
Principles of Computer Game
Design and Implementation

Lecture 16

We already learned

• Collision detection

– two approaches (overlap test, intersection test)

– Low-level, mid-level, and high-level view

• Collision response

– Newtonian mechanics

2

Outline for today

• An application of Newtonian dynamics in
targeting

• Collision recipe

– Bouncing problem

3

Physics: Prediction

• Consider the targeting problem: a gun takes
aim at a target

– Given: S – distance to the target

– Compute the bullet velocity vector

• Incomplete information

4
S

Targeting Problem (1)

• Consider horizontal and vertical components
of the velocity vector V

• Assume that

– the horizontal component is given and

– it does not change (no wind / drag)

• Flying time is

5
S

V

Vh

Vv

Targeting Problem (2)

• Vertically, the motion is up and down

• Assume that

– the gun and target are levelled

• At the highest point

– time to the highest point is half the flying time

6
S

V

Vh

Vv

g

Targeting Problem (3)

• Thus,

7
S

V

Vh

Vv

g

HelloAiming

8

float distance = 100f;

bullet.setLocalTranslation(0, 0, 0);

target.setLocalTranslation(distance, 0, 0);

...

float vx = 20f;

float vy = (g*distance) / (2*vx);

velocity = new Vector3f(vx,vy,0);

...

pubic void simpleUpdate() {

if(bullet.getLocalTranslation().getY() >= 0) {

velocity = velocity.add(gravity.mult(tpf));

bullet.move(velocity.mult(tpf));

}

}

Run it with different vx!!

X-component of
velocity vector.
“Horizontal” speed.

• Work well when motion is slow (small
simulation steps) and forces are well-defined

– F, a and V remain same in the time interval

• Does not work well when

– Simulation steps are large

– Approximation errors accumulate

– F, a and V change rapidly over time

Euler Steps: Advantages and
Disadvantages

9

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity

If Accuracy Matters

• Use other integration methods

– Typically, much more computationally demanding

• Cheat

– E.g. in our aiming example, if the bullet speed is
high, consider it travel along a straight line

– Adjust its position if necessary

10
S

Computer Science Approach:
Iterations

• Shoot at will

• See where it land

• If undershot, increase power

• If overshot, decrease power

11

But what will the user think?

Collision Resolution

Colliding objects change the trajectory

• Two main approaches

– Impact

• Instantaneous change of velocity as a result of collision

– Contact

• Gradual change of velocity and position

12

Time line
Time line

Penetration

• Both Impact and Contact may
lead to penetration of one entity
into another

– Calculate the exact time of collision

• Complex computations

13

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375
t0.40625

BB B

A

A

A

A
A A

14

Recall: Collision Time

• Collision time can be calculated by moving object
“back in time” until right before collision

– Bisection is an effective technique

Penetration

• Both Impact and Contact may
lead to penetration of one entity
into another

– Calculate the exact time of collision

• Complex computations

• Collision may never be seen

– Treat penetration as part of
collision

15

Collision Detection

CollisionResults results =

new CollisionResults();

boxes.collideWith(ball.

getWorldBound(), results);

if (results.size() > 0) {

…

}

16

protected void simpleUpdate() {

…

if(results.size() > 0) {

velocity.setY(-velocity.getY());

}

…

}

Simple Impact-Based Response

Problems:
1. Assumes floor is horizontal
2. Penetration is not fully taken into account

17

Penetration Can Cause Glitches

Time line

if(results.size() > 0) {

velocity.setY(-velocity.getY());

}

18

One of the jME2
examples handles
collisions this way…. ☺

Better Solution

Time line

if(results.size() > 0) {

velocity.setY(FastMath.abs(velocity.getY()));

}

19

Ball-Plain Collision

• Still works

• So, what’s the difference?

20

if(results.size() > 0) {

velocity.setY(

FastMath.abs(velocity.getY()));

}

X

Y

Ball-Plain Collision Recipe

• Split the ball velocity vector into two
components

• V = VN + V||

– VN = (VN)N

– V|| = V – VN

21Before collision After collision

V’ = V’N + V’||

– V’N = abs(VN)N

– V’|| = V||

Energy Loss

• When entities collide some energy is lost

• Simple model:

22

After collision

V’ = V’N + V’||

– V’N = λ abs(VN)N

– V’|| = V||

No friction

Energy loss

Recall: Quaternion from 3 Vectors

• q.fromAngleAxis(angle, axis) : (x,y,z) -> (x1,y1,z1)

• q.fromAxes(x1,y1,z1) –

“inverse”

23

angle

X

Y

Z

axis

HelloBounce (1)

24

protected Geometry boxFromNormal(String name,

Vector3f n) {

Box b = new Box(10f, 1f, 10f);

Geometry bg = new Geometry(name, b);

Material mat = new Material…; bg.setMaterial(mat);

Quaternion q = new Quaternion();

q.fromAxes(n.cross(Vector3f.UNIT_Z), n,

Vector3f.UNIT_Z);

bg.setLocalRotation(q);

return bg;

}

Recall: X = Y × Z

Just to set up the scenery

HelloBounce (2)

25

if(…) {

float projVal = velocity.dot(floor2Normal);

Vector3f projection = floor2Normal.mult

(projVal);

Vector3f parall = velocity.subtract

(projection);

velocity = parall.add(floor2Normal.mult

(energyLoss*FastMath.abs(projVal)));

}

