
COMP519 Practical 13
PHP (3)

Introduction

• This practical is dedicated to PHP Programming. While you work through the exercises
below compare your results with those of your fellow students and ask for help and com-
ments if required.

• You might proceed more quickly if you cut-and-paste code from this PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s
Linux systems to experiment with PHP.

• To keep things simple, we will just use a text editor, a terminal, and a web browser. You
can use whatever text editor and web browser you are most familiar or comfortable with.

• If you do not manage to get through all the exercises during this practical session, please
complete them in your own time.

Exercises

1. In the lectures we covered the way in functions are defined and called in PHP as well as
the concept of local and global variables. In this exercise, we want to study the scope of
variables in more detail.

a. Create a file name php13A.php in $HOME/public_html with the following HTML markup
and PHP code. Make sure that the file permissions of that file are correct.

<!DOCTYPE html>

<html lang='en-GB'>
<head>

<title>PHP 13A</title>

</head>

<body>

<h1>Variable Scope</h1>

<?php

error_reporting(E_ALL);

ini_set('display_errors', 1);

ini_set('display_startup_errors', 1);

echo "<h2>Exercise 1</h2>\n";

// This is a global variable

$a = 0;

if ($a == 0) {

// This is still a global variable

$b = 1;

}

function checkVar($context,$name,&$var) {

1

if (isset($var)) {

echo "$context $name=$var
\n";
} else {

echo "$context $name is not defined
\n";

}

}

function func1($c) {

$c and $d are local variables

for ($d = 0; $d <= 5; $d++) {

}

checkVar("In func1",'$a',$a);
checkVar("In func1",'$b',$b);
checkVar("In func1",'$c',$c);
checkVar("In func1",'$d',$d);

}

func1(3);

checkVar("Outside func1",'$a',$a);
checkVar("Outside func1",'$b',$b);
checkVar("Outside func1",'$c',$c);
checkVar("Outside func1",'$d',$d);

?>

</body>

</html>

b. Open a web browser and access the URL

https://student.csc.liv.ac.uk/~<user>/php13A.php

were <user> should be replaced by your user name. Besides headings the page should
contain the following:

In func1 $a is not defined

In func1 $b is not defined

In func1 $c=3
In func1 $d=6
Outside func1 $a=0
Outside func1 $b=1
Outside func1 $c is not defined

Outside func1 $d is not defined

What is the output telling you about the scope of the variables $a, $b, $c, and $d?

c. Replace the line

$a = 0;

by

$a = 1;

Save the changes, then reload the page. How has the output changed and why?

d. In the definition of the function func1, add the line

$a = 2;

2

before the for-loop in that function. Save the changes, then reload the page. How has
the output changed and why?

e. In the definition of the function func1, add the line

global $a;

before the assignment $a = 2 that you have introduced in the previous step. Save the
changes, then reload the page. How has the output changed and why?

f. Finally, what happens if you move the line

global $a;

after the assignment $a = 2 in func1? Give it a try. What does that tell you about
where declarations like this need to be placed?

2. Let us move on to nested functions and their effect on the scope of variables.

a. Create a file named php13B.php in $HOME/public_html with the following HTML
markup and PHP code. Make sure that the file permissions of that file are correct.

<!DOCTYPE html>

<html lang='en-GB'>
<head>

<title>PHP 13B</title>

</head>

<body>

<h1>Nested Functions and Variable Scope</h1>

<?php

error_reporting(E_ALL);

ini_set('display_errors', 1);

ini_set('display_startup_errors', 1);

echo "<h2>Exercise 2a</h2>\n";

function outside1() {

$msg = "Outside!";

function inside1() {

$msg = "Inside!";

echo "(I1): $msg
\n";
}

inside1();

echo "(O1): $msg
\n";
}

outside1();

?>

</body>

</html>

b. Open a web browser and access the URL

https://student.csc.liv.ac.uk/~<user>/php13B.php

were <user> should be replaced by your user name. Besides headings the page should
contain the following:

(I1): Inside!

(O1): Outside!

3

Based on Exercise 1 we know why this is so: $msg in inside1() has nothing to do with
$msg in outside1().

c. Would a global declaration connect the two different instances of $msg? Add the
declaration

global $msg;

as the first statement of the function inside1(). Save your changes then reload the
web page. The output does not change, why not?

d. There is no nonlocal declaration in PHP, so we have to try something different. Add
the following PHP code just after the call of outside1():

echo "<h2>Exercise 2d</h2>\n";

function outside2() {

$msg = "Outside!";

function inside2() {

$msg = "Inside!";

echo "(I2): $msg
\n";
}

$inside3 = function () use($msg) {

echo "(I3a): $msg
\n";
$msg = "Inside!";

echo "(I3b): $msg
\n";
};

inside2();

$inside3();
echo "(O2): $msg
\n";

}

outside2();

Save the file and reload the page in your web browser. You should the following
additional output:

(I2): Inside!

(I3a): Outside!

(I3b): Inside!

(O2): Outside!

From the output we can see that $msg inside $inside3() now inherits its value from
outside2(), but changing it has not effect on the value of $msg in outside2(). It is as
if $inside3() has a parameter and was passed $msg has an argument.

e. Change the line

$inside3 = function () use($msg) {

to

$inside3 = function () use(&$msg) {

Save the file and reload the page in your web browser. You should see that $inside3()
is now able to change the value of $msg, as one would expect if an argument is passed
by reference.

f. But where exactly does $inside3() take $msg from? Is it determined at the time we
assign the anonymous function to $inside3() or at the time we call that function?
Add the line

4

$msg = "Still outside!"

before the call of $inside3(). Save the file and reload the page in your web browser.
What does the output tell you about the answer to the question above?

g. Add a second call to outside2() at the end of the script. Save the file then reload the
page in your web browser. You should see an error message. What is going wrong?
Try to change the code for outside2() so that a second call is possible?

h. Let us see whether array variables behave differently to scalar variables in PHP. Add
the following code at the end of the script:

echo "<h2>Exercise 2h<h2>\n";

function outside4() {

$arr[0] = "Outside!";

function inside4() {

$arr[0] = "Inside!";

echo "(I4): ",$arr[0],"
\n";
}

inside4();

echo "(O4): ",$arr[0],"
\n";
}

outside4();

Save the file and reload the page in the web browser. What does the output tell you
about PHP arrays?

3. In this exercise we want to explore variable-length argument lists and keyword arguments.

a. Create a new HTML document php13C.php in your public_html document with the
following content:

<!DOCTYPE html>

<html lang='en-GB'>
<head>

<title>PHP 13C</title>

<META name="description" content="php13C.php">

</head>

<body>

<h1>Variable-length Argument Lists</h1>

<?php

try {

echo "1: ", reduceOp(2,3), "
\n"; # throws an exception

} catch (Exception $e) {

echo "1: Exception ",$e->getMessage(),"
\n"; # 'TypeError'
}

try {

echo "2: ",reduceOp(2,3,array('op' => '/')), # throws an exception

"
\n";

} catch (Exception $e) {

echo "2: Exception ",$e->getMessage(),"
\n"; # 'ValueError'
}

echo "3: ",reduceOp(array('op'=>'+')), # should return NULL

"
\n";

echo "4: ",reduceOp(2,array('op' => '*')), # should return 2

5

"
\n";

echo "5: ",reduceOp(2,3,5,array('op' => '+')), # should return 10

"
\n";

echo "6: ",reduceOp(2,3,5,7,array('op' => '*')), # should return 210

"
\n";

echo "7: ",reduceOp(2,3,5,7,11,array('op' => '-')),# should return -24

"
\n";

?>

</body>

</html>

Exceptionally, there are comments after the code. Do not do that in code that you
develop for the assignments.

b. Extend php13C.php with the definition of a function reduceOp that behaves as follows:

• reduceOp expects an associative array as last argument that maps the key 'op' to
one of the values '+', '-', or '*'. In the absence of this argument, an exception
with value 'TypeError' should be raised. If the associative array is present, but
does not have a valid value, then an exception with value 'ValueError' should be
raised.

• In addition to this associate array, reduceOp takes a possibly empty list of numbers as
argument. If a valid associative array is supplied, but the list of numbers is empty,
then the value NULL should be returned. If an associative array mapping 'op' to
value ‘op’ as well as a non-empty list n1, . . . , nk of numbers is supplied, then the
value (((n1 op n2) op n3) · · · op nk) should be returned.

• Check that your reduceOp function behaves as expected using the test cases provided.

4. The following exercise deals with the modification of array elements, string operations and
pattern search and replace.

a. Create a file name php13D.php in $HOME/public_html with the following HTML markup
and PHP code. Make sure that the file permissions of that file are correct.

<!DOCTYPE html>

<html lang='en-GB'>
<head>

<title>PHP 13D</title>

</head>

<body>

<h1>Regular Expressions</h1>

<?php

echo "<h2>Exercise 4</h2>\n";

$names = ["Dave Shield", "Mr Andy Roxburgh",

"Dr George Christodoulou",

"Dr Ullrich Hustadt", "Prof Tara Wang"];

foreach ($names as $name)
echo "(1) Name: $name
\n";

// Your own code here

foreach ($names as $name)
echo "(2) Name: $name
\n";

?>

</body>

</html>

6

Load the page in your web browser. The output produced by the code above should be
as follows:

(1) Name: Dave Shield

(1) Name: Mr Andy Roxburgh

(1) Name: Dr George Christodoulou

(1) Name: Dr Ullrich Hustadt

(1) Name: Prof Tara Wang

and the same again with (1) replaced by (2).

b. Add code at the point indicated in the code in Exercise 4a that modifies the strings
stored in $names so that the output produced will change to:

(2) Name: SHIELD, Dave

(2) Name: ROXBURGH, Andy

(2) Name: CHRISTODOULOU, George

(2) Name: HUSTADT, Ullrich

(2) Name: WANG, Tara

This should be done with the help of string manipulation operations, see, for example,

http://www.php.net/manual/en/function.preg-match.php

http://www.php.net/manual/en/function.preg-replace-callback.php

and the code should be independent of the actual names stored in $names.
Also recall from the lecture notes the variation of a foreach-loop that allows you to
modify the elements of an array.

c. Add the following code at the end of the script:

foreach ($names as $name)
if (TRUE) {

echo "(3) Name: $name is valid
\n";

} else {

echo "(3) Name: $name is invalid
\n";

}

d. Replace the boolean constant TRUE in the conditional statement with a boolean expres-
sion involving one or more calls of the preg_match function with regular expressions
that evaluates to TRUE if and only if $name satisfies each of the following conditions:

• there is at most one occurrence of a comma followed by a space;
• in front of the comma is a non-empty sequence of letters A–N and P–Z;
• following the space is a non-empty sequence of letters with one letter occurring at

least twice.

If programmed correctly, the output should be

(3) Name: SHIELD, Dave is invalid

(3) Name: ROXBURGH, Andy is invalid

(3) Name: CHRISTODOULOU, George is invalid

(3) Name: HUSTADT, Ullrich is valid

(3) Name: WANG, Tara is valid

7

http://www.php.net/manual/en/function.preg-match.php
http://www.php.net/manual/en/function.preg-replace-callback.php

