Tractable Multiagent Planning for Epistemic Goals

Wiebe van der Hoek
Department of Computer Science
Utrecht University & University of Liverpool
The Netherlands & U.K.

wiebe@cs.uu.nl

ABSTRACT

An epistemic goal is a goal about the knowledge possessed by an
agent or group of agents. In this paper, we address the problem of
how plans might be developed for a group of agents to cooperate to
bring about such a goal. We present a novel approach to this prob-
lem, in which the problem is formulated as one of model checking
in Alternating Temporal Epistemic Logic (ATEL). After introduc-
ing this logic, we present a model checking algorithm for it, and
show that the model checking problem for this logic is tractable.
We then show how multiagent planning can be treated as a model
checking problem in ATEL, and discuss the related issue of check-
ing knowledge preconditions for multiagent plans. We illustrate the
approach with an example. We then describe how this example was
implemented using the MOCHA model checking system, and con-
clude by discussing the relationship of our work with that of others
in the planning and speech acts communities.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms

and Models—modal logic, temporal logic, model checking

General Terms
Theory, Verification

Keywords
Epistemic & Temporal Logic, Model Checking, Planning

1. INTRODUCTION

An epistemic goal is a goal about the knowledge possessed by an
agent or group of agents. For example, Alice may have the goal
of making Bob know the combination to the safe; or Alice may
have the goal of making it common knowledge between Bob and
Chris that it is raining in London. An epistemic goal thus relates
to the knowledge (or, more generally, the beliefs) possessed by an
agent or group of agents. In this paper, we address the problem of
how plans might be developed for a group of agents to cooperate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007 ..$5.00

Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, U.K.

M.J.Wooldridge@csc.liv.ac.uk

to bring about such goals. In the simplest case, one agent might
work in isolation to bring about an epistemic state in an agent; in
a slightly more complex case, an agent might work alone to cause
a group of agents to collectively know something. Alternatively, a
group of agents might attempt to bring about a particular epistemic
state in either an individual agent, or, in the most general case, a
group of agents. All of these possibilities are covered by our work.

Our approach to this problem is based on the paradigm of plan-
ning as model checking pioneered by Giunchiglia and colleagues
[11]. In this approach, a planning domain is encoded as a semantic
structure (model) for a particular logic, and the goal is expressed
as a formula asserting that the desired state of affairs is possible
to achieve. Planning is then viewed as a process of checking that
the formula representing the goal is satisfied in the model repre-
senting the domain. Most work in this area has used Computation
Tree Logic (cTL) [8]. In our approach, we use a temporal logic
that incorporates knowledge operators [19]. This logic is called
Alternating Temporal Epistemic Logic (ATEL), and is an extension
of the Alternating Temporal Logic (ATL) of Alur, Henzinger, and
Kupferman [3]. ATL is a novel generalisation of cTL in which the
path quantifiers of CTL are replaced by cooperation modalities: the
ATL formula (T')<>, where T" is a group of agents, expresses the
fact that I" can cooperate to eventually bring about ¢. The CTL path
quantifiers A (“on all paths...”) and E (“on some paths...”) can be
expressed in ATL by the cooperation modalities (@) (“the empty-
set of agents can cooperate to...”) and (X)) (“the grand coalition
of all agents can cooperate to..."). ATEL extends ATL by the addi-
tion of operators for representing knowledge. As well as operators
for representing the knowledge of individual agents, ATEL includes
modalities for representing what “everyone knows” and common
knowledge [10, 14].

The remainder of the paper is structured as follows. We begin by
presenting Alternating Epistemic Transition Systems, the semantic
structures that we use to represent out domains. We then introduce
the logic ATEL, giving its semantics in terms of these sructures.
We present a model checking algorithm for ATEL in section 4, and
show that the complexity of the ATEL model checking problem is
PTIME-complete. In section 5, we introduce the multiagent plan-
ning problem, and show how this problem can be reduced to an
ATEL model checking problem. In section 6, we introduce an ex-
ample scenario; we describe how this scenario is implemented us-
ing a freely available ATL model checking system called MOCHA
[2, 1], and we show how, using this system, we were able to check
various ATEL properties — in particular, we show how we were
able to check the existence of multiagent plans for epistemic goals
in this scenario. We conclude with some comments and a short
discussion on related work.

2. ALTERNATING EPISTEMIC
TRANSITION SYSTEMS

We begin by introducing the semantic structures used to represent
our domains. These structures are a straightforward extension of
the alternating transition systems used by Alur and colleagues to
give a semantics to ATL. Formally, an alternating epistemic transi-
tion system (AETS) is a tuple

(I,%,Q,~1,...,~n,7,d), where

II is a finite, non-empty set of atomic propositions;

¥ = {ai,...,an} is afinite, non-empty set of agents;

Q is a finite, non-empty set of states;

~aC Q x Q is an epistemic accessibility relation for each
agent a € X — we require that each ~; is an equivalence
relation;

7 : Q = 2 gives the set of primitive propositions satisfied
in each state;

§:QxX — 22Q is the system transition function, which
maps states and agents to the choices available to these a-
gents. Thus é(q, a) is the set of choices available to agent a
when the system is in state g. We require that this function
satisfy the requirement that the system is completely con-
trolled by its component agents: for every state g € Q and
every set Q1, ..., Qnof choices Qi € 4(q, a), the intersection
Q1 N---NQnisasingleton. This means that if every agent
has made his choice, the system is completely determined.

Epistemic Relations. If I' C X, we denote the union of I'’s
accessibility relations by ~F, s0 ~5= (U, ~a). Also, ~F de-
note the transitive closure of ~E. We will later use N% and ~E to
give a semantics to the common knowledge and “everyone knows”
modalities in our logic [10].

Computations. For two states g,q' € Q and an agent a € ¥,
we say that state g is an a-successor of q if there exists aset Q' €
§(g,a) such that g € Q'. Intuitively, if g’ is an a-successor of g,
then ¢ is a possible outcome of one of the choices available to a
when the system is in state g. We denote by succ(q, a) the set of a
successors to state g. We say that g’ is simply a successor of q if
for all agents a € X, we have g’ € succ(q, a); intuitively, if ¢ is a
successor to g, then when the system is in state g, the agents X can
cooperate to ensure that ¢’ is the next state the system enters.

A computation of an AETS (I1, 3, Q, ~1, ..., ~n, 7w, d) iSan in-
finite sequence of states A = o, Q1, - - - such that for all u > 0,
the state q is a successor of q,—1. A computation starting in state
q is referred to as a g-computation; if u € IN, then we denote by
Alu] the u’th state in A; similarly, we denote by A0, u] and Afu, co]
the finite prefix o, . . . , qu and the infinite suffiX qu, Qu+1,... of A
respectively.

Strategies and Their Outcomes. Intuitively, a strategy is an
abstract model of an agents decision-making process; a strategy
may be thought of as a kind of plan for an agent. By following a
strategy, an agent can bring about certain states of affairs. Formally,
a strategy f for an agent a € X is a total function f, : QT —
2%, which must satisfy the constraint that fa(- q) € d(q,a) for
al A € Q" andq € Q. GivenasetI’ C X of agents, and an

indexed set of strategies Fr = {fa | a € T'}, one for each agent
a € I, we define out(q, Fr) to be the set of possible outcomes
that may occur if every agent a € T follows the corresponding
strategy fa, starting when the system is in state ¢ € Q. That is,
the set out(q, Fr) will contain all possible g-computations that the
agents I" can “enforce” by cooperating and following the strategies
in Fr. Note that the “grand coalition” of all agents in the system
can cooperate to uniquely determine the future state of the system,
and so out(q, Fx) is a singleton. Similarly, the set out(q, Fy) is the
set of all possible g-computations of the system.

3. ALTERNATING TEMPORAL
EPISTEMIC LOGIC

Alternating epistemic transition systems are the structures we use
to model the systems of interest to us. We now introduce a language
to represent and reason about these structures. This language — al-
ternating temporal epistemic logic (ATEL) — is an extension of the
alternating temporal logic (ATL) of Alur, Ganzinger, and Kupfer-
man [3], which in turn takes its inspiration from the branching
temporal logics cTL and cTL* [8]. Just as formulae of alternat-
ing temporal logic are interpreted with respect to alternating transi-
tion systems, formulae of ATEL are interpreted with respect to the
alternating epistemic transition systems introduced above.

Before presenting the detailed syntax of ATEL, we give an over-
view of the intuition behind its key constructs. ATEL is an exten-
sion of classical propositional logic, and so it contains all the con-
ventional connectives that one would expect to find: A (“and”), vV
(“or”), = (“not”), — (“implies”), and so on. In addition, ATEL con-
tains the temporal cooperation modalities of ATL, as follows. The
formula {T')) (1, where I is a group of agents, and ¢ is a formula
of ATEL, means that the agents " can work together (cooperate) to
ensure that ¢ is always true. Similarly, {I')}O ¢ means that I" can
cooperate to ensure that ¢ is true in the next state. The formula
(T U 3 means that T' can cooperate to ensure that ¢ remains
true until such time as ¢ is true — and moreover, v, will be true at
some time in the future.

An ATEL formula, formed with respect to an alternating epis-
temic transition system S = (IL, 2, Q, ~1,. .., ~n, T, 8}, is one of
the following:

(S0) T
(S1) p, where p € I is a primitive proposition;
(S2) =~ or ¢ V 1), where ¢ and v are formulae of ATEL;

(S3) (THO ¢, (I'N U, or (TNl p, where I’ C X is a set of
agents, and ¢ and 1 are formulae of ATEL;

(S4) Kap, where a € X is an agent, and ¢ is a formula of ATEL;

(S5) Cryp or Erp, where I' C X is a set of agents, and ¢ is a
formula of ATEL.

We interpret formulae of ATEL with respect to AETS, as introduced
in the preceding section. Formally, if S is an AETS, q is a state in
S, and ¢ is a formula of AETL over S, then we write S,q = ¢ to
mean that ¢ is satisfied (equivalently, true) at state g in system S.
The rules defining the satisfaction relation |= are as follows:

e SqET
e S,qEpiffp e w(q)
e 5,0 —piffS,q £ ¢

(where p € II);

e S,qEVYiffS,gE=porS,q =y,

e S,q = (I)Oy iff there exists a set of strategies Fr, one
for each a € T, such that for all A € out(q, Fr), we have

S A E ¢

e S,q | () L iff there exists a set of strategies Fr, one
for each a € T, such that for all A € out(q, Fr), we have
S,\[ul E ¢ forallu € IN;

e S, (I)eU 1 iff there exists a set of strategies Fr, one
for each a € T, such that for all A € out(q, Fr), there exists
some u € IN such that S, A\[u] |= 4, and forall 0 < v < u,
we have S, A[V] = ¢;

e S, g | Kapiff forall ¢’ suchthatq ~a q': S,q" = ¢;
e S,q = Erpiffforallq suchthatq ~5 q':S,q | ¢;
¢ S,q = Cryiffforall ¢’ suchthatq ~5 q': S, = .

Before proceeding, we introduce some derived connectives: these
include the remaining connectives of classical propositional logic
(L=-T.p=29p=-pViand g < p=(p = ¥) A (Y =),
together with some other useful connectives of temporal logic.

(e = (OTUp
((F))Dfrso = (THO(rhUe
(MHCTe = (MHOLTHOw

As well as asserting that some collection of agents is able to bring
about some state of affairs, we can use the dual “[...]” to express
the fact that a group of agents cannot avoid some state of affairs.
Thus |[1"]|<>ga expresses the fact that the group T cannot cooperate
to ensure that ¢ will never be true; the remaining agents in the sys-
tem have a collection of strategies such that, if they follow them,
o will be eventually achieved. Formally, [I']O ¢ is defined as an
abbreviation for —(T')O ¢, while [T]<{> ¢ is defined as an abbre-
viation for ={(T") >, and so on. Finally, we generally omit set
brackets inside cooperation modalities, (i.e., writing {(a, b)) instead
of {{a, b})), and we will usually write {()) rather than {(@)).

Applications of ATEL

We hope it is clear that ATEL is a succinct and expressive language
for expressing complex properties of multiagent systems. Although
this paper is not primarily concerned with the applications of ATEL,
we will nevertheless attempt here to give a flavour of the kind of
properties that may be expressed using it.

Since ATEL is a suitable language to cope with the dynamics of
epistemics, it is also appropriate to analyse communication issues.
First, consider a system containing a sender S, a receiver R, and an
environment env through which messages are sent. Under certain
fairness conditions (the environment does not get rid of messages
forever), we can express the fact that the environment cannot pre-
vent the sender from sending a message until it is received.

[env]sendmz{ Krm (1)

Many speech acts can be modeled in ATEL. A yes/no question by
i in a state g about ¢ simply corresponds to the constraint that i
opens two alternatives {q*} and {q~ }, which are similar to g, ex-
cept in g™, the agent knows ¢, in the other he knows —¢ (cf. [13]).
An answer is then provided by an agent that selects the appropriate

choice. Moreover, it is easy to add distributed knowledge with op-
erator Dr of T to ATEL. Then (2) expresses the cooperative prop-
erty that the group I" can guarantee that their implicit knowledge
eventually becomes explicly known by everyone:

Dry — (T)QEry €

Also, ignorance may be important, both as a pre- and as a post-

condition. In security protocols, where agents i and j share some

common secret (a key for instance), what you typically want is (3),

expressing that i can send private information to j, without revealing
the message to another agent h:

Kip A =Kjp A =Knp A (i, (H O (Kip AKig A =Knp) — (3)

Common knowledge Cr of a group I is also important. In par-
ticular, one is interested in conditions that ensure that

Cr{THTe

Schema (4) expresses that it is common knowledge in the group

T that it can bring about (next, or sometime, or always, ¢). It is
not clear at forehand that we have a negative result about obtaining
common knowledge, since it seems we can model actions stronger

(T a temporal operator) 4)

than communication. For instance, we may have knowledge-producing

actions, and also common-knowledge producing actions, like mak-
ing an announcement. If a can make an announcement p, he can
choose a set of worlds in which the transitive closure of all the ac-
cessibility relations only leads to p-worlds.

As a simple example, suppose agent 1 knows whether p, i.e.,
Kip V Ki=p, and this is common knowledge; it is also common
knowledge that 1 always tells the truth. Now, given that 1 knows
p, we can model that 1 can tell the truth only to 2, or to 2 and 3
separately or he can announce p in public:

{IN[O(K2p A=K3p) AO (KapAKspA—Cya33p) AO(Cya,310)]

In [6], Knowledge Games are investigated as a particular way of
learning in multiagent systems. Epistemic updates are interpreted
in a simple card game, where the aim of players is to find out the
deal d of cards. Having a winning strategy then easily translates
into

d = (IO (Kid A A\ -Kid) ®)
i

The applicability of ATEL goes beyond epistemic updates (where

epistemic post-conditions are the rule): knowledge also plays an

important role in pre-conditions, expressing knowledge-dependent

abilities, as in (Kigi A Kigj) = ((i,i)<v. A model-checking

algorithm for such a property might then generate what [10] calls

a knowledge based program. An example of such an ability is (6),

expressing that if Bob knows that the combination of the safe is s,

then he is able to open it (0), as long as the combination remains
unchanged.

Ko(c =) = (bY({bHO0) U =(c =) (6)
Of course, when agents make strategic choices, both epistemic
pre- and post-conditions are at stake: a rational agent bases his
choices upon his knowledge, and will typically try to maximize his
own knowledge, at the same time minimize that of his competitors.
Epistemic conditions are also needed in security communication
protocols, where an agent needs to know a secret key) in order to
read a message, to obtain new knowledge .

4. MODEL CHECKING FOR ATEL

It is well-known that the branching temporal logic cTL lacks ex-
pressive power — fairness, for example, cannot be expressed in
“vanilla” cTL (see e.g., [18] for a recent discussion on the rela-
tive merits of CTL versus other temporal logics). What makes cTL
so attractive from the point of view of formal methods is that the
model checking problem for cTL is computationally cheap: given
a cTL model M of size m and a cTL formula ¢ of size ¢, the prob-
lem of checking whether or not ¢ is valid in M can be solved in
time O(m x £). This has made it possible to implement efficient,
industrial strength formal verification tools for checking whether
finite state systems satisfy a CcTL specification [5]. The attractive
computational properties of cTL are known to carry across to the
alternating temporal logic of Alur et al [3]. The fact that model
checking for alternating temporal logic is tractable is particularly
intriguing because this problem generalises several other interest-
ing problems of interest. For example, the realizability problem —
showing that it is possible to implement a system sys that satisfies a
particular specification ¢ [16] — simply involves model checking
the formula ((sys)) in a “maximal” model, which encodes all pos-
sible input/output relations of the environment in which the system
Sys is to operate.

In this section, we show that the tractability of model check-
ing for alternating temporal logic carries over to ATEL: we present
a (deterministic) symbolic model algorithm for ATEL that runs in
time polynomial in the size of the formula and the size of the sys-
tem begin checked. The core of this algorithm is given in Figure 1:
the function eval(...) takes as input a formula ¢ of ATEL and an
alternating epistemic transition system S, and returns as output the
set of states in S in which the formula is satisfied. The eval(...)
function is recursive, and makes use of several subsidiary defini-
tions:

e The function pre : 2% x 2° — 22, which takes as input a set
of agents I" and a set of states Q; and returns as output the
set of all states Q2 such that when the system is in one of the
states in Q2, the agents I" can cooperate and force the next
state to be one of Q;.

e The function img : Q x 2°%° — 2%, which takes as input
a state g and a binary relation R on Q, and returns the set of
states accessible from g via R. That is, img(q,R) = {q’ |

(9,9') € R}

Notice that for any given inputs, both of these functions may be
easily computed in time polynomial in the size of the inputs and the
structure against which they are being computed; the pre function
can be immediately derived from the § function.

We can prove the following two key properties:

LEMMA 1. The algorithm is correct.

PROOF. We need to show that if, when passed formula ¢ and
structure S = (I, X, Q, ~1, ..., ~n,,d)), the algorithm returns
some set of states Q’, then

Q' ={als,af ¢}

Ignoring the obvious cases, consider where the input formula is of
the form {I') [1¢p. Here, the algorithm should return the set of
states from which I" can cooperate to ensure that ¢ is always true.
Now {I") [14 has a fixpoint character: an axiom of ATEL is

(T Uy = A(THOLT) LY

It follows that {((I")) [1) can be understood as a maximal solution
to the fixpoint equation

fO) =y A (THOx.

where the function f maps formulae of ATEL to formulae of ATEL.
The loop in lines (10)-(17) of figure 1 is a (relatively standard)
algorithm for computing greatest fixpoints [5, p.63]. Similarly,
{THeU 1 is a least fixpoint — we have the following as an ax-
iom of ATEL

(Chetty &V (e ATHO (Tl)

The algorithm in lines (18)—(26) is a conventional algorithm for
computing least fixpoints [5, p.62].

The cases where ¢ = Kap and ¢ = Crt simply involve the
computation of the img function at most |Q| times, as described
above. [

LEMMA 2. The algorithm terminates.

PRrROOF. Simply note that it is recursive and analytic, in that re-
cursive calls are only made on sub-formulae of the original input
formula, with primitive propositions as the recursive base. [

Finally, we can show:

PROPOSITION 1. ATEL model checking is PTIME-complete.

PROOF. pTIME-hardness follows from the fact that ATEL sub-
sumes ATL, for which the model checking problem is known to be
pTIME-complete [3]. Membership of PTIME is by examination of
the model checking algorithm for ATEL. First note that the fixpoint
computations require time linear in the size of the set of states [5,
pp.62—63]. Computation of common knowledge (the worst case
for knowledge operators) requires the computation of a transitive
closure, which can be done in time O(n3) using, e.g., Warshall’s
algorithm. Since each recursive call is analytic, (i.e., on a sub-
formula of the input formula), it should be clear that the overall
computation requires polynomial time in the size of the inputs. [

5. MULTIAGENT PLANNING

An important recent development in the A1 planning community is
the idea of planning as model checking [11]. The idea is as follows.
A classical planning problem can be viewed as a tuple consisting
of a domain D together with a goal g to be achieved. The domain D
encodes the state transition properties of the environment in which
the goal must be achieved. Intuitively, a domain corresponds to
one of our AETS: it encodes the actions that can be performed, who
can perform them, and how the performance of these actions can
change state. A goal can simply be viewed as a formula that denotes
a set of states — those in which it true. Giunchiglia and colleagues
had the insight that a domain D for which a plan is required can be
encoded as a model Mp for the branching temporal logic cTL, and
the goal g of the plan may be encoded as a state formula ¢y of CTL.
Checking whether there exists a plan to achieve goal g in domain
D can then be treated as a model checking problem: check whether
Mb = E g is true; the formula EQ g asserts that there is some
path through the model which eventually leads to a state where ¢y
is true. If Mp |= E<> g, then the path that is witness to the truth
of the formula in the model encodes the plan that achieves the goal.
Efficient contemporary cTL model checkers can then be leveraged
to build planning systems.

1. function eval(yp, (I1, X, Q, ~1, . . ., ~n, , d}) returns a subset of Q
2. if ¢ € II then

3. return {q | q € 7(¢)}

4, elsif o = —p then

5. return Q \ eval(¢, (I, X, Q, ~1, ..., ~n, T, d))
6. elsif ¢ =11 V 12 then

7. return eval(¢1,{II, X, Q, ~1, ..., ~n,m, d)) U eval(y2, (I1, X, Q, ~1, ..., ~n, 7, d))
8. elsif o = (T) O then

9. return pre(T, eval(¢, (II, X, Q, ~1,.. ., ~n, 7, 4)))
10. elsif ¢ = () [_]s then

11. Q1 :=0Q

12. Q2 = Q3 = eva|(¢5 (Ha %, QJ N1y, 0y T 6))
13. while Q; € Q2 do

14. Q1:=Q1NQ2

15. Q2 :=pre(T, Q1) N Qs

16. end-while

17. return Qi

18. elsif o = (I'))ep1 U 92 then

19. Q=10

20. Q2 = eVa|(¢2,<H,E,Q,N1,...,Nn, us 6))

21. Q3 = eval(’ll}l;(HaE:Q,Nla"'aNna us 5))

22. while Q2 g Q1 do

23. Q1:=Q1UQ2

24, Q2 :=pre(T, Q1) N Qs

25. end-while

26. return Qi

27. elsif ¢ = Katp then

28 Ql = eVaI(’l/}, (H127Q1N11"'5Nn7ﬂ'7 6))

29. return {q | img(g, ~a) C Q1}

30. elsif ¢ = Ery then

31. Ql = eval(zp, (HJEaQ:NIJ"'aanﬂ-: 6))

32 return {q|img(q,~E) C Qi}

33. elsif ¢ = Cre then

34. Qui=eval(®,(IL S, Q,~1,...,~n,,0))

35. return {q|img(q, ~) C Qi}

36. end-if

37. end-function

Figure 1: A model checking algorithm for ATEL.

The tractability of ATEL model checking suggests that it too can
be exploited to form a potentially powerful approach to multiagent
planning. The idea is somewhat similar to the cTL planning ap-
proach. Suppose we wish to develop an agent a that can be guar-
anteed to achieve goal ¢ in an environment env. We proceed to
encode the possible interactions of the agent and environment to-
gether with the initial knowledge assumptions encoded in the ac-
cessibility relations in an AETS Sen With initial state o, and check
the following:

Servs 0o = (@) Qe

If the answer to this problem is positive, then the witness to its truth
will be a strategy for a that can be guaranteed to eventually achieve
. Strategies in ATL and ATEL, as defined in section 2, above, are
essentially strong plans. They define what an agent should do in
any given circumstance, given any combination of events to date.
An obvious advantage of ATEL (and indeed ATL) over CTL plan-
ning is that the approach easily extends to multiagent planning: to
generate a joint plan for a group T" to achieve ¢ in S from qo we

simply check whether or not

S, 00 = (TN

If the answer to this questions is positive, then there will be a col-
lection of strategies, one for each member of T", such that by jointly
following these strategies, I" can ensure that ¢ is eventually true.

The additional expressive power of ATEL over ATL means that
planning problems involving epistemic goals can easily be expres-
sed. For example

(r)OKap
expresses the requirement that I' can cooperate to ensure that a
knows . Finally, we can also express the fact that a group I" can
cooperate to make it common knowledge in T” that ¢.

(rydCr e
We have thus shown how multiagent planning for epistemic goals
can be reduced to a model checking problem in ATEL. We know

from the discussion above that model checking in ATEL is PTIME-
complete, and hence tractable. Using techniques developed for
symbolic model checking (e.g., binary decision diagrams), such al-
gorithms can be efficiently implemented, even with extremely large
state spaces [5].

6. CASE STUDY AND EXPERIMENTS

We now present a short case study, illustrating our ideas. We also
discuss some experiments we have conducted using the MOCHA
model checking system to evaluate our ideas.

The Train Controller

The system we consider is a train controller (adapted from [1]).
The system contains three agents: two trains, and a controller —
see Figure 2(a). The trains, one of which is Eastbound, the other
of which is Westbound, each occupy their own circular track. At
one point, both tracks pass through a narrow tunnel — there is not
room for both trains in the tunnel at the same time. There are traffic
lights on both sides of the tunnel, which can be either red or green.
Both trains are equipped with a signaller, with which they can send
signals to the controller; the idea is that they send a signal when
they approach the tunnel. The controller can receive signals from
both trains, and controls the color of the traffic lights. The task
of the controller is, first and foremost, to ensure that the trains are
never both in the tunnel at the same time; the secondary task is
to ensure the “smooth running” of the system (e.g., the trains can
always move through the tunnel, they cannot be forced into the
tunnel, and so on).

The MOCHA System

The train controller system was modelled by Alur and colleagues
using a prototype model checking system for ATL called MOCHA
[2, 1]. MOCHA takes as input an alternating transition system de-
scribed using a (relatively) high level language called REACTIVE-
MODULES, which loosely resembles high level programming lan-
guages such as c. The system is then capable of either randomly
simulating the execution of this system, or else of taking formu-
lae of ATL and automatically checking their truth or falsity in the
transition system. As well as ATL formulae, MOCHA is capable of
invariant checking — of checking whether a given property is true
across all reachable states of the system. Although in its current im-
plementation, MOCHA is capable of model checking arbitrary ATL
formulae, (and hence of determining whether or not there exists
a collective strategy to achieve some multiagent goal), it does not
exhibit such a strategy; it merely announces whether one exists.

In the model developed by Alur and colleagues, each train was
modelled by an automaton that could be in one of three states (see
Figure 2(b)): “away” (state so — the initial state of the train);
“wait” (state s; — waiting for a green light to enter the tunnel);
and “tunnel” (state s; — the train is in the tunnel). Transitions be-
tween states may be guarded: for example, in order for a train to
go from s; to sg, the condition “signal is green” must be true. If a
state transition is not labelled with a condition, then the condition
is assumed to be always true. In addition, when an agent makes a
transit from one state to another, it may send a signal, as indicated
by dashed lines in Figure 2(b). So, for example, when a train is
entering the tunnel, it sends a signal to the controller to this effect.
Note that just because a train can make a state transition does not
necessarily mean it does so: it may be “lazy” (in the terminology
of MOCHA), staying in the same state.

The train controller itself starts by setting both traffic lights to
red. When a train approaches the tunnel (indicated by a “enter-
ing the tunnel” signal), the controller checks whether the opposing

light is red; if it is, then the light for the approaching train is set
green, allowing access. When a train moves out of the tunnel (also
indicated by a signal to the controller, the controller sets the light
associated with this train to red.

Checking Epistemic Propertieswith MOCHA

In [1], various possible ATL properties of this system are discussed,
and may be automatically checked using MOCHA. However, cur-
rently MOCHA does not support the knowledge modalities of ATEL.
We now discuss a preliminary approach we have developed to check
knowledge properties using MOCHA, which involves translating
knowledge formulae into ATL. The idea is inspired by translation-
based theorem proving methods for modal logics, which exploit the
fact that formulae of modal logic can be automatically translated
into first-order logic.

The main component of ATEL missing from MOCHA is the ac-
cessibility relations used to give a semantics to knowledge. Where
do these relations come from? We use the interpreted systems ap-
proach of [10]. Given a state g € Q and agent a € X, we write
statea(q) to denote the local state of agent a when the system is in
state . The agent’s local state includes its program counter and all
its local variables. We then define the accessibility relation ~5 as
follows:

0 ~aq iff states(q) = statea(q’).)

We emphasise that this approach is well known and widely used
in the distributed systems and epistemic logic communities. So,
suppose we want to check whether, when the system is in some
state g, agent a knows ¢, i.e., whether S, q |= Kap. Then by (7),
this amounts to showing that

Vq' € Qs.t. statea(q) = statea(q') we have S, q’ = ¢. (8)

We can represent such properties directly as formulae of ATL, which
can be automatically checked using MOCHA. In order to do this, we
need some additional notation:

o we express the value of statea(q) as a constant s; and

e we have a logical variable state, that denotes, in any given
state g , the value of statea(q).

Then we can express (8) as the following ATL invariant formula:

() D((statea = s) — ¢) 9)

Note that in saying that (9) is an invariant, we are stating that it
must hold across all reachable states of the system. Another way of
reading (9) is as “agent a’s state s carries the information that ¢”.

Such formulae can be directly written as properties that can be
checked using MOCHA:

<< >>G((stateA = s) -> phi)

The G here is the MOCHA text form of the “always” operator (“[_]”).

Turning back to the train example, we now show how a number
of knowledge properties of the system were proven. First, consider
the property that “when one train is in the tunnel, it knows the other
train is not in the tunnel”:

(statea = tunnel) — Ka(statep # tunnel) (a#b € {E,W})

Translating into the MOCHA text form of ATL this schema gives the
following two formulae

tunnel

(= =)
¢T Il

N /

(a) Overall structure of the train controller sytem

O
O
eastbound controller westbound
train train
\ /

(b) Train states, transitions, and signals

"IAve arrived at the tunnel!"

light = green

s
"I've left
the tunnel!"

Figure 2: The train controller system.

<<>> G ((stateE=tunnel) => ~(stateW=tunnel))
<<>> G ((stateW=tunnel) => T~ (stateE=tunnel))

which were successfully model checked.
We can also show that when a train is away from the tunnel, it
does not know whether or not the other train is in the tunnel.

() O(statea # tunnel) —
[(—Ka(staten = tunnel)) A (=Ka(staten # tunnel))]

(a#be {E,W})
For the westbound train, we do this by checking the following for-
mulae, both of which fail.

<<>> G “(stateE=tunnel) => (stateW=tunnel)
<<>> G T (stateE=tunnel) => T(stateW=tunnel)

We can conclude that the only way a train knows whether the other
train is in the tunnel is if it is in the tunnel itself (in which case it
knows the other is not).

) O[(Ka(statep # tunnel)) <> (statea = tunnel)]

(Witha # b € {E,W}.) We can also check properties relating
knowledge and ability. For example, we can prove that an agent al-
ways knows that the system can cooperate with it to allow it even-
tual access.

) TKa(z) < (statea = tunnel) (a € {E,W})

Since we wish to show that an agent always knows something, the
quantification over agent a’s knowledge-accessible states is across
all states of the system. We can thus write, for the westbound train
(C is the controller, and F is the MmocHA form of “(}"):

<<>> G <<C,TrainW,TrainE>> F (stateW=tunnel)

In fact, since we are quantifying over all states of the system, this
gives us that it is always common knowledge that the grand coali-
tion of all agents can cooperate to eventually get train a in the
tunnel:

O DCE((Z]))O(statea = tunnel) (ae {E,W}) (10)

Planning for Epistemic Goals

Recall, from the discussion in preceding chapters, the general struc-
ture of formulae we need to check in order to generate plans for
epistemic goals: (T')<>Kap means that " can cooperate to make a
know ¢. Without quantification, which we do not have in MOCHA,
this property is not expressed so easily — but it is possible. To see
how we might do this, assume that agent a can be in n distinct states
S1,...,Sn. Then saying that I" can bring about knowledge of ¢ in
agent a is the same as saying:

e agent a’s state s; carries information ¢ and I" can ensure that
aenters s;; or

e agent a’s state s, carries information ¢ and I" can ensure that
a enters Sy; Or...

e agent a’s state s, carries information ¢ and I" can ensure that
a enters sp; or

This observation allows us to rewrite {T')) O Kagp in ATL as:

V(O D((statea = 51) =) A (D) Ostatea = s1)

1<i<n

Such ATL formulae can be directly coded and checked in MOCHA.

The first property we prove relates to a train’s knowledge about
whether or not the other train is in the tunnel. Consider: is it possi-
ble to cause a train to know that the other is not in the tunnel? We
saw above that when one train is in the tunnel, it knows that the
other is not; but when a train is away from the tunnel, it has no def-
inite knowledge about the position of the other train. So, for a train
to know that the other train is not in the tunnel, it must be in the
tunnel. The first property we can check is that the grand coalition
of agents can cooperate to make a train know that the other is not
in the tunnel:

) D((Z]))(}Ka(stateb # tunnel) (a#be{E,W})

For the westbound train, this property when translated and slightly
simplified becomes the following property, which can readily be
checked in MOCHA.

<<>>G (<<TrainW,C,TrainE>> F (stateW=tunnel))

Interestingly, no other subset of agents can bring this knowledge
about — because no other subset of agents can be guaranteed to
get the westbound train into the tunnel. Thus, for example, the
following property does not hold.

() O (a) OKastates # tunnel) (a#b € {E,W})

From (10), we know that it is always common knowledge that the
entire system can cooperate to get a train in the tunnel. We can
thus conclude that it is always common knowledge that the entire
system can cooperate to eventually cause train a to know that train
b is not in the tunnel:

() OCs (=)< Ka(state, # tunnel) (a#be {E,W})

7. CONCLUDING REMARKS

In this paper, we have introduced a natural extension to the Al-
ternating Temporal Logic of Alur and colleagues, which includes
modalities for representing knowledge, common knowledge, and
the like. Using a simple example, we illustrated how an existing
model checker can be put to work to verify formulas in ATEL, and
in particular to determine the existence or otherwise of collective
plans for bringing about epistemic goals. The witness of such an
existence proof often is a strategy or, for the multi-agent case, a set
of strategies, or plans.

We think that our approach can be extended to deal with more
complex examples, including both theoretical ones, (like the muddy
children [10]), or in multi-agent systems in which information hid-
ing or enclosing may be options for the agents (cf. [17], where mail-
men can benefit from keeping some of their tasks secret). We do
not know yet which fragment of ATEL can be easily translated into
ATL, but maybe the use of local propositions ([9]) may substantially
broaden this fragment (see also [12], where those propositions were
used to translate epistemic goals into linear temporal logic).

Recently, there has been a lot of emphasis on modelling knowl-
edge and its dynamics in one and the same framework [6, 4], which,
in turn, generalises the mas-approaches to belief revision. It is clear
that ATEL offers a framework to facilitate this. Moreover, many im-
pressive platforms have emerged that integrate (the dynamics of)
epistemics, rationality and decision making. Enhancement of the
work begun in this paper might further the computational relevance
of such integrated theories. This is especially so, since the focus of
the mentioned platforms has thus far been on formalising epistemic
notions in game-theoretic settings. The question of how to use these
formalisations in finding winning strategies in games of imperfect
information for example, has only recently been asked (cf. [7]). Fi-
nally, also the social choice community has discovered ATL [15].
We firmly believe that epistemic operators provide a valuable tool
for allowing agents to reason about which coalition they need or
might like to join.

8. REFERENCES

[1] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan,
F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
MOCHA user manual. University of Berkeley Report, 2000.

[2] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.
Rajamani, and S. Tasiran. Mocha: Modularity in model
checking. In CAV 1998: Tenth International Conference on
Computer-aided Verification, (LNCS Volume 1427), pages
521-525. Springer-Verlag: Berlin, Germany, 1998.

[3] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. In Proceedings of the 38th
IEEE Symposium on Foundations of Computer Science,
pages 100-109, Florida, October 1997.

[4] A. Baltag. A logic for supicious players. Bulletin of
Economic Research, 54(1):1-45, 2002.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press: Cambridge, MA, 2000.

[6] H.P.van Ditmarsch. Knowledge Games. PhD thesis,
University of Groningen, Groningen, 2000.

[7]1 S. Druiven. Opponent modeling and dynamic epistemic logic
in games with imperfect information. M.Sc. thesis, in
preparation, 2002.

[8] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science
Volume B: Formal Models and Semantics, pages 996-1072.
Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1990.

[9] K. Engelhardt, R. van der Meyden, and Y. Moses.
Knowledge and the logic of local propositions. In
Proceedings of the 1998 Conference on Theoretical Aspects
of Reasoning about Knowledge (TARK98), pages 29-41,
Evanston, 1L, July 1998.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. The MIT Press: Cambridge,
MA, 1995.

[11] F. Giunchiglia and P. Traverso. Planning as model checking.
In S. Biundo and M. Fox, editors, Recent Advances in Al
Planning (LNAI Volume 1809), pages 1-20. Springer-Verlag:
Berlin, Germany, 1999.

[12] W. van der Hoek and M.J.W. Wooldridge. Model checking
knowledge and time. In D. BoSnacki and S. Leue, editors,
Model Checking Software — Proceedings of SPIN 2002
(LNCS Volume 2318), pages 95-111. Springer-Verlag:
Berlin, Germany, 2002.

[13] B.van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Actions
that make you change your mind. In A. Laux and
H. Wansing, editors, Knowledge and Belief in Philosophy
and Al, pages 103-146. Akademie-Verlag, 1995.

[14] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for Al
and Computer Science. Cambridge University Press:
Cambridge, England, 1995.

[15] M. Pauly. A logical framework for coalitional effectivity in
dynamic procedures. Bulletin of Economic Research,
53(4):305-324, 2002.

[16] A. Pnueliand R. Rosner. On the synthesis of an
asynchronous reactive module. In Proceedings of the
Sixteenth International Colloguium on Automata,
Languages, and Programs, 1989.

[17] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers. The MIT Press: Cambridge, MA, 1994.

[18] M.Y. Vardi. Branching vs. linear time: Final showdown. In
T. Margaria and W. Yi, editors, Proceedings of the 2001
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2001 (LNCS Volume 2031),
pages 1-22. Springer-Verlag: Berlin, Germany, April 2001.

[19] M. Wooldridge, C. Dixon, and M. Fisher. A tableau-based
proof method for temporal logics of knowledge and belief.
Journal of Applied Non-Classical Logics, 8(3):225-258,
1998.

