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We already learned 

• Decision Tree
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Outline for today

• Finite state machine
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Creating & Controlling AI Behaviors

Behavior: A Sequence of Actions

The patrol and guard behavior is defined as a sequence of actions

Sense

Think

Act



So, Basically…

• An agent goes through a sequence of states

• Arrows indicate transitions
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Finite-State Machine (FSMs)

• Abstract model of computation

– Formally:

• Set of states

• A starting state

• An input vocabulary

• A transition function that maps inputs and the current 
state to a next state
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FSMs In Game Development

Deviate from formal definition
1. States define behaviors (containing code)

• Wander, Attack, Flee

• As longer as an agent stays in a state, it carries on the same action

2. Transition function divided among states
• Keeps relation clear

3. Extra state information
• For example, health



Recall: User Control V Modelling

• In these examples, user controlled completely the 
state of the world or there was no user input. 

– How to mix user control and physical modelling?

• Game states

User Auto

Motion simulation stops

User initiates motion simulation

User controls
the world
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Finite-State Machine:
UML Diagram
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State Actions

• Actions is what player sees
– Movement

– Animation

• Instead of one action can consider
– onEntry

• Executed when FSM enters the state

– onExit

– onUpdate
• Runs every tick while FSM is in the state
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Sense

Think

Act
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Finite-State Machine:
Approaches

• Three approaches

– Hardcoded (switch statement)

– Scripted

– Hybrid Approach
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Hard-Coded FSM
enum State {wander, attack, flee};

State state;

…

switch (state )

{

case wander:

Wander();

if( SeeEnemy() )    { state = State.attack; }

break;

case attack:

Attack();

if( LowOnHealth() ) { state = State.flee; }

if( NoEnemy() )     { state = State.wander; }

break;

case flee:

Flee();

if( NoEnemy() )     { state = State.wander; }        

break;

}



Hard-Coded FSM: Weaknesses

• Maintainability
– Language doesn’t enforce structure

– Can’t determine 1st time state is entered

• FSM change -> recompilation 
– Critical for large projects

– Cannot be changed by game designers / players

• Harder to extend
– Hierarchical FSMs

– Probabilistic / fuzzy FSMs
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Finite-State Machine:
Scripted with alternative language

BeginFSM
State( STATE_Wander )
OnEnter

Java code
OnUpdate

Java code 

if(seeEnemy()) ChangeState(STATE_Attack);

OnExit

Java code 

State( STATE_Attack )
OnEnter

Java code
OnUpdate

Java code to execute every tick
OnExit

EndFSM
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Finite-State Machine:
Scripting Advantages

1. Structure enforced

2. Events can be handed as well as polling

3. OnEnter and OnExit concept exists

4. Can be authored by game designers

– Easier learning curve than straight C/C++
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Finite-State Machine:
Scripting Disadvantages

• Not trivial to implement

• Several months of development

– Custom compiler
• With good compile-time error feedback

– Bytecode interpreter
• With good debugging hooks and support

• Scripting languages often disliked by users

– Can never approach polish and robustness of commercial 
compilers/debuggers
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Finite-State Machine:
Hybrid Approach

• Use a class and C-style macros to approximate a scripting 
language

• Allows FSM to be written completely in C++ leveraging existing 
compiler/debugger

• Capture important features/extensions
– OnEnter, OnExit
– Timers
– Handle events
– Consistent regulated structure
– Ability to log history
– Modular, flexible, stack-based
– Multiple FSMs, Concurrent FSMs

• Can’t be edited by designers or players



Transitions

• Internal

– Independent of environment

– E.g. out of ammo

• External

– Event-driven

• Immediate

• Deferred

– E.g. to wait till animation sequence stops
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Transitions
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Transitions



• Compare

• With 

Decision Trees in Transitions
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Computationally-
expensive test performed 
twice

Computationally-
expensive test performed 
once



Generalisation: Hierarchical FSM

• Often, there are several “levels” of behaviour

– Complications from “insignificant details”
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Enemy dead

Enemy close

Defend
Attack

Reload, aim, 
shoot Run, stub

Machine might be large. Very large.



Clean Up FSM Example

• A robot cleans a floor space

• Unless it recharges, it breaks
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Recharging Clean Up FSM Example
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Get power

But what to do after charging???



Recharging Cleaner FSM
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Three states just to 
remember where to 
come back



Hierarchical Approach
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Clean up

H

Hierarchical state

Get power

[No power]

[Recharged]



Hierarchical Recharge
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Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

[No trash]



Algorithm

• Based on the notion of a current state

– Every state stores the current state of its sub FSM

• Hierarchical evaluation

– If transition is applicable to higher-level current 
state

• Change state

– Else

• Execute the OnStay method

• Apply transition to the sub FSM

28



Example
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Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

Events:
• No power
• Recharged
• Seen trash
• No power
• …



Stack-Based FSMs

• This idea can be extended to allow storing 
past states using a stack

• Every time a machine is “suspended” the 
current state is pushed into the stack

• Every time it is “resumed” the state is popped 
from the stack

– E.g. several machines and a switch between them

30



31

Finite-State Machine In Game 
Development: Summary

• Most common game AI software pattern
– Natural correspondence between states and behaviors

– Easy to diagram

– Easy to program

– Easy to debug

– Completely general to any problem

• Problems
– Explosion of states

– Too predictable

– Often created with ad hoc structure


