
COMP519 Practical 18
REST (1)

Introduction

• This worksheet contains further exercises that are intended to familiarise you with Apache
rewrite rules and the implementation of a RESTful web service using PHP.

While you work through the exercises below compare your results with those of your fellow
students and ask for help and comments if required.

• You might proceed more quickly if you cut-and-paste code from this PDF file. Note that
a cut-and-paste operation may introduce extra spaces into your code. It is important that
those are removed and that your code exactly matches that shown in this worksheet.

• The exercises and instructions in this worksheet assume that you use the Department’s Linux
systems to experiment with Apache rewrite rules and RESTful web services.

• To keep things simple, we will just use a text editor, a terminal, and a web browser. You can
use whatever text editor and web browser you are most familiar or comfortable with.

Exercises

1. We want to develop a better understanding of Apache rewrite rules.

a. Create the following directories:

$HOME/public_html/rw
$HOME/public_html/rw/aa $HOME/public_html/rw/aa/bb
$HOME/public_html/rw/cc $HOME/public_html/rw/cc/dd

b. Create a file file1.html in the directory $HOME/public_html/rw/aa containing the fol-
lowing HTML markup

<!DOCTYPE html>

<html lang='en-GB'>
<head></head>

<body>

This is file <!--#echo var="document_uri"-->

</body>

</html>

c. Make copies of file1.html in the directories $HOME/public_html/rw/aa/bb,
$HOME/public_html/rw/cc, and $HOME/public_html/rw/cc/dd.

d. Make sure that you have completed Practical 1 Exercise 7, that is, there is a world-
readable file .htaccess in your public_html directory with the contents

addOutputFilter INCLUDES .html .htm

This enables the server-side include used in file1.html.

1

e. Use a web browser to check that all these files are accessible via the URLs

https://student.csc.liv.ac.uk/~<user>/rw/aa/file1.html

https://student.csc.liv.ac.uk/~<user>/rw/aa/bb/file1.html

https://student.csc.liv.ac.uk/~<user>/rw/cc/file1.html

https://student.csc.liv.ac.uk/~<user>/rw/cc/dd/file1.html

where <user> should be replaced by your University (MWS) username. Also check that
each of these web pages correctly indicates it’s location. That is, in the web browser you
should see

This is file /~<user>/rw/aa/file1.html

for https://student.csc.liv.ac.uk/~<user>/rw/aa/file1.html, and, in analogy, cor-
responding paths for the other web pages.

f. Create a file $HOME/rw/.htaccess with the following content

RewriteEngine On

RewriteRule ^aa(\/?.*)$ cc$1

g. We almost always want to restrict access to files in our personal filestore, but .htaccess
files need to be world-readable. Make sure that $HOME/rw/.htaccess is world-readable
by using

chmod a+r $HOME/public_html/rw/.htaccess

h. Use a web browser to confirm that for the following two URLs nothing has changed:

https://student.csc.liv.ac.uk/~<user>/rw/cc/file1.html

https://student.csc.liv.ac.uk/~<user>/rw/cc/dd/file1.html

The part of those URLs subject to URL rewriting is cc/file1.html and cc/dd/file1.html,
respectively. Since neither starts with aa, the pattern in the rewrite rule does not match
and no rewriting takes place.

i. Use a web browser to access

https://student.csc.liv.ac.uk/~<user>/rw/aa/file1.html

In the web browser you should now see

This is file /~<user>/rw/cc/file1.html

indicating that the URL has been rewritten. This is because the part of the URL subject to
rewriting is aa/file1.html, ^aa(\/?.*)$ does match aa/file1.html, $1 in cc$1 refers
to the part matched by the capture group (\/?.*) which is /file1.html, resulting in
the web server now looking for cc/file1.html instead. Note that the URL shown in the
address/search field of the web browser has not changed.

j. Use a web browser to attempt to access

https://student.csc.liv.ac.uk/~<user>/rw/aa/bb/file1.html

In the web browser you should now see an error message, e.g., “This page isn’t work-
ing”. This is because the part of the URL subject to rewriting is aa/bb/file1.html,
^aa(\/?.*)$ does match aa/bb/file1.html, $1 in cc$1 refers to the part matched by
the capture group (\/?.*) which is /bb/file1.html, resulting in the web server now
looking for cc/bb/file1.html instead. This file does not exist. Note again that the URL
shown in the address/search field of the web browser has not changed, so a URL that
worked before no longer does

2

2. In the lectures we have discussed three different options how we can use rewrite rules in
the implementation of a RESTful web service. We now know that rewrite rules work in
principle, so let us see which of the three options will work for us.

a. Replace the current content of $HOME/public_html/rw/.htaccess with the following:

RewriteEngine On

RewriteRule ^([ac].*)$ file2.php/$1

b. Create a file file2.php in the directory $HOME/public_html/rw/ containing the follow-
ing HTML markup and PHP code

<!DOCTYPE html>

<html lang='en-GB'>
<head></head>

<body>

<?php

foreach (['REQUEST_METHOD','PATH_INFO','SCRIPT_FILENAME'] as $key)
echo "\$_SERVER['$key'] => ",$_SERVER[$key],"
\n";

foreach ($_REQUEST as $key => $value)
echo "\$_REQUEST[$key] => $value
\n";

$data = json_decode(file_get_contents('php://input'),TRUE);
echo "<pre>";

print_r($data);
echo "</pre>";

?>

</body>

</html>

c. In a web browser open the URL

https://student.csc.liv.ac.uk/~<user>/rw/file2.php

You should see

$_SERVER['REQUEST_METHOD'] =>

$_SERVER['PATH_INFO'] =>

$_SERVER['SCRIPT_FILENAME'] => /home/<user>/public_html/rw/file2.php

indicating that the environment variable PATH_INFO is not set, no query nor any addi-
tional data was passed to the script.

d. Now open the URL

https://student.csc.liv.ac.uk/~<user>/rw/aa/bb

in the web browser. In all likelihood you just see an error message, e.g., “This page isn’t
working”. The part aa/bb of the URL was subject to rewriting, the pattern ^([ac].*)$
matches it, in particular, the capture group matches all of aa/bb, and file2.php/$1
becomes file2.php/aa/bb. The web server now looks for file2.php/aa/bb. Ideally, it
would recognise that file2.php exists and pass aa/bb to that script via the environment
variable PATH_INFO. But this is not the case.
This means Option 2 discussed in the lectures does not work with the configuration of
our web server.

e. Replace the rewrite rule in $HOME/public_html/rw/.htaccess by the following one

3

RewriteCond %{REQUEST_URI} "!file2\.php"

RewriteRule ^([a-z].*)$ file2.php?resource=$1 [QSA]

and save the file. RewriteCond is not something we have discussed in the lectures. It
ensures that the RewriteRule that immediately follows it is only applied if the condition
of RewriteCond is true. The condition here is that file2.php does not already occur in
the URL.

f. Reload the URL

https://student.csc.liv.ac.uk/~<user>/rw/aa/bb

in your web browser. You should now see the output

$_SERVER['REQUEST_METHOD'] => GET

$_SERVER['PATH_INFO'] =>

$_SERVER['SCRIPT_FILENAME'] => /home/<user>/public_html/rw/file2.php

$_REQUEST[resource] => aa/bb/

This means Option 3 discussed in the lectures works.

g. In your web browser access

https://student.csc.liv.ac.uk/~<user>/rw/aa/bb?sort=name

Does the output shown to you change? If not, then sort=name has been lost. Try to fix
the rewrite rule so that this query is preserved when rewriting the URL.

3. A web browser is sufficient to produce some GET HTTP requests, but to test a RESTful
web service we need a better tool. One possibility is the Postman API Client [3]. Another
possibility is the </> RESTED extension by Espen H for both Mozilla Firefox and Google
Chrome [1, 2]. Install one of them.

4. A REST API client allows you to generate arbitrary HTTP requests. They typically have a
drop-down menu that allows you to select a HTTP request method and a input field for a
URL. In addition, request headers and a request body can be specified.

a. Let us first try to create a POST HTTP request.
• Select ‘POST’ as request method in the drop-down menu.
• Enter the URL

(a) POST Request (b) Response

Figure 1: </> RESTED Example

4

(a) POST Request (b) Response

Figure 2: Postman Example

https://student.csc.liv.ac.uk/~<user>/rw/ee/ff

where <user> should be replaced by your University (MWS) username.
• If you use </> RESTED, in Headers add the key ’Content-Type’ with value ’applica-

tion/json’.
• We want to send a request body that consists of data in JSON. Where that data consists

of a single JSON object with a list of name/value pairs, </> RESTED allows to enter
those in the same way as query parameter. Choose type ‘JSON’, then enter the names
slot, name, and email with associated values 17, Peter Parker, pp@hotmail.com,
respectively. See Figure 1a.
In Postman, you need to click on ‘Body’, then select ‘raw’ in the list of buttons, and
finally select ‘JSON’ from the drop-down menu of additional encodings. You can then
enter arbitrarily complex JSON data into the text area. Enter

{"slot":17,"name":"Peter Parker","email":"pp@hotmail.com"}

See Figure 2a.
• Finally, click on the ‘Send request’ / ‘Send’ button to send the HTTP request.

b. If you have entered everything correctly, then a few seconds later you should see the
response. See Figure 1b for what the response should look like in </> RESTED and
Figure 2b for Postman.
You can see that the HTTP response code is 200. The request URL has been rewritten
and the PHP script file2.php has been executed, the HTTP request method we have
used for our request can be seen in $_SERVER['REQUEST_METHOD'], ee/ff/ ending up in
$_REQUEST['resource']. The JSON data was accessed by file2.php via php://input

and decoded into an associative array.

c. One of the reason for using tools like </> RESTED and Postman is the ease with which we
can create HTTP requests with a range of request methods. You have already used the
drop-down menu for the request method to create a POST request. Now systematically
create GET, PATCH, and DELETE requests. Do not change any of the other settings. After
sending these requests observe what the response looks like.
You should see that the value of $_SERVER['REQUEST_METHOD'] reflects the HTTP request
method that you have chosen, but nothing else changes. This might be a bit surprising
as, for instance, a GET request is not expected to have a request body. But it turns out
that the web server and PHP are agnostic about that.

d. So far our PHP script always produces an HTTP response code 200. We want to change
that. Add the following code at the end of the PHP script in file2.php.

$status = ['GET' => 200, 'DELETE' => 204, 'PATCH' => 404, 'POST' => 201];

http_response_code($status[$_SERVER['REQUEST_METHOD']]);

5

Make sure that you have not introduced any syntax errors into the code.

e. Now, systematically send DELETE, GET, PATCH, and POST requests as you have done in
Exercise 4c. Observe how the response shown in </> RESTED or Postman differs between
the four request methods.

5. file2.php is typical for our PHP scripts so far. It’s an HTML document with PHP code
embedded. This makes sense since our focus had been on PHP scripts that produce HTML
documents as ‘output’ (dynamic web pages), or, alternatively, to add responsiveness to
HTML documents.

However, in the final part of the module our focus is on RESTful web services. Their output
is meant to consist of an HTTP response code and JSON or XML data. Let us try to create a
simple PHP that does so.

a. Using a text editor, create a file file3.php in the directory $HOME/public_html/rw/ with
the following content

<?php

$status = ['GET' => 200, 'DELETE' => 204, 'PATCH' => 404, 'POST' => 201];

$output = $_REQUEST;
$output['REQUEST_METHOD'] = $_SERVER['REQUEST_METHOD'];
$output['SCRIPT_FILENAME'] = $_SERVER['SCRIPT_FILENAME'];
$input = file_get_contents('php://input');
if ($input)
$data = json_decode($input,TRUE);

else

$data = [];

$output = array_merge($output,$data);
header('Content-Type: application/json',TRUE,

$status[$_SERVER['REQUEST_METHOD']]);
echo json_encode($output);
?>

Make sure that there are no syntax errors in the file.

b. In $HOME/public_html/rw/.htaccess, replace all occurrences of file2.php by file3.php,
and save the file.

c. Now, systematically send DELETE, GET, PATCH, and POST requests as you have done in
Exercise 4c. The modified rewrite rule should redirect to file3.php instead of file2.php
now.
Observe what the response now looks like in </> RESTED or Postman and what the
differences between DELETE, GET, PATCH, and POST requests are.

References

[1] Espen H. </> RESTED Chrome Extension. 23 July 2019. URL: https://chrome.google.
com/webstore/detail/rested/eelcnbccaccipfolokglfhhmapdchbfg (accessed 27 Novem-
ber 2021).

[2] Espen H. </> RESTED Firefox Extension. 23 July 2019. URL: https://addons.mozilla.
org/en-GB/firefox/addon/rested (accessed 27 November 2021).

[3] Postman, Inc. Postman API Client. 27 November 2021. URL: https://www.postman.com/
product/api-client/ (accessed 27 November 2021).

6

https://chrome.google.com/webstore/detail/rested/eelcnbccaccipfolokglfhhmapdchbfg
https://chrome.google.com/webstore/detail/rested/eelcnbccaccipfolokglfhhmapdchbfg
https://addons.mozilla.org/en-GB/firefox/addon/rested
https://addons.mozilla.org/en-GB/firefox/addon/rested
https://www.postman.com/product/api-client/
https://www.postman.com/product/api-client/

