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Abstract

We add a limited but useful form of quantification
to Coalition Logic, a popular formalism for rea-
soning about cooperation in game-like multi-agent
systems. The basic constructs@dantified Coali-
tion Logic (QcL) allow us to express properties as
“there exists a coalitionC satisfying propertyP
such thatC' can achievey”. We give an axioma-
tization of QcL, and show that while it is no more
expressive than Coalition Logic, it is exponentially
more succinct. The time complexity QicL model
checking for symbolic and explicit state represen-
tations is shown to be no worse than that of Coali-
tion Logic. We illustrate the formalism by show-
ing how to succinctly specify such social choice
mechanisms as majority voting, which in Coalition
Logic require specifications that are exponentially
long in the number of agents.
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However, adding quantification in such a naive way leads to
undecidability over infinite domains (using basic quardific
tional set theory we can define arithmetic), and very high
computational complexity even over finite domains. The
guestion therefore arises whether we can add quantification
to cooperation logics in such a way that we can express use-
ful properties of cooperation in gamegthoutmaking the re-
sulting logic too computationally complex to be of practica
interest. Here, we answer this question in the affirmative.

We introduceQuantified Coalition LogidQcL), by mod-
ifying the existing cooperation modalities of in order to
enable quantification. laL, the basic cooperation constructs
are(C)p, meaning that coalitiod’ can achieve!; these op-
erators are in fact modal operators with a neighbourhood se-
mantics. InQcL, we replace these operators with expressions
(P)e and[P]y; here, P is apredicate over coalitionsand
the two sentences express the fact thate exists a coalition
C satisfying propertyP such thatC' can achievey andall
coalitions satisfying property’ can achievep, respectively.
Thus we add a limited form of quantification &1 without
the apparatus of quantificational set theo®ur main con-
tribution is the development afcL, a logic that is equally

Game theoretic models of cooperation has proved to béxpressive asL, no worse tharcL with respecto to the com-

a valuable source of techniques and insights for the fieldutational problem of model checking, but at the same time
of multi-agent systems, and cooperation logics such a§Xxponentially more succinct than..

Alternating-time Temporal LogicATL) [Alur et al, 2003 The remainder of the paper is structured as follows. After
and Coalition Logic ¢L) [Pauly, 2001 have proved to be a brief review ofcL, we introduce a language for expressing
powerful and intuitive knowledge representation fornras  coalition predicates, and show that the satisfiability peob

for such games. Many interesting properties of cooperativéor this language isiP-complete. We then introduegcL, and
scenarios requirguantification over coalitions However, give its complete axiomatization. We show that wigleL is
existing cooperation logics provide no direct facility farch  no more expressive than Coalition Logic, it is nevertheless
guantification, and expressing such properties therefre r exponentially more succinct, in a precise formal sense. We
quires formulae that are exponentially long in the number othen extend the language of coalition predicates to talkiabo
agents. Examples include expressing the notion wfeak  the cardinality of coalitions, and show that the correspogd
veto player[Wooldridge and Dunne, 2004n cL, or solu- completeness and succinctness results also holdoover

tion concepts from cooperative game theory such as northis extended language. We illustrateL by showing how
emptyness of the core in Coalitional Game Lob@cgotnes it can be used to succinctly specify a social choice mecha-
et al, 2006. An obvious solution would be to extend, for ex- nism, which incL requires specifications that are exponen-
ample,ATL, with a first-order-style apparatus for quantifying tially long in the number of agents; we then round off with
over coalitions. In such a quantifiedL, one might express some conclusions.

the fact that agentis a necessary component of every coali-

tion able to achieve by the following formula: We adopt a notation which is in line with that ATL: we use

{C) for ‘there is a coalitionC such that ...’ wheréPauly, 2001

VC: (CHOp — (i € O) uses| C], and we write] C] for Pauly’s(C).



2 Coalition Logic

SinceQcL is based on Pauly’s Coalition LogicL [Pauly,
2001], we first briefly introduce the lattercL is a proposi-
tional modal logic, containing an indexed collection of gna
modal operator¢C') and[C], where(C is a coalition, i.e., a
subset of a given set of agemg. The intended interpreta-
tion of (C)¢ is that C' can achievep, or, thatC is effective
for . Formulae ofcL are defined by the following grammar
(with respect to a sab, of Boolean variables, and a fixed set
Ag of agents):

pu=TIpl-p|eVe|(Cy
wherep € & is an atomic proposition an@ a subset ofig.

Prop Feop o

Agl  Feop~(Ag)L

T Fop =(0)L — (C)T

L Forp (C)L — (C"Y L

Ag For =(0)—p — (A

S For ((Cr)p1r A (Ca)pz) — (C1U Ca)(p1 A p2)
MP  Feopo—%, Forw =FeoL v

Distr Feopp— 9 =Feop (C)o — (C)

Table 1: Axioms and Rules for Coalition Logic. 1#fop), ¥
is a propositional tautology, in axiomL{, we requireC’ C
C,and for (), Ci N Cy = 0.

As usual, we use parentheses to disambiguate formulae wheeaumerate™ disjunctions of the form{C)p. The idea be-
necessary, and define the remaining connectives of classichind Quantified Coalition LogicclL) is to avoid this blow-

logic as abbreviationst = -T,¢ — ¢ = (—p) V¢ and

potp=(p=P)A@W—p).
A model M for (over ®y, Ag) is a tripleM = (S, &, )
where

o 5= {s,..

e &£ :24 x 8 — 22 isan effectivity functionwhere
T € £(C,s) is intended to mean that from statethe

., 80} is afinite non-empty set aitates

up in the length of formulas. InformallgcL is a proposi-
tional modal logic, containing an indexed collection of gna
modal operatoréP) and[P]e. The intended interpretation
of (P)y is thatthere exists a set of agent§ satisfying pred-
icate P, such thatC' can achievep. We refer to expressions
P ascoalition predicatesand we now define a language for
coalition predicatespcL will then be parameterised with re-
spect to such a language. Of course, many coalition predicat

coalition C' can cooperate to ensure that the next statédanguages are possible, with different properties, are lae

will be a member ofl’; and
e 7: 5 — 2%0js avaluation function.

Call the set of all modelgeneral modelsdenoted bygGen.
It is possible to define a number of constraints on effegtivit

functions, depending upon exactly which kinds of scenario

they are intended to modfPauly, 2001, pp.24—-39 Unless
stated otherwise, we will assume that our modelsrreweak
playabilitymodelsM € WP, where effectivity functions are
outcome monotonjé.e.,VC C Ag,Vs € S,VX,Y C S, if
X e &(C,s)andX C Y, thenY € £(C, s), and moreover
that effectivity functions satisfy Paulyseak playabilitycon-
ditions[Pauly, 2001, p.30 An interpretationfor cL is a pair
M, s whereM is a model and is a state inM. The satisfac-
tion relation ‘=" for cL holds between interpretations and
formulae ofcL. We say that coalitior’ can enforcep in s if
forsomeT € £(C,s), pistrueinallt € T. Thatis,C can

will investigate another such language. Throughout the re-
mainder of this paper, we will assume a fixed, finite $gtf
agents.

Coalition Predicates: Syntactically, we introduce two
atomic predicatesubseteq and supseteq, and derive a stock
of other predicate forms from these. Formally, the syntax of
coalition predicates is given by the following grammar:

P = subseteq(C) | supseteq(C) | -P | PV P

where C C Ag is a set of agents. One can think of the
atomic predicatesubseteq(C) and supseteq(C) as a stock
of 2/491+1 propositions, one for each coalition, which are then
to be evaluated in a given coalitiofio. The circumstances
under which a concrete coalitiatv satisfies a coalition pred-
icateP, are specified by a satisfaction relatiga;,”, defined

make a choice such that, irrespective of the others’ chpicegy the following four rules:

o will hold. Formally, the satisfaction relation is defined by
the following inductive rule (we assume the casesyprir,
negation and disjunction are clear):

M, s Ecr (Chpiff 3T € £(C, s) such thatvt € T,
we haveM, t E=cr .

The notions of truth op in a model (M =y, ¢) and validity
in a class of model€ (C =¢r. ) are defined as usual. The
inference relatiom- ¢, for CL is given in table 1 (taken from

[Pauly, 2001, but adapted to our notation): it is sound and
complete with respect to the class of weak playability medel

WP ([Pauly, 2001, p. 55.

3 Quantified Coalition Logic

If we haven agents indg, and one wants to express tsatme
coalition can enforce some atomic propeptyone needs to

Co [=cp subseteq(C) iff Co C C

Co =cp supseteq(C)iff Co D C

Co l=¢p —Piffnot Co =, P

Co l=cp P1 V Py iff Co |=¢p P1Or Co f=¢p P

Now we can be precise about what it means that “a coalition
Co satisfiesP": it just meansCo =., P. We will assume
the conventional definitions of implication), biconditional
(«»), and conjunction/) in terms of— andv.

Coalitional predicatessubseteq(-) and supseteq(-) are
in fact not independent. They are mutually definable —
due to the fact that the set of all agenty is assumed
to be finite. We then have thafAgotnes and Wal-
icki, 2006]) subseteq(C) = Nieag,c supseteq({i}) and
supseteq(C) = Ncic g og cr ~subseteq(C'). The reason



that we include both types of predicates as primitives is é&Example QCL Expressions: To get a flavour of the kind

main motivating factor of this paper: we are interesteslio-

cinctly expressing quantification in coalition logic.
We find it convenient to make use of the following derived ability expression is defined simply a8~} = (eq(C))e.

of properties we can express@L, we present some exam-
ple QcL formulae. First, note that the conventiomal/ATL

predicates: We can also succinctly express properties suéch as themoluti
B concepts fromQualitative Coalitional GamesWooldridge
eq(C) = subseteq(C) A supseteq(C) and Dunne, 2004 For example, aveak veto playefor ¢
subset(C) = subseteq(C) A —eq(C) is an agent that must be present in any coalition that has the
supset(C) = supseteq(C) N =eq(C) ability to bring aboutp: WVETO(C,¢) = —(excl(i))ep.
incl(i) = supseteq({i}) Of course, ifno coalition has the ability to achieve, then
ezcl(i) = ~incl(i) this means thagveryagent is a veto player fap. A strong
any = supseteq(0) veto playerfor ¢ is thus an agent that is both a weak veto
”Zggg = V;‘Zeeic( gl)d(z) player fory and that is a member sbmecoalition that can

achievep: VETO(i,o) = WVETO(i,¢) A {incl(i))ep.
The reader may note an obvious omission here: we have nét coalition C' is weakly minimal fory if no subset ofC' can
introduced any explicit way of talking about ticardinality ~ achievep: WMIN(C,¢) = —(subset(C))p. And C' are
of coalitions; such predicates will be discussed in Seation  SImply minimalif they are weakly minimal and also able to

We say that a coalition predicafeis Ag-consistentf for ~ bring abouto: MIN(C,¢) = (C)e A WMIN(C, ). Fi-
someCo C Ag, we haveCo =, P, andP is Ag-valid if nally, GC(C) says thatU is thegrandcoalition: GC(C) =
Co |=¢, P forall Co C Ag. [supset(C)]L A = (subseteq(C))L.

Themodel checking problem for coalition predicateshe
problem of checking whether, for givetlo and P, we have
Co ., P [Clarkeet al, 200d. It is easy to see that this
problem is decidable in polynomial time. Tisatisfiability
problem for coalition predicatess the problem of deciding
whetherP is consistent. We get the following.

Theorem 1 The satisfiability problem for coalition predi-
cates isNP-complete.

Model Checking: Model checkingds currently regarded as
perhaps the most important computational problem associ-
ated with any temporal/modal logic, as model checking ap-
proaches for such logics have had a substantial degree-of suc
cess inindustryClarkeet al,, 2004. Theexplicit state model
checking problenfor QcL is as follows:

Given a modelM, states in M, and formulap of

Quantified Coalition Logic: We now presengcL. Its for- QCL, isitthe case thaM, s =qcL ¢?

mulae are defined by the following grammar: Notice that in this version of the problem, we assume that

e the components of the modg@H are explicitly enumerated
=TT - \Y, P P . . . .

v Ipl-elevel (Plel[Ple in the input. It is known that the corresponding problem for
Modelsfor cL andQcL are the same. The satisfaction relation Coalition Logic may be solved in polynomial tim@(| M| -

for the new operators is as follows. |o|) [Pauly, 2001, p.5(as may the explicit staterL model

: ) checking problenfAlur et al, 2003). Perhaps surprisingly,
C Ag: . , ;
?Elbé: S'ngéhﬁ;@;ﬁeag v_vef:lgavec;\/rtplziﬁzdiT € theqcL model checking problem is no worse:

M,s qer [Ply iff VO C Ag: C |=., P implies
3T € £(C, s) suchthat't € T, M, t Eqcr -

Readers familiar with modal logic may wonder why we did
not introduce the universal coalition modality], as the
dual ~(P)—. In fact such a definition would not serve the
desired purpose. Consider the pattern of quantifiers in th
semantics of-): 33v. Taking the duahk(-)— would yield
the quantifiers/33, rather than the desiredBv pattern. Of
course, this does not mean tH#t]p is not definable from
(P)p (and the propositional connectives) in soatherway.

In fact:
Ple= N\ (ea(Q))p
{C|ClEpcP}

Theorem 2 The explicit state model checking problem for
QCL may be solved in polynomial time.

Of course, this result is not terribly useful, since it asesm
a representation oM that is not feasible, since it is expo-
nentially large in the number of agents and Boolean vari-
8bles in the system. Implemented model checkerssuse
cinctlanguages for defining models; for example, REAcC-
TIVE MODULES LANGUAGE (RML) of Alur et al [Alur and
Henzinger, 199 Assuming arrRML representation, Coali-
tion Logic model checking issPAcCEcompletedHoeket al,,
2004, and thus no easier than theorem proving in the same
logic [Pauly, 2001, p.6 It is therefore more meaningful to
ask what the model checking complexity @EL is for such
Thus, for expressiveness;’) together with the proposition- a representation. We only give a very brief summargiat

als are adequate connectives, &Rl is definable. The rea- — space restrictions prevent a complete descriptionfAlee

son we introduce the box cooperation modality as a separagnd Henzinger, 1999; Hoek al., 2004 for details.

construct is one of the main motivations in this paper, as dis In REACTIVE MODULES, a system is specified as a col-
cussed before for the different predicate operators: satci lection of modules which correspond to agents. Here is a
ness of expression. (somewhat simplified) example of &ML module:



PO Fep supseteq(D)
P1 F. t A t !
nodul e toggle control s z HPSZZf:fe;((IéC& Clsupse «(C)
i ni I
init [1T ~ L= T P2 Fep supseteq(C) — —subseteq(C')
[T~ re= - P3 Fep subseteq(C U {a}) A —supseteq(a)
updat e [z~ =z ::/J‘ . subseteq(C)
[1(z2)~a" =T P4 Fep subseteq(C) — subseteq(C')
This agentoggle, controls a single Boolean variable, The Prop  tcp 1)
choicesavailable to the agent at any given time are defined | MP  Feop o=t Fop o =g ¢
by thei ni t andupdat e rules. The ni t rules define the 0Az  Fqcr 0(Ax)
choices available to the agent with respect to the initititis 5()  Foor (Pp <
of its variables, while theipdat e rules define the agent's Vicicr., pylea(C))e
choices subsequently. Thai t rules define two choices for 4] Fqcr [Ply <
the initialisation of this variable: assign it the vallieor the A(cicr., pyiea(C))e
value L. Both of these rules can fire initially, as their condi- SR 5(R)

tions (T) are always satisfied; in fact, only one of the avail-
able rules will evenctuallyfire, corresponding to the “choice Taple 2: Axioms and Rules for Quantified Coalition Logic.
made” by the agent on that decision round. With respect torne condition ofP2 is C ¢ ¢, for P4 itis C C C, ¢

updat e rules, the first rule says that if has the valuel', iy prop is a propositional tautologydz in Az is anycL-
then the corresponding choice is to assign it the value axjom, R in 6 R is anycL-rule

while the second rule ‘does the opposite’. In other words,
the agent non-deterministically chooses a value:fimitially,

and then on subsequent rounds toggles this value. Axiomatization: The translations introduced above pro-
The following can be proved by an adaption and extensioryide the key to a complete axiomatization@dL. First, recall
of the proof in[Hoeket al., 2004. Pauly’s axiomatization of Coalition Logic (Table 1). Given

this, and the translations defined previously, we obtainan a
iom system forcL-formulae as follows. FirscL includes
the translation of all thecL axioms and rules, and axioms
This result, we believe, is potentially much more interggti that state that thé&translation is correct: see the lower part of
than that for explicit state model checking, since it tes u Table 2. On top of thaQCL is parametrisedy an inference
thatQcL model checking is no more complex than Coalition relationt-., for coalition predicates. The axioms for this in

LOgiC even for a realistic representation of models Table 2 are taken frodﬁgotnes and Walicki, 20d6

Theorem 5

Theorem 3 The model checking problem fQrcL assuming
anRML representation for models BsSPACEcOomplete.

Expressive Power: We now argue thapcL is equivalentin o o ,

expressive power to Coalition Logic. To begin, consider the 1. (Agotnes and Walicki, 2006}, is sound and com-
following translationr from QcL formulae tocL formulae. plete: for anyP, =, P < Fep P

For atomsp and T, 7 is the identity, and it distributes over 2. For anycL formulay, For, ¢ = Focr ()

disjunction, and moreover: 3. Lety be anyQcL formula. Thert-ger ¢ < §(7(p))

T((P)p) = Viciop,rO17(¢) and, in particulart-gcr, ¢ iff Foor 6(7(p)).

([Ple) = Agciep,.r(C)7(0) Theorem 6 (Completeness and Soundnesgety be an ar-

bitrary QcL-formula. Thent iff
We already know from above that we have a translation yQ QcL ¥ Facr ¢

in the other direction: let us call if, with defining clause Examples of derivable properties include:

5((C)e) = (eq(C))d(p). -

As an example, supposég = {a,b,c} and letP = EQCL Eﬁé](]p 7\ [[1};2]]90) . EI]Vghevn]’jc]p b= By
(supset({a})Vsupset({b})Vsupset({c}))A—eq({a, b, c}). QoL Y 21 LYy
Now, consider theQcL formula ¢v = (P)q. Then These illustrate that we not only have primitive modal oper-
7(¢) = {a,b})q Vv {a, c})qV {b, c})gwhile §(r())) =  ators, but also some kind of operations over them, like nega-

(eq({a,b}))q V (eq({a, c})yq V (eq({b, c}))q. Hence, one tion and conjunction. This of course is very reminiscent of
can think ofé(7(y)) as anormal formfor ¢, where the only  Boolean modal logic, where one studies algebraic opertion
coalition predicate ip is eq. ThatQcL andcL have equal ex-  like complement, meet and join on modal operat@argov
pressive power follows from the fact that the two translagio and Passy, 1987 We will not pursue the details of the con-

preserve truth. nection here.

Theorem 4 Let M be a model, and a state, and lep be a

QcL formula, andy a cL formula. Then: Succinctness: Theorem 4 tells us that the gain Q€L over
1. M,s Eger ¢ iff M,s o 7(e) CL is not its expressivity. Rather, the advantageQaf. is

, in its succinctnes®f representation. For example, for the
2. M, s et it M, s =qor 6(¥) QcL formula(any)q, the translated¢L formular({any)q) is



exponentially longer, since it has to explicitly enumeraite

coalitions inAg. Is it howevergenerallythe case that(y) —

is shorter thapy? Since the translation does some computa- %EZ% — zegqe(qn(rg b

tions under=.,, this is in general not the case. For instance, leg(n) = lt(n+1)

if P = supseteq({a}) A supseteq({c}) A supseteq({b}) A maj(n) = geq([(n+1)/2])
(subseteq({a, b, c}) V subseteq({a, b,d})), theny = (P)q ceq(n) = (geq(n) A leq(n))

would have as a-translation{{a, b, c}) g, which is shorter
than the originalocL-formulat. But then againg(7(1))  The first natural question is whetheeq(n) is definable in
is aQcL formula that is equivalent t@, but that has a size QcL. Indeed it is:

similar tor(v).

To make this all precise, let us define the length) of geg(n) = \/ supseteq(C) @)
bothQcL andcL formulasy, as follows: CCAg,|C|2zn
o) = £(p) - 1 However, we again see that such a definition leads to expo-
U1 V 2) — (1) + Upa) + 1 nentially large formulae, which justifies extending thedpre
0(=p) = ) +1 |Cat(e )Iafnguage ODCLNWM(\: allln rz;ttomlc (I:(')ahtllon. pred(mz;\te
_ _ : geq(n) for everyn € N. Call the resulting logi@QcL(>),
ggégéi)) = Ple) _ ZZ?;;ZZ:((&) 1—5((;5)) and let=.,> and =cr(>) denote the satisfiability rela-
tions for QcL(>) predicates andycL(>) formulae, respec-
with tively. Once again, the gain is not expressivenessshiat
, _ cinctness As another example of the added succinctness,
predsize(subseteq(C)) = coalsize(C) + 1 consider thecL formula({C)p. In QcL this cannot in general
predsize(supseteq(C)) = coalsize(C) + 1 be written by any less complex formula th@mbseteq(C) A
preds?ze(ﬁp) = pT@dS?ZG(P) +1 ) supseteq(C))p, butinQcL(>) it can be simplified somewhat
predsize(P1 V Py) = predsize(Py) + predsize(P2) + o (supseteq(C) A—geq(|C|+1))p (which in general is sim-
coalsize(C) = | C] pler since one of the enumerations of the agent§'iis re-

. placed by a number).
X L;rf dsoya?)%ﬁ ?aen)éeag\?e)észl;’lmdLgisL, r?riiicwlglzé;v?he;te A subtle butimportant issue when reasoning with the logic
X . ' is the way in which the natural number argument of the
they are equivalent with respect to some class of models i’ ; ; :
thez have Ct]he same satisfyigg paikd, s, that is, for each geq(...) prgdlcgte |srepres§anted Suppose, (following stan-
. 2 » o ' dard practice in complexity theory), that we represent the
M, s in the class of models it is the case thet, s = T . -
iff M Evy 1. This definition naturall extenas to);efs of argument in binary. Now, we ask whether a given coali-
formu’lgs Y v y tion predicateP is satisfiable, wher# contains a constraint
In the .following theorem we show tha&fcL is exponen- geq(n). prw cihe;ckmg;_r;]e Sa“z?ab"!ty ﬁf Suﬁh cqnst;gmts
. ; : is not obviously inNpP. The problem is that the witne
::glr:yorfnrcc)arIZtiS\';I:gﬂ]c?:iﬁ]’]irt]ncel_s:soi\éet;ggRef:gmcz)dggd GTC\'I?IQO' to the satisfiability ofP is exponentially larger than the con-
q trates that publi t10QS | e Suicei straint geg(n). Of course, if we express the natural number
emonstrates that public announcementiogis IS more sticein,, 5, unary, then this is not an issue. But unary is not a realis-

than epistemic logic. tic or practical representation for numbers. It turns oatyh
Theorem 7 ever, that we do in fact getp completeness for the satisfiabil-
There is an infinite sequence of distingicL formulas ity problem also focL(>), although the argument requires
©0, ¢1, .. . such that, not only is theL formular(;) equiv-  Some more work. The reason is that we can use an efficient
alent toy; for everyi > 0, buteverycL formula; that encoding of the witnes§'. This was shown b{(Agotnes and

is equivalent, with respect to general modelsitohas the  Alechina, 2006 for a similar problem (cf. Section 5).

property/(v;) > 21#:l. Let Ag(P) andsubp(P) denote the set of agents, and the
- set of sub-predicates, respectively, occurring in a pegdie.
4 Coalition Size Lemma 1 Any satisfiablecL(>) predicateP is satisfied by

) ) o a coalition consisting of no more thah+ mazp agents,
As we noted earlier, an obvious omission from our languagevherel + mazp equals

of coalition predicates is designated predicates for esging

cardinality properties of coalitions. In this section, we e maz({|Ag(P)[, maz({geq(n) : geq(n) € subp(P)})})
plore extensions to the framework for this purpose. The obThegrem 8 The satisfiability problem foocL(>) coalition
vious approach is to introduce primitive coalition predésa predicates isuP-complete.

geq(n), wheren € N, with semantics as follows: ] ) ) ]
It is straightforward to lift the translatiom from QcCL to

C |= geq(n) iff |C| > n CL to the case when also the additional predicategaf(>)
are allowed, and it is easy to see that Theorem 4 holds also
Given this predicate, we can define several obvious derivetbr QcL(>) formulae. For axiomatisation, we only need to
predicates (see al§dgotnes and Alechina, 200€or a dis-  add axioms for thgeq(n) predicates to the predicate calclu-
cussion of a similar language). lus. That can be achieved simply by adding (1) as an axiom



(MINO)  Fcp geq(0) While first-order temporal logics have been studied in the
(MIN1)  t¢p geq(n) — geq(m) (m < n) literature, andcL can be seen as the next-time fragment
(MIN2)  Fcp supseteq({ar}) A --- A supseteq({ar}) of ATL which again is a generalisation of the branching-
— geq(k) Vi#jai #q time temporal logic Computational Tree LogicTL), we
. ) are not aware of any other works on quantificationcin
Table 3: Extra predicate calculus axioms @@rL(>). or ATL. Lately, there has been some work on generalis-

ing the coalition modalities in another direction: to expli
itly include actions and strategiégan der Hoelet al., 2005;
Agotnes, 200b

Opportunities for future work include a more detailed un-
derstanding of the relationship betweeeL and Boolean

schema. A more “direct” axiomatisation géq(n) is shown

in Table 3, taken fromlAgotnes and Alechina, 2006 Let
F¢p> denote derivability in th@cL predicate calculus (from
Table 2) extended with the axioms in Table 3. The follow-

ing is easily obtained from a similar result ﬁﬁ\gotnes and modal logic.
Alechina, 2008:
: . References
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