
Principles of Computer Game
Design and Implementation

Lecture 27

Outline for today

• pathfinding

2

The Problem

Pathfinding

• Given the current position and the target
position

– Calculate a sequence of positions (path)

• Can follow with steering

• Shortest / lowest cost path

3

Pathfinding In Games

• Initially the concept was only used in RTS

• Now the most important AI technique

– (probably)

• Still can be buggy. See
– http://www.ai-blog.net/archives/000152.html

– http://www.youtube.com/watch?v=lw9G-
8gL5o0&feature=player_embedded

4

http://www.ai-blog.net/archives/000152.html
http://www.youtube.com/watch?v=lw9G-8gL5o0&feature=player_embedded

Tackling Paths

• Characters “live” in a
computer world

– Even developers may not
know exact location

• Physics simulations

5

• Pathfinders operate on
discrete structures

Remember This?

6

Romania Map

7

Task:
navigate
from A to B

From COMP219:

• A search algorithm can solve the navigation
problem

• Simple algorithms

– Breadth-first, depth-first, unit cost,…
do not work in real-world problems

• A* is the best we have

8

So

• A* works on weighted graphs

– Pathfinding graphs

– Explicitly or implicitly represented

• Romania map: explicit representation

• Many games do not store full graphs
– Generate nodes when necessary

– GraphNode

9

Recall: Search Tree

10

29

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

Figure3.24 FILES: figures/astar-progress.eps(TueNov 3 16:22:24 2009). Stages in an A∗ search

for Bucharest. Nodes are labeled with f = g + h. The h values are the straight-line distances to

Bucharest taken from Figure 3.20.

• An imaginary tree showing all possible states reachable from
the initial state

• Search strategy defines an expansion order

Recall: A* Search (Strategy)

• Combine uniform cost search and greedy
search.

• Uses heuristic f:

f(n) = g(n) + h(n),

• where

– g(n) is path cost of n;

– h(n) is expected cost of cheapest solution from n.

11

Recall: General Algorithm for A* Search

agenda = initial state;

while agenda not empty do

take node from agenda such that

f(node) = min { f(n) | n in agenda}

where f(n) = g(n) + h(n)

if node is goal state then

return solution;

new nodes = apply operations to node;

add new nodes to the agenda;

12

Theory V Practice:
Visiting nodes twice

The general framework allows to visit nodes
more than once

• Closed nodes list: already visited nodes

13

A

B C D1 D2 D3
…

Theory V Practice:
Admissible and Inadmissible Heuristics

• A* is guided by heuristic

• If heuristic is too high (overestimates)
– It’s inadmissible

– A* is not guaranteed to find best path

– Does not mean you cannot use it!
• Faster search vs better paths balance

– Closed nodes can be “reopened”

14

A* Requires

• To store the agenda
– Open nodes list

• To store the
– Closed nodes list

• For every open node: costs so far and
estimated costs

• For every closed node the connection (edge)
leading to it

15

Pathfinding Algorithm

16

while lowest rank in open is not goal

current = remove lowest rank item from open;

closed.add(current);

for neighbors of current:

Ncost = g(current) + cost(current, neighbor);

if (open.contains(neighbor)&&Ncost<g(neighbor))

open.remove(neighbor)

if (closed.contains(neighbor)&&Ncost<g(neighbor))

closed.remove(neighbor)

if (!open.contains(neighbor)&&

!closed.contains(neighbor))

g(neighbor) = Ncost

open.add(neighbour)

neighbor.connection = current

Good Practice: Class GraphNode

public class GraphNode {

// link to game world

Vector<Edge> edges

}

public class Edge {

GraphNode from, to;

float cost;

}

17

Good Practice: NodeRecord

public class NodeRecord {

GraphNode node;

Edge connection;

float costSoFar;

float estimatedGoalCost;

float currentCost;

}

18

Data Structures

• Closed: unsorted list of NodeRecord

• Open

– Unsorted list of NodeRecord

• Insert: easy (just append)

• Take: hard (loop through all of them)

– Priority queue of NodeRecord

• Insert: medium (balancing)

• Take: medium

19

Simplicity Rules

• On a grid-like graph

– One take per 8 inserts

• With a good heuristics

– A simple unsorted list might be more efficient
than a sophisticated Priority Queue!

20

Tile-Based Games

• A vast majority of RTS games are tile-based

– Every unit occupies (one or more) tile

– Every tile can accommodate ≤ 1 unit

• A tile is either blocked or passable

21

Tile Shapes

• Different games use different tiles

22

Nodes

• A node is uniquely identified with (x,y)
coordinates

• No need to store neighbour nodes

– Easily compute when necessary

23

Heuristics

• Manhattan block distance: Δx + Δy

Trouble: too many paths of same value
24

Δy

Δx

Breaking Ties

• Breaking ties is one of the reasons to consider an
inadmissible heuristics:

– Biased towards pursuing the goal

– A* can run faster

– If it is just slightly higher, A* will still find best paths

• Other reason?

– Distance in hours, heuristics in km

– Computational complexity

25

Heuristics

• Diagonal moves allowed: Δx + Δy

26

Δy

Δx

Heuristics

• Euclidian distance:

27

Δy

Δx

(Dx)2 + (Dy)2

Worst Possible Case

• Worst possible case for any search algorithm

– No path

– Will explore all available space

28

Updated Pathfinding

• Check if Start and Finish are valid locations

– If Finish is not valid, no path

– If Start is not valid

• Something goes wrong

• Delete agent?

• Move to a valid location?

• …

29

S

F

Zone Mapping

• Every tile belongs to a zone

– 0 – impassable

– Same number –
can pass

– Zone equivalence array

• Hovercraft[0]=0; Hovercraft[1]=0; Hovercraft[2]=0

30

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

0 2 2 2 2

0 2 2 2 2

Zone Equivalence Array

• For every zone number and

• Every vehicle class

– ZEA[zone number]

• Either zone itself

• Or the smallest equivalent zone number

• If (ZEA[S.zone] == ZEA[F.zone])

– Call the pathfinder

31

Pathfinding Pool

• Running an A* algorithm takes time

• In RTS games there are dozens of characters

• If every one of them starts A*…

– A pool of pathfinders

– A queue of agents waiting for paths

– Start moving / play animation while waiting

32

