
COMP519 Practical 9
JavaScript (4)

Introduction

• This worksheet contains further exercises that are intended to familiarise you with JavaScript
Programming. While you work through the tasks below compare your results with those
of your fellow students and ask for help and comments if required.

• You might proceed more quickly if you cut-and-paste code from this PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s
Linux systems to experiment with JavaScript.

• To keep things simple, we will just use a text editor, a terminal, and a web browser. You
can use whatever text editor and web browser you are most familiar or comfortable with.

• If you do not manage to get through all the exercises during this practical session, please
complete them in your own time.

Exercises

1. In the lectures we have considered how objects are defined in JavaScript and how, in the
absence of classes, we can establish an inheritance relationship.

The following exercises is intended to reinforce those considerations.

a. Create a file jsDemo09A.html in your public_html directory with the following content:

<!DOCTYPE html>

<html lang="en-GB">

<head>

<title>JavaScript 09A: Inheritance</title>

<script id="j1">

function Rectangle(width, height) {

this.width = width

this.height = height

this.type = 'Rectangle'

}

Rectangle.prototype.area =

function() { return this.width * this.height }

function Square(length) {

this.width = this.height = length

this.type = 'Square'

}

// Square inherits from Rectangle

1

Square.prototype = new Rectangle()

</script>

</head>

<body>

<script id="j2">

var rc1 = new Rectangle(2,3)

var sq1 = new Square(5)

document.writeln("The area of rc1 is ",rc1.area(),"
")

document.writeln("The area of sq1 is ",sq1.area(),"
")

document.writeln("The area of ",rc1," is ",rc1.area(),"
")

document.writeln("The area of ",sq1," is ",sq1.area(),"
")

</script>

</body>

</html>

b. Make sure that the access rights for jsDemo9A.html are set correctly.

c. Open jsDemo09A.html in a web browser. You should see the following:

The area of rc1 is 6

The area of sq1 is 25

The area of [object Object] is 6

The area of [object Object] is 25

Note that whenever you print out an object, JavaScript uses the object’s toString

method to get a string representation of the object. If the toString is inherited from
Object without being overwritten, then this string representation is "[object type]",
where type is the object type.

d. Change the string representation of a Rectangle object with width wd and height ht to
Rectangle[wd,ht]. Note that this.type already gives you the string 'Rectangle'. If
done correctly, the last two lines of output of your script change to

The area of Rectangle[2,3] is 6

The area of Square[5,5] is 25

e. That the string representation of Square objects is now Square[wd,ht] is a bit sub-
optimal. It should really be Square[wd]. Change the toString method for Square to
achieve the desired representation. The last line of the output should now be

The area of Square[5] is 25

f. In analogy to Rectangle and Square add an object constructor Polygon for regular
polygons (the code for this should be added to the script element with id j1). The
Polygon constructor should have two parameters for the number of sides n and the
length s of each side. The string representation should be n-Polygon[s]. The area of a
polygon should be computed using the formula given in [2], rounded to two digits after
the decimal point. Hint: The formula in [2] uses a tangent function that takes degrees
as argument while JavaScript uses a tangent function that takes radians as argument.
See [1] for how to deal with the conversion.
Test your solution with a five-sided polygon where each side has a length of 6. The
output you produce for this test case should be

The area of 5-Polygon[6] is 61.94

2

g. Extend the code in the script element with id j2 so that (i) 10 shapes are randomly
generated and stored in an array and (ii) the string representation of the shapes and
their area are printed out.
In more detail, to generate a shape, first generate a random natural number r between
0 and 2.
• If r is equal to 0, generate another random natural number s between 2 and 9,

construct a square object O with s as the length of its sides, and add O to your array.
• If r is equal to 1, generate two another random natural number s and t between 2

and 9, construct a rectangle object O with sides s and t, and add O to your array.
• If r is equal to 2, generate a random number n between 5 and 8 as well as a ran-

dom natural number s between 2 and 9, construct a polygon object with n sides of
length s, and add O to your array.

Then iterate over all elements in the array, print out the string representation and their
area like we have already done for rc1 and sq1.

2. In the lectures we have also considered various aspects of objects in JavaScript, in par-
ticular, the way instance variables and ‘class’ variables are declared and how these can be
made public or private.

The following exercises is intended to reinforce those considerations.

a. Create a file jsDemo09B.html in your public_html directory with the following content:

<!DOCTYPE HTML>

<html lang="en-GB">

<head>

<title>JavaScript 09B: Objects</title>

<script>

</script>

</head>

<body>

<script>

var e = []

e[0] = new Employee("Hal Smith", 30000)

e[1] = new Employee("Tim Peck", 20000)

e[2] = new Employee("Ari Bell",18000)

// For e[0].name we expect 'Hal Smith'

document.writeln("e[0].name = "+e[0].name+"
")

// For e[0].salary we expect 'undefined'

document.writeln("e[0].salary = "+e[0].salary+"
")

// For e[0].getSalary() we expect 30000

document.writeln("e[0]'s salary = "+e[0].getSalary()+"
")

// For e[1].getName() we expect 'Tim Peck'

document.writeln("e[1]'s name = "+e[1].getName()+"
")

// For e[1].getSalary() we expect 20000

document.writeln("e[1]'s salary = "+e[1].getSalary()+"
")

// We make changes to e[1]

document.writeln("Changing e[1]'s name to 'Tom Beck' and "+

"salary to 25000
")

e[1].name = "Tom Beck"

e[1].setSalary(25000)

// For e[1].getName() we now expect 'Tom Beck'

3

document.writeln("e[1]'s name = "+e[1].getName()+"
")

// For e[1].getSalary() we now expect 25000

document.writeln("e[1]'s salary = "+e[1].getSalary()+"
")

// For e[1].getEmployeeCount() we expect 3

document.writeln("Employees: "+e[1].getEmployeeCount()+"
")

</script>

</body>

</html>

This HTML markup will serve as testbed for Exercise 2c.

b. Make sure that the access rights for jsDemo09B.html are set correctly.

c. We want to define an employee object. To keep the exercise simple, we assume that the
only attributes of an employee are a name and a salary. The first should be public, the
second private. In addition, we need a method to obtain information on an employee’s
salary as well as a method that allows us to change it. Finally, we want to keep track
of how many employees there are in total and we want to keep that number private.
The total number of employee’s should be automatically incremented each time a new
employee object is created.
Create a constructor for employee objects that satisfies these requirements and add it
to the head element of jsDemo09B.html.

d. Test your definition of the employee constructor by opening jsDemo09B.html in your
web browser and observing that the output is as expected.

e. Since the total employee count is not really an attribute of a particular employee, it is a
bit odd that we obtain that count by using an expressions like e[1].employeeCount().
Is it possible to define employeeCount() in such a way that we could use the expression
Employee.employeeCount() instead? If so, modify your code accordingly and test your
solution by replacing

document.writeln("Employees: "+e[1].getEmployeeCount()+"
")

with

document.writeln("Employees: "+Employee.getEmployeeCount()+"
")

and checking that you get the correct output after you have saved the file and refreshed
the page in the browser.

f. Being able to ‘create’ new employees is obviously nice, but sometimes we also have to
‘delete’ an existing employee.
Can we extend our definition of Employee by a method remove that deletes a particular
employee object and at the same time decrements the total employee count? If so,
modify your code accordingly and test your solution by adding the code

e[2].remove()

// Expected to print the number 2 now

document.writeln("Employees: "+Employee.getEmployeeCount()+"
")

and checking that you get the correct output after you have saved the file and refreshed
the page in the browser.
Hint: There is a related discussion [3] on StackOverflow.
The optiomal solution would be to develop an Employees object that maintains the set
of all Employee objects and would allow to remove an employee by name. However,
that is beyond the scope of this practical.

4

References

[1] Mozilla and individual contributors. Math.tan(). MDN Web Docs. 31 December 2022.
URL: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Math/tan (accessed 24 January 2023).

[2] John D. Page. Area of a regular polygon. Math Open Reference. 2011. URL: https :

//www.mathopenref.com/polygonregulararea.html (accessed 24 January 2023).

[3] Wytze (https://stackoverflow.com/users/316727/wytze). How to quickly clear a
JavaScript Object? Stack Exchange Network. 27 February 2013. URL: https://stackoverflow.
com/a/15089643 (accessed 28 January 2023).

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/tan
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/tan
https://www.mathopenref.com/polygonregulararea.html
https://www.mathopenref.com/polygonregulararea.html
https://stackoverflow.com/users/316727/wytze
https://stackoverflow.com/a/15089643
https://stackoverflow.com/a/15089643

