;

public BSPTree(NodeType t) {

// if((t != NodeType.empty) || (t != NodeType.solid))

// throw new Exception();

myType = t;

myPlain = null;

myInfront = null;

myBehind = null;

}

BSP Code (3)

19

public BSPTree(Plain p, BSPTree infront, BSPTree behind) {

myPlain = p;

myType = NodeType.internal;

myInfront = infront;

myBehind = behind;

}

BSP Code (4)

20

public boolean isSolid(Vector3f pos) {

if(myType == NodeType.solid) {

return true;

}

if(myType == NodeType.empty) {

return false;

}

if(myPlain.isInFront(pos)) {

return myInfront.isSolid(pos);

}

else {

return myBehind.isSolid(pos);

}

}

BSPTree solidT = new BSPTree(NodeType.solid);

BSPTree emptyT = new BSPTree(NodeType.empty)

t = new BSPTree(new Plain(new Vector3f(0,0,0), new Vector3f(0,1,0)),

new BSPTree(new Plain(new Vector3f(0,0,0),

new Vector3f(-2,1,0)),

new BSPTree(new Plain(new Vector3f(0,5,0),

new Vector3f(-1,2,0)),

new BSPTree(new Plain(new

Vector3f(0,5,0),

new

Vector3f(-1,1,0)),

emptyT,

solidT

),

solidT

),

emptyT

),

emptyT

);

X

Y

(0,0,0)

(0,5,0)

1

BSP Code (5)

21

1
2

4

3

BSP Code (6)

22

private AnalogListener analogListener = new

AnalogListener() {

public void onAnalog(String name,

float value, float tpf){

if(name.equals("Move right")){

Vector3f newPos =

(ball.getLocalTranslation().add(Vector3f.UN

IT_X.mult(10*tpf)));

if(t.isSolid(newPos)){

ball.setLocalTranslation(newPos);

}

}

Conclusion

• Hierarchical data structures help on both mid-
and high-level collision detection

• About 10% of console memory is spent on
collision detection data structures

• Collision detection is easy when the number
of entities is small, but becomes a challenge
when the number grows.

23

