
COMP519 Practical 5
HTML (3)

Introduction

• This worksheet contains exercises that are intended to familiarise with HTML forms. While
you work through the tasks below compare your results with those of your fellow students
and ask for help and comments if required.

• You might proceed more quickly if you cut-and-paste code from that PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s
Linux systems.

• To keep things simple, we will just use a text editor and a terminal. You can use whatever
text editor you are most familiar or comfortable with.

• If you do not manage to get through all the exercises during this practical session, please
complete them in your own time before the next practical takes place.

• Use the HTML5 Specification [5], the COMP519 the CSS 2.2 Specification [1], Lecture
Notes [2, Lecture 9], Stack Overflow [3] and W3Schools [4] as references for any inform-
ation on HTML that you might need.

Exercises

1. Let us start with a ‘login page’.

a. Create a file name page05A.html in your public_html with the following content:

<!DOCTYPE html>

<html lang='en-GB'>

<!-- File: page05A.html

Creation: 2023-01-28

Description: Forms

-->

<head>

<title>Forms</title>

</head>

<body>

<h1>HTML Forms</h1>

<form method="post"

action="https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php">

<input type="hidden" name="role" value="student">

<label>User ID: <input type="text" name="id"></label>

<input type="submit">

</form>

</body>

</html>

1



This HTML document contains a HTML form with three forms elements, a hidden
input, a text field, and a submit button.

b. Make sure that the permissions for the file page05A.html are set correctly.

c. Open a web browser, i.e. Google Chrome or Mozilla Firefox, and access the URL

https://student.csc.liv.ac.uk/~<user>/page05A.html

where you need to replace <user> with your username. Figure 1a shows you what you
should see.

d. Enter your username into the text field then click on the ‘Submit’ button. You should
now see the output of the PHP script process.php to which the inputs of the form have
been submitted (Figure 1b). It should show you that there have been two inputs, one
with key / name ‘role’, one with key / name ‘id’. The first corresponds to the hidden
input field, the second to the text field. The submit button itself did not produce an
input to the PHP script as it its HTML element has no name.

e. The quotation marks around each value in the output of process.php have been added
to make it easier to see where a value starts and ends. To see that this makes sense for
testing purposes, enter usernames that contain spaces at the start and the end.

f. The form uses the POST request method. With the POST method, inputs become part of
the body the HTTP request

POST /~ullrich/COMP519/examples/process.php HTTP/1.1

Host: cgi.csc.liv.ac.uk

role=student&id=sgxyz

Inputs become pairs name=value, with pairs separated by an ampersand symbol &.
Both name and value are URL-encoded.
There are advantages and disadvantages to using POST: (i) POST requests do not re-
main in the browser history and cannot be bookmarked, (ii) POST requests have no
restrictions on data length, and (iii) POST requests are suitable for the transfer of sens-
itive data, e.g. passwords.

g. Extend the form with an input element for a password and an appropriate label. Re-
member that there is a particular type for such an input element.
Test your solution. The password should not be visible but once submitted, process.php
will show you what you have entered.

(a) page05A.html (Initial) (b) Output of process.php (c) page05A.html (Styled)

Figure 1: Exercise 1

2



h. See what happens if you leave both inputs empty and just click on the submit button.
The form will still be submitted and process.php will show that no value is associated
with id and password.
Modify the form so that the user must enter both username and password before the
form can be submitted.

i. Finally, we want to make this login page look nicer. Both the input element for user-
name and password should have a width of 10em, padding of 1em, margins of 0.5em,
and a 1px border. Labels should be placed centred on top of the input elements with a
light blue background and an extra 4px padding on top. The submit button should be
placed below the other elements and be as wide as those, it should have a light green
colour and its label should be ‘Login’. The end result should look similar to Figure 1c.
Modify the HTML markup and provide style directives that achieve the desired look.
Hint: input[type=text] allows you to select input elements of type text.

2. Next, let us have a quick look at check boxes and radio buttons.

a. Create a file name page05B.html in your public_html directory with the following
content:

<!DOCTYPE html>

<html lang="en-GB">

<head>

<title>HTML Forms</title>

</head>

<body>

<h1>HTML Forms</h1>

<form method="get"

action="https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php">

<p>What fruit do you like?</p>

<fieldset>

<label><input type="checkbox" name="fruit[]" value="a">

Apples</label>

</fieldset>

<p>Please select your preferred contact method:<p>

<fieldset>

<input type="radio" id="cc1" name="contact" value="email">

<label for="cc1">Email</label>

</fieldset>

<input type="submit" value="Submit">

</form>

</body>

</html>

b. Make sure that the permissions for the file page05B.html are set correctly.

c. Open a web browser, i.e. Google Chrome or Mozilla Firefox, and access the URL

https://student.csc.liv.ac.uk/~<user>/page05B.html

where you need to replace <user> with your username. Figure 2a shows you what you
should see.

d. Select the checkbox and the radio button then submit the form. The PHP script
process.php again shows you what then happens. See Figure 2b for the expected
result. Make sure that you understand where the values come from.

3



e. In this example we have used the GET method for the HTTP requests created by sub-
mitting the form. With the GET method, inputs become part of the URL given in the
action attribute. In particular, after submitting the form you should see the following
URL in the brower’s URL field:

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php?fruit%

5B%5D=a&contact=email

You see that a the inputs are appended to the action URL after a question mark
symbol ? as pairs name=value, with pairs separated by an ampersand symbol &. Both
name and value are URL-encoded, for instance, fruit[] has become fruit%5B%5D.
There are advantages and disadvantages to using GET: (i) GET requests remain in the
browser history and can be bookmarked, (ii) GET requests have a length restriction,
and (iii) GET requests should not be used for sensitive data, e.g., passwords.

f. One checkbox and one radio button is not particularly interesting. Add two more
checkboxes for ‘Oranges’ and ‘Peaches’ with associated values ‘o’ and ‘p’, respectively.
Also add two more radio buttons for ‘Phone’ and ‘Mail’ with associated values ‘phone’
and ‘mail’, respectively. The result should as shown in Figure 2c.

g. Test your solution. In particular, if you tick all three checkboxes and submit the form,
then all three values ‘a’, ‘o’ and ‘p’ should be associated with ‘fruit’.

h. Note that the name attribute of all checkbox input elements is ‘fruit[]’ with ‘[]’ indicat-
ing this is an array. Test what happens if you remove ‘[]’ from all the names attributes
and then check all the checkboxes. What does process.php show when you submit
the form and why?

i. What happens if each checkbox input element gets a different value for its name at-
tribute, e.g., ‘fruitA’, ‘fruitO’, and ‘fruitP’?

3. Our final exercise deals with drop-down menus.

a. Create a file name page05C.html in your public_html directory with the following
content:

<!DOCTYPE html>

<html lang="en-GB">

<head>

<title>Drop-down Menu</title>

</head>

<body>

<h1>Drop-down Menu</h1>

<form

(a) page05B.html (Initial) (b) Output of process.php (c) page05B.html (Extended)

Figure 2: Exercise 2

4

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php?fruit%5B%5D=a&contact=email
https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php?fruit%5B%5D=a&contact=email


(a) page05C.html (Initial) (b) Output of process.php (c) page05C.html (Styled)

Figure 3: Exercise 3

action="https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/process.php">

<label>Select your favourite browser:</label>

<select name="browser">

<option value="I">Internet Explorer</option>

<option value="F">Firefox</option>

<option value="C">Chrome</option>

<option value="O">Opera</option>

<option value="S">Safari</option>

</select>

<input type="submit" value="Submit">

</form>

</body>

</html>

b. Make sure that the permissions for the file page05C.html are set correctly.

c. Open a web browser, i.e. Google Chrome or Mozilla Firefox, and access the URL

https://student.csc.liv.ac.uk/~<user>/page05C.html

where you need to replace <user> with your username. Figure 3a shows you what you
should see.

d. Select the ‘Firefox’ entry in the drop-down menu and submit the form. The output
produced by process.php in this case is shown in Figure 3b.

e. Load page05C.html again. By default, ‘Internet Explorer’ is selected in the drop-down
menu. Without changing the order of options in the drop-down menu, make ‘Chrome’
the browser that is selected by default. Test your solution.

f. In the lectures it was mentioned that in most cases it is best if the user makes a ‘con-
scious choice’ instead of there being an option that is selected by default. To force
such a choice, the first and selected option should be a ‘dummy entry’ with an empty
value. Add the following option as the first to the select element and ensure that it is
selected by default.

<option value=""></option>

g. Save the modified file, reload page05C.html in the browser, select the empty option
and submit. See what output process.php produces.

h. Obviously, the point of adding a ‘dummy entry’ was to force the user to consciously
select one of the other entries. This currently is not the case as the user can leave the
‘dummy entry’ selected when submitting the form. Modify the drop-down menu so
that the user cannot submit the form without selecting one of the other entries in the
drop-down menu. Test your solution.

5



i. Drop-down menus are difficult to style. But we can change a few minor aspects of
the way they look. We want the font size of the options to be 18px, options should
have a width of 10em and both options and the selected entry should have a light blue
background. Add style directives to achieve the desired look. See Figure 3c for what
the result should be.

References

[1] B. Bos, ed. Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification. W3C First
Public Working Draft 12 April 2016. URL: https://www.w3.org/TR/CSS22/ (accessed
28 January 2023).

[2] U. Hustadt. COMP519 Web Programming: Lecture Notes. Department of Computer Sci-
ence, University of Liverpool. URL: https://canvas.liverpool.ac.uk/courses/

60872/modules (accessed 24 January 2023).

[3] Stack Overflow. Stack Overflow Site. 24 January 2023. URL: https://stackoverflow.
com/ (accessed 24 January 2023).

[4] Refsnes Data. W3Schools Site. 24 January 2023. URL: https://www.w3schools.com/
(accessed 24 January 2023).

[5] WHATWG, ed. HTML Living Standard. 24 January 2023. URL: https://html.spec.
whatwg.org/multipage/ (accessed 24 January 2023).

6

https://www.w3.org/TR/CSS22/
https://canvas.liverpool.ac.uk/courses/60872/modules
https://canvas.liverpool.ac.uk/courses/60872/modules
https://stackoverflow.com/
https://stackoverflow.com/
https://www.w3schools.com/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/

