
COMP519 Practical 10
JavaScript (5)

Introduction

• This worksheet contains further exercises that are intended to familiarise you with JavaScript
Programming. While you work through the tasks below compare your results with those
of your fellow students and ask for help and comments if required.

• You might proceed more quickly if you cut-and-paste code from this PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s
Linux systems to experiment with JavaScript.

• To keep things simple, we will just use a text editor, a terminal, and a web browser. You
can use whatever text editor and web browser you are most familiar or comfortable with.

• If you do not manage to get through all the exercises during this practical session, please
complete them in your own time.

Exercises

1. From the last practical you should have a file jsDemo09B.html in your $HOME/public_html/
directory containing the definition of a prototypical employee object. (If you have not com-
pleted the last practical, then it might be best if you skip this step and move directly to
Exercise 2 in this worksheet.)

a. We want to prompt the user to enter a new salary for one of our employees. Add the
following code to the body section of jsDemo09B.html (after the already existing code):

do {

string = prompt("Enter a new salary for "+

e[0].name+"?",e[0].getSalary())

newSalary = parseInt(string)

} while (isNaN(newSalary) || newSalary <= 0)

e[0].setSalary(newSalary)

alert("The new salary for "+e[0].name+" is "+

e[0].getSalary())

Save the file. Clear the output shown in the error console, then refresh the page in
your web browser. Check that the code is working correctly. If it does you will first see
a dialog box that prompts you to enter a new salary for ’Hal Smith’ and then another
dialog box will inform you what the salary of ’Hal Smith’ has been changed to which
should be the new salary that you have just entered.

b. Obviously, that dialog would be much more useful if you could change the salary of an
employee whom you specify by providing his/her name.

1

As a first step you would need an additional dialog box that prompts the user for the
name of an employee. Then you would need to define a function that given a name
finds which of the employee objects in the array e stores data for an employee with
that name and returns that particular object; for comparison of names you could either
use string equality or a regular expression search. Finally, you need to execute that
function for the name that the user entered, and pass the returned object to the code
in the previous step.
Implement that functionality and test it by entering various names that do or do not
concur with the names for one of the existing employees and change their salaries.

2. Dialog boxes are a quick way of obtaining user input, but from an interface design point
of view they are almost always the wrong choice for doing so. Forms are a much better
way to build user interfaces.

a. Create a file jsForms.html in your public_html directory with the following content:

<!DOCTYPE HTML>

<html lang="en-GB">

<head>

<title>JavaScript and Forms</title>

<script>

function FahrenheitToCelsius(temperature) {

// Your definition here

}

</script>

</head>

<body>

<h1>JavaScript and Forms</h1>

<form name="form1" action="">

Temperature in Fahrenheit:

<input type="text" name="fahrenheit" id="df" size="10" value="0">

Temperature in Celsius:

<input type="text" name="celsius" id="dc" size="10" value=""

onfocus="blur();">

<input type="button" name="Convert"

onclick="document.form1.celsius.value =

FahrenheitToCelsius(parseFloat(

document.form1.fahrenheit.value)).toFixed(1);">

</form>

<div id="error"></div>

</body>

</html>

b. Make sure that the access rights jsForms.html are set correctly.
c. Open jsForms.html in your web browser. You can enter a number into the first text

field, but if you click on the ‘Convert’ button, then in the JavaScript console you will
see a TypeError. This is because the function FahrenheitToCelsius does not return
anything yet.

d. Add code to FahrenheitToCelsius so that the function returns a value that is the
equivalent in Celsius of the parameter temperature given in Fahrenheit. Save the file,

2

reload it in the web browser, enter a number into the first text field, then click on the
‘Convert’ button. In the second text field you should then see result of the conversion.

e. Enter a sequence of letters into the first text field instead of a number and click on
the ‘Convert’ button. You should again see a TypeError in the JavaScript console. The
problem obviously is that while we expect a number to be entered into the first text
field, there is nothing that prevents the user from entering whatever they like.

f. Try to rectify this problem by replacing the first text field with a HTML5 form control
that (only) allows to enter numbers.

g. Have you solved the problem? Enter the letter ‘e’ or ‘E’ into the first field. Is it accepted
as input? If so, what is the result of converting it?
Make sure that you understand what is going on.

h. To rectify the problem we discovered in Exercise 2g, first create another function
processInput that provides the same functionality as the code in the onclick attribute
of the Convert button. Replace the code in the onclick attribute of the Convert button
with a call of processInput, possibly with appropriate argument(s).
Now, within processInput check the user’s input for correctness, say, using a regular
expression. If the user’s input is correct, proceed with the calculation of temperature in
degrees Celsius and display result as before. If the user’s input is incorrect, then display
an error message in the div element with id error and put the focus back into the first
field.

3. In the most recent lecture we discussed the implementation of a two-player board game
using JavaScript. There were some tasks left to be done. In this exercise you should try to
complete them.

a. Copy the file

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/jsBoard.html

to your $HOME/public_html/ directory.

b. Define a function checkWin that checks whether one of the two players has managed to
place three of his/her own pieces in a row, column, or diagonal on the board. If so, the
function should return the number identifying that player (1 or 2) as result, otherwise
it should return 0.

c. Define a function showWin that takes the number identifying a player as an argument
and displays nicely styled message declaring that player to be the winner of the game,
e.g. ”Player 1 has won!”. The function should make it impossible that the players
can place further pieces on the board. This can be done either by removing the event
handlers from all table cells or by establishing an end game state in which the play
function does not make any more changes.

d. Within the play function add code at the appropriate point that calls the checkWin and
showWin functions.

e. Within the play function add code at the appropriate point that checks whether there
are free positions left on the board, calls an endGame function if there are not, and
otherwise proceeds with the processing of the event.

f. Define a function endGame end the game with an appropriate message, e.g. ”Game
Over!”. Again, the function should make it impossible that the players can place further
pieces on the board. This can be done either by removing the event handlers from all
table cells or by establishing an end game state in which the play function does not
make any more changes.

3

https://cgi.csc.liv.ac.uk/~ullrich/COMP519/examples/jsBoard.html

4. Create a new file jsRandom.html with HTML and JavaScript code that provides the fol-
lowing functionality. Initially, the page shows the user a two-dimensional table with 3
columns and 3 rows where every cell of the table contains the number zero. Below the
table should be a clickable HTML element with the label ‘Calculate’.

Whenever the user clicks on a cell, the number currently in the cell is replaced by a new
random number between 1 and 9.

If the user clicks on ‘Calculate’ a message box will be shown with the message ‘The sum of
all the numbers on the board is X ’ where X is the sum of all the numbers currently in the
cells of the table.

4

