Principles of Computer Game
Design and Implementation

Lecture 6

We already knew

 Game history
* game design information
* Game engine

What’s Next

 Mathematical concepts (lecture 6-10)

e Collision detection and resolution (lecture 11-
16)

 Game Al (lecture 17 -)

Mathematical Concepts

3D modelling, model manipulation and
rendering require Maths and Physics

e Typical tasks:
— How to position objects?
— How to move and rotate objects
— How do objects interact?

2D Space

We will start with a 2D space (simpler) and
look at issues involved in

— Modelling

— Rendering

— Transforming the model / view

2D Geometry

* Representation with two
axes, usually X (horizontal)
and Y (vertical) Y X i

* Origin of the graph and of

the 2D space is where the ™
axes cross (X =Y =0) 55
* Points are identified by their

coordinates 10

/Origin X Axis

10 20 30 40 /X

Viewports

* A viewport (or window) is a rectangle of pixels
representing a view into world space

* Aviewport has its own coordinate system, which may
not match that of the geometry.
— The axes will usually be X horizontal & Y vertical
e But don’t have to be — rotated viewports
— The scale of the axes may be different
— The direction of the Y axis may differ.

. E.g. the geometry may be stored with Y up, but the viewport
has Y down.

— The origin (usually in the corners or centre of the viewport)
may not match the geometry origin.

Example

Example of changing coordinate system from world
space to viewport space:

400 800

20
600 °*P

10

10 20 30 40

P =(20,15) in world space. Where is P’ in viewport
space?

Rendering

* Rendering is the process of converting geometry into
screen pixels

* To render a point:
— Convert vertex coordinates into viewport space
— Set the colour of the pixel at those coordinates

— The colour might be stored with the geometry, or we can
use a fixed colour (e.g. black)

Rendering Lines and Shapes

* Need to determine

which part of the 408, 800
line is visible, where / \
it meets the -
viewport edge and 60?‘ - l
how to crop it. ! ‘\

10 20 30 40 -

* In “Ye good old days” this was rather difficult
* With support from rendering libraries easy

Points and Vectors

* Point: a location in space
* Vector: a direction in space

12

What’s the Difference?

* The only difference is “meaning”

e But think about

— “move a picture to the right”
— “move a picture up”

— “move a picture in the direction ...”
* Vectors specify the direction

Moving an Object

* Translation of an object
— Moving without rotating or reflecting
— Apply a vector to all points of an object

— Vector specifies direction and magnitude of
translation

14

Vectors

A vector is a directed line segment

* The length of the segment is called the length
or magnitude of vector.

* The direction of the segment is called the
direction of vector.

* Notations: vectors are usually denoted in
bold type, e.g., a, u, F, or underlined, a, u, F.

_— Same direction,
/ red is twice as long

Translation Recipe

* |n order to translate (move) an object in the
direction given by a vector V, move all points.

y

T PXo vy

2V

P”=(x, + 2x, Y, + 2y,)

Multiplying a Vector by a Number

 Multiplying a vector by a positive scalar
(positive number) does not change the
direction but changes the magnitude

* Multiplying by a negative number reverses the
direction and changes the magnitude

In Coordinates

* V=(x,y) a vector, A a number
AV = (Ax, Ay)

Example:
2+(2,5) =(4, 10)
0.7+(2,5)=(1.4, 3.5)
-2+(2, 5) = (-4, -10)

From Ato B

* Which vector should be applied to move a
point from (x,,y,) to (Xz,Ys)?

(XB - XA; yB'yA)

3 (XAI yA)

.(XB: Ys)

Sum of Two Vectors

* Two vectors V and W are added by placing
the beginning of W at the end of V.

V+W

In Coordinates

Let
* V=(x,Y,)
* W= (x,,Y,)

Then
V+W = (x,+X,, YV, tYy)

Vector Difference

¢ V-W=V+(-1)W

22

In Coordinates

Let

= (X, Yy)
* W=(x,Y,)

Then
V-W = (XX, Y, Yu)

Applications

* Apply vector V to an object then apply W
— Apply V+W
— Representing motion as a combination of two

* |f V takes you to A, W takes you to B, what
takes from A to B?

— Apply W -V
— Shooting, targeting

From 2D to 3D

3D geometry adds an extra axis
over 2D geometry
— This “Z” axis represents “depth”
— Can choose the “direction” of Z

25

“Handedness”

e Use thumb (X), index finger (Y) & middle
finger (Z) to represent the axes

e Use your left hand and the axes are left-
handed, otherwise they are right-handed

Ylk Y“

/ b b

Z Right-Handed System Left-Handed System
(Z comes out of the screen) (Z goes in to the screen)

Z

Left- vs Right-Handed

* |[n mathematics, traditionally, right-handed
axes are used
* In computing:

— DirectX and several graphics applications use left-
handed axes

— OpenGL use right-handed

Neither is better, just a choice

Vectors in 3D

 Still a directed interval
* X, yand z coordinates define a vector

*V=(x,Y,,2,) @ vector, A a number
V = (Ax, Ay,, Az)
+(2,2,2))

= (X, Yo 2,); W = (X, Y Zy)
V+W-= (XV+XW’ yv+yw' Zv-l_zw)

. *V=(x, Y, 2z,); W=(X,, Y Z,)
V-W = (XX, Yy-Yuwr Zy-Zy)

Vectors in jMonkeyEngine

* jME defines two classes for vectors
— Vector3f
— Vector2f

* Constructors

— Vector2f(float x, float y)
— Vector3f(float x, float y, float z)

e Lots of useful methods (see javadoc)

Translation (setting position) in JME

protected void simplelnitApp() {
Geometry box =...;

Vector3f v= new Vector3f(1,2,0);
box.setLocalTranslation(v);

\

rootNode.attachChild(boxjesition of an object

Translation And the Scene Graph

e Let’'s model a table Boxes

31

Boxes for Tabletop and Legs

Box tableTop = new Box (10, 1, 10);
Box legl = new Box(1l,5,1);

Geometry gTableTop = new
Geometry ("TableTop", tableTop):

gTableTop.setMaterial (mat) ;

Geometry gLegl = new
Geometry ("Legl", legl);

glegl.setMaterial (mat) ;

Beware of Floats

* |f you think that the table top is too thick and
change

Box tableTop = new Box (10, 1,
10)

Double
to ~

Box tableTop = new Box (10, 0.3, 10);

you will see an error:

The constructor Box (int, double,
int) 1s undefined

Use the “f” word! ©

Box tableTop = new Box (10,
0.3£, 10);

— float

Many jME methods take “single precision” float
numbers as input

No need “double precision”

legl.
leg?2.
leg3.

leg4d.

Position the legs

setlLocal
setlLocal

setlLocal

| Transl
| Transl

| Transl

setlLocal

| Transl

Attach all to rootNode

Oops...

Framebuffers
Framebufers
Frameeuffers
Textures (M1
Textures CFI
Textures (59
haders (M)
shaders (F)
shaders ()

Frames per second: 756

A Better Scene Graph

{ rootNode }
{ table }
|
| |

What are “table” and “legs”

* Internal nodes

Node table = new

Node (“Table”) ;

Node legs = new j m!{@s

Node (“Legs”) ; { my{m Hiu

38

Putting it Together

legs.attachChild (gLegl) ;
legs.attachChild (gLeg?2) ;
legs.attachChild (gLeg3) ; [
;egs.attachChi;d(gLeg4),JL@

table.attachChild(tableTop) ;
table.attachChild (legs)

rootNode.attachChild (table) ;

But Does It Change the Picture?

Transforms Are in All Nodes!

legs.move (0,-5f£,0);

Table

JtableTop { Legs]
I
|

[| |
J Legl J Leg2 ’J Leg3 ’J Legd

Summary: Manipulation of Vectors

v
/ 2V
/ﬁ)v (1/2)V

V+WwW

Vector addition

Scalar multiplication of sumvV + W
vectors (they remain parallel)
y -
V- W
v v
-W
Vector difference X

V-W=V+(-w)

Vector OP

Summary: Vector Arithmetic

*V=(x,,Y,2,) a vector, A a number
AV = (Ax, Ay,, Az,)

= (X, Yy 2,); W =(X,, Yy Zy)
V+W = (XV+XW’ YvtYw Zv-l_zw)

V - W (XV w/ yv ywl V W)

What about a product of V and W?
And why?

Summary: Vector Algebra

a+tb=Db+a
(commutative law)

(@a+b)+c=a+(b+c) (associative law)
a+0=a

a+(-a)=0

A(ua) = (A pa

(N\+n)a=Aa+pa

AMa+b)=Aa+Ab

la=a

