
COMP519 Practical 6
JavaScript (1)

Introduction

• This worksheet contains exercises that are intended to familiarise you with JavaScript
Programming. While you work through the tasks below compare your results with those
of your fellow students and ask for help and comments if required.

• You might proceed more quickly if you cut-and-paste code from this PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s
Linux systems to experiment with JavaScript.

• To keep things simple, we will just use a text editor, a terminal, and a web browser. You
can use whatever text editor and web browser you are most familiar or comfortable with.

• If you do not manage to get through all the exercises during this practical session, please
complete them in your own time before the next practical takes place.

Exercises

1. Let us start by re-creating the ‘Hello World’ JavaScript example that you have seen in the
lectures.

It is assumed that you have already created a sub-directory called public_html in your
home directory and that the directory is both readable and executable by everyone. Make
sure that this is so before you proceed.

a. Create a file name jsDemo06A.html in $HOME/public_html/ containing the following
HTML markup and JavaScript code:

<!DOCTYPE html>

<html>

<head>

<title>Hello World</title>

</head>

<body>

<script id="s1"> // Script with id s1

</script>

<p>Our first JavaScript script</p>

<script id="s2"> // Script with id s2

user = "<your name>"

document.writeln("<p>Hello " + user +

"
\nHello World!</p>")

</script>

<script id="s3"> // Script with id s3

</script>

<p>This is the rest of the page</p>

<noscript>JavaScript not supported or disabled</noscript>

</body>

1

</html>

Replace <your name> with your own name.
The ‘command’ document.writeln writes a string of text to a document stream, here,
the HTML document the JavaScript scripts are part of, at the insertion point. Basically,
the first document.writeln in a script would insert its string argument where the script
itself is placed in the markup and all consecutive document.writeln commands would
place their arguments after that.
Note that there are three JavaScript scripts in this code. In order to be able to refer
to each of these three scripts they have been given the ids s1, s2 and s3. We will use
these ids in the instructions below.

b. Open a terminal, go to the directory in which the file has been stored and make sure
that the file is only readable by yourself and nobody else can read, write or execute
the file:

chmod u+r,og-rwx $HOME/public_html/jsDemo06A.html

(Note: No space after the comma!) You will only have to do so once. File permissions
should not change while you continue to edit the file.

c. Now open a web browser and access the URL

https://student.csc.liv.ac.uk/~<user>/jsDemo06A.html

where <user> should be replaced by your username.
Check that the page looks as expected and also that the HTML code producing the web
page you are shown is exactly the HTML code you have seen in Exercise 1a above,
including the JavaScript code.

d. If already at this point or in one of the later exercises the web browser does not show
the expected result, you will have to debug your code. For that you will need access to
some diagnostic output for the JavaScript code that you have written.
A lot of web browsers provide developer tools including a ‘console’ on which errors
are shown. For example, in Firefox the console can be found in the main menu under
’Web Developer→Web Console’. The shortcut CTRL+SHIFT+I in Firefox also opens
the error console. See [1, 2] for further information on the console in Google Chrome
and Mozilla Firefox.
Figure out how to access the console in your web browser and open it. If the web
browser you use does not have a console (or you cannot figure out how to open it),
switch to a better browser.

e. To see how the console works let us introduce an error into our JavaScript code.
At the end of the script with id s2 insert

document.writeln("(1) The value of userAge is: " +

userAge + "
")

document.writeln("(2) This statement is executed
")

into jsDemo06A.html. Save the file again and refresh the page in your web browser.
Note that the web page appears unchanged. In particular, the statements introduced
in Exercise 1e seem to produce no output. However, in the console you should now
see an error message indicating that userAge has not been defined/declared.

f. We should correct the error by adding a declaration for userAge.
First, try the following: Add

2

var userAge = "27"

document.writeln("(3) The value of userAge is: " +

userAge + "
")

at the end of the script with id s2 in jsDemo06A.html (that is, after the document.writeln
statement that already uses userAge). Save the file again. Clear the output shown in
the console, then refresh the page in your web browser.
The console should no longer show an error message and the web page should include
the lines:

(1) The value of userAge is: undefined

(2) This statement is executed

(3) The value of userAge is: 27

This shows you that in JavaScript a declaration of a variable does not have to precede
its use in order to prevent a reference error, however the initialisation of a variable
only affects code that is executed later (even if the initialisation is done as part of a
declaration).
But this principle only applies to a particular JavaScript code fragment enclosed in the
tags <script> and </script> as we will see next.

g. Move the declaration

var userAge = "27"

from the script with id s2 to the script with id s3.
Save the file again. Clear the output shown in the console, then refresh the page in
your web browser.
Is the code correct now or does it produce an error? What does that tell you about the
scope of a variable declaration?

h. Move the declaration

var userAge = "27"

from the script with id s3 to the script with id s1.
Save the file again. Clear the output shown in the console, then refresh the page in
your web browser.
Is the code correct now or does it produce an error? Is the output the same as in
Exercise 1f? If not, why not?

i. We need to consider one more possible way in which the scope of variable declarations
might work. In a lot of programming languages, the scope of a variable is restricted to
the block in which it is declared. For example, a variable declared in the then-branch
of a conditional statement has the then-branch as its scope. On the else-branch of
the same conditional statement (or anywhere else), the variable would be undeclared.
Let us see whether this is the case for JavaScript. Add the following code before the
noscript-element in jsDemo06A.html:

<!-- Exercise 1j -->

<script id="s4">

if (false) {

var x = 519

} else {

document.writeln("The value of x is " + x + "
")

}

</script>

3

(Note the syntax used for the comment. The comment is not within the script but
within the surrounding HTML markup. So, the syntax for HTML comments is used.)
Save the file. Clear the output shown in the console, then refresh the page in your web
browser.
What output or errors does the script produce now?

j. In the script with id s4, replace the declaration

var x = 519

by

var y = 519

Save the file. Clear the output shown in the console, then refresh the page in your web
browser.

• What output or errors does the script produce now?
• What do Exercises 1i and 1j tell you about the scope of variable declarations in

JavaScript?
• What do Exercises 1i and 1j tell you about the way JavaScript code is executed?

If there were any errors produced in the last two steps, try to fix them now.

2. Let us compare floating-point arithmetic in Python and JavaScript.

a. To do so, first create a file name MathExample.py with the following Python program:

#!/usr/bin/python3

import math

import numpy as np

s = input('Input : ')

i = int(s)

d = math.sqrt(i)

e = 4 / d

f = round(e)

print("sqrt(",i,") =", d)

print("4 / ",d,"=",e)

print("round(",e,") =",f)

for d in np.arange(0.4,0.7,0.1):

r = i + d * np.sign(i)

print("round(",r,") =",round(r))

In a terminal, go to the directory in which the file has been stored and make sure that
the file is executable by yourself:

chmod u+x ./MathExample.py

Then execute MathExample.py for the inputs 4, -4, and 0. Copy the outputs of the
Python program to a text file so that you can later compare them with the correspond-
ing outputs of a JavaScript program.

b. Create a file named jsDemo06B.html in $HOME/public_html/ with the the HTML markup
and JavaScript code.

4

<!DOCTYPE html>

<html>

<head>

<title>Math Example</title>

</head>

<body>

<script>

var i = Number(prompt("Input :"))

/* Complete the following three lines of code with assignments that

correspond to the computations performed in the Python program */

var d

var e

var f

document.writeln("sqrt(" + i +") = " + d + "
")

document.writeln("4/" + d + " = " + e + "
")

document.writeln("round(" + e + ") = " + f + "
")

document.writeln(e + " > 0 : " + (e > 0) + "
")

document.writeln(e + " <= 0 : " + (e <= 0) + "
")

for (d = 0.4; d < 0.7; d = d + 0.1) {

var r = i + d * Math.sign(i)

document.writeln("round(" + r + ") = " + Math.round(r) + "
")

}

</script>

</body>

c. As indicated by the comment, complete the code so that the same calculatons are
performed to compute d, e, and f as in the Python program.

d. In a web browser access the URL

https://student.csc.liv.ac.uk/~<user>/jsDemo06B.html

where <user> should be replaced by your departmental user name.

e. A so-called prompt will appear that allows you to enter a number (or anything else).
Enter the number 4 and either click the ‘OK’ button in the prompt or press return.
In the brower window you should now see the results of the various computations.
Are all the results the same as for the Python program produced for input 4?

f. To repeat the computation for a different input, you need to refresh the page. Then a
new prompt will appear. Enter -4 now and press return.
Compare the results produced by the JavaScript program with those of the Python
program for input -4.

g. Finally, refresh the page again, enter 0, and press return.
Compare the results produced by the JavaScript program with those of the Python
Program for input 0.

h. Make sure that you understand what is going on for each of the three inputs.

3. The precision of 64-bit floating-point numbers is necessarily limited. This problem is ag-
gravated by the fact that the binary representation of these floating-points numbers allows
to precisely represent a lot of binary fractions, e.g. 1/8 and 1/128, but not the decimal frac-
tions that humans use, e.g. 1/10 and 1/100.

The following example illustrates that.

5

a. Create a file jsDemo06C.html in $HOME/public_html/ with the following content:

<!DOCTYPE html>

<html>

<head>

<title>Math Example 2</title>

</head>

<body>

<script>

var x = 0.3 - 0.2

var y = 0.2 - 0.1

document.writeln("x = " + x + "
")

document.writeln("y = " + y + "
")

document.writeln("(x == y) = " + (x == y) + "
")

document.writeln("(x == 0.1) = " + (x == 0.1) + "
")

document.writeln("(y == 0.1) = " + (y == 0.1) + "
")

</script>

</body>

</html>

b. Open the URL

https://student.csc.liv.ac.uk/~<user>/jsDemo06C.html

in a web browser, where <user> should be replaced by your departmental user name.

c. Have a look at the output produced by the JavaScript program. Use an on-line decimal
to floating-point converter such as

http://www.binaryconvert.com/convert_double.html

http://www.exploringbinary.com/floating-point-converter/

to understand what the floating-point numbers corresponding to 0.3, 0.2, 0.1 really are
and what the results of 0.3− 0.2 and 0.2− 0.1 are.

d. Write a Python program that performs the same computations and comparisons as the
JavaScript code in jsDemo06C.html. Do you get the same results?

References

[1] Kayce Basques. Tools for Web Developers: Console Overview. Google. 18 April 2019. URL:
https://developer.chrome.com/docs/devtools/console/ (accessed 28 January
2023).

[2] Mozilla and individual contributors. Firefox Developer Tools: Web Console. Firefox Source
Docs. 28 January 2023. URL: https://firefox-source-docs.mozilla.org/devtools-
user/web_console/index.html (accessed 28 January 2023).

6

http://www.binaryconvert.com/convert_double.html
http://www.exploringbinary.com/floating-point-converter/
https://developer.chrome.com/docs/devtools/console/
https://firefox-source-docs.mozilla.org/devtools-user/web_console/index.html
https://firefox-source-docs.mozilla.org/devtools-user/web_console/index.html

