
Principles of Computer Game
Design and Implementation

Lecture 23

We already learned

• Decision Tree

2

Outline for today

• Finite state machine

3

4

Creating & Controlling AI Behaviors

Behavior: A Sequence of Actions

The patrol and guard behavior is defined as a sequence of actions

Sense

Think

Act

So, Basically…

• An agent goes through a sequence of states

• Arrows indicate transitions

5

6

Finite-State Machine (FSMs)

• Abstract model of computation

– Formally:

• Set of states

• A starting state

• An input vocabulary

• A transition function that maps inputs and the current
state to a next state

7

FSMs In Game Development

Deviate from formal definition
1. States define behaviors (containing code)

• Wander, Attack, Flee

• As longer as an agent stays in a state, it carries on the same action

2. Transition function divided among states
• Keeps relation clear

3. Extra state information
• For example, health

Recall: User Control V Modelling

• In these examples, user controlled completely the
state of the world or there was no user input.

– How to mix user control and physical modelling?

• Game states

User Auto

Motion simulation stops

User initiates motion simulation

User controls
the world

8

9

Finite-State Machine:
UML Diagram

Wander Attack

Flee

See Enemy

L
ow

 H
ea

lth

N
o E

nem
y

No Enemy

Initial state

State Actions

• Actions is what player sees
– Movement

– Animation

• Instead of one action can consider
– onEntry

• Executed when FSM enters the state

– onExit

– onUpdate
• Runs every tick while FSM is in the state

10

Sense

Think

Act

11

Finite-State Machine:
Approaches

• Three approaches

– Hardcoded (switch statement)

– Scripted

– Hybrid Approach

12

Hard-Coded FSM
enum State {wander, attack, flee};

State state;

…

switch (state)

{

case wander:

Wander();

if(SeeEnemy()) { state = State.attack; }

break;

case attack:

Attack();

if(LowOnHealth()) { state = State.flee; }

if(NoEnemy()) { state = State.wander; }

break;

case flee:

Flee();

if(NoEnemy()) { state = State.wander; }

break;

}

Hard-Coded FSM: Weaknesses

• Maintainability
– Language doesn’t enforce structure

– Can’t determine 1st time state is entered

• FSM change -> recompilation
– Critical for large projects

– Cannot be changed by game designers / players

• Harder to extend
– Hierarchical FSMs

– Probabilistic / fuzzy FSMs

13

14

Finite-State Machine:
Scripted with alternative language

BeginFSM
State(STATE_Wander)
OnEnter

Java code
OnUpdate

Java code

if(seeEnemy()) ChangeState(STATE_Attack);

OnExit

Java code

State(STATE_Attack)
OnEnter

Java code
OnUpdate

Java code to execute every tick
OnExit

EndFSM

15

Finite-State Machine:
Scripting Advantages

1. Structure enforced

2. Events can be handed as well as polling

3. OnEnter and OnExit concept exists

4. Can be authored by game designers

– Easier learning curve than straight C/C++

16

Finite-State Machine:
Scripting Disadvantages

• Not trivial to implement

• Several months of development

– Custom compiler
• With good compile-time error feedback

– Bytecode interpreter
• With good debugging hooks and support

• Scripting languages often disliked by users

– Can never approach polish and robustness of commercial
compilers/debuggers

17

Finite-State Machine:
Hybrid Approach

• Use a class and C-style macros to approximate a scripting
language

• Allows FSM to be written completely in C++ leveraging existing
compiler/debugger

• Capture important features/extensions
– OnEnter, OnExit
– Timers
– Handle events
– Consistent regulated structure
– Ability to log history
– Modular, flexible, stack-based
– Multiple FSMs, Concurrent FSMs

• Can’t be edited by designers or players

Transitions

• Internal

– Independent of environment

– E.g. out of ammo

• External

– Event-driven

• Immediate

• Deferred

– E.g. to wait till animation sequence stops

18

19

Transitions

20

Transitions

• Compare

• With

Decision Trees in Transitions

21

Computationally-
expensive test performed
twice

Computationally-
expensive test performed
once

Generalisation: Hierarchical FSM

• Often, there are several “levels” of behaviour

– Complications from “insignificant details”

22

Enemy dead

Enemy close

Defend
Attack

Reload, aim,
shoot Run, stub

Machine might be large. Very large.

Clean Up FSM Example

• A robot cleans a floor space

• Unless it recharges, it breaks
23

Recharging Clean Up FSM Example

24

Get power

But what to do after charging???

Recharging Cleaner FSM

25

Three states just to
remember where to
come back

Hierarchical Approach

26

Clean up

H

Hierarchical state

Get power

[No power]

[Recharged]

Hierarchical Recharge

27

Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

[No trash]

Algorithm

• Based on the notion of a current state

– Every state stores the current state of its sub FSM

• Hierarchical evaluation

– If transition is applicable to higher-level current
state

• Change state

– Else

• Execute the OnStay method

• Apply transition to the sub FSM

28

Example

29

Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

Events:
• No power
• Recharged
• Seen trash
• No power
• …

Stack-Based FSMs

• This idea can be extended to allow storing
past states using a stack

• Every time a machine is “suspended” the
current state is pushed into the stack

• Every time it is “resumed” the state is popped
from the stack

– E.g. several machines and a switch between them

30

31

Finite-State Machine In Game
Development: Summary

• Most common game AI software pattern
– Natural correspondence between states and behaviors

– Easy to diagram

– Easy to program

– Easy to debug

– Completely general to any problem

• Problems
– Explosion of states

– Too predictable

– Often created with ad hoc structure

