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Up to now,

• Two Classical Machine Learning Algorithms 
• Decision tree learning

• K-nearest neighbor

• Model Evaluation Metrics
• Learning curves

• Training/Validation/Test datasets

• Confusion matrices (accuracy, error, ROC curve, PR curve)



Confidence for decision tree (example)

• Random forest:
• multiple decision trees are trained, by using different resamples of your data.

• Probabilities can be calculated by the proportion of decision trees which vote 
for each class. 

• For example, if 8 out of 10 decision trees vote to classify an instance 
as positive, we say that the confidence is 8/10. 

Here, the confidences of 
all classes add up to 1



Confidence for k-NN classification (example)

• Classification steps are the same, recall

• Given a class    , we compute

• apply sigmoid function on the reciprocal of the accumulated distance

Accumulated 
distance to the 
supportive
instances

Here, the confidences 
of all classes may not 
add up to 1

Softmax?



Today’s Topics

• linear regression 

• linear classification 

• logistic regression 

• multiclass logistic regression (leave as extended materials)



Recap: dot product in linear algebra

Geometric meaning: can be 
used to understand the angle 
between two vectors



Linear regression 



Linear regression 

• Given training data                                               i.i.d. from distribution 𝐷



Recap: Consider the inductive bias of DT and 
k-NN learners 



Linear regression 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                           that minimises 

• where
• represents the error of instance    

• represents the square error of all training instances 

Hypothesis Class H

L2 loss, or mean 
square error

represents the mean square error of all training instancesSo,



Linear regression 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                           that minimises 



Organise feature data into matrix

• Let 𝑋 be a matrix whose 𝑖-th row is               

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

Football player example: 
(height, weight, runningspeed)



Transform input matrix with weight vector

• Assume a function                            with weight vector
• Intuitively, 

• by 20, running speed is more important than the other two features, and 

• by -1, weight is negatively correlated to y 

This is the parameter 
vector we want to learn 



Organise output into vector

• Let 𝑦 be the vector 

v1 v2 v3 y

182 87 11.3 325

189 92 12.3 344

178 79 10.6 350

183 90 12.7 320



Error representation

• Square error of all instances 



Linear regression : optimization  

• Given training data                                               i.i.d. from distribution 𝐷

• Find                          that minimises 

• Let 𝑋 be a matrix whose 𝑖-th row is               , 𝑦 be the vector Now we knew 
where this 
comes from!

Solving this optimization problem will be 
introduced in later lectures.



Linear regression with bias 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                                       that minimises the loss

• Reduce to the case without bias: 
• Let 

• Then 

Bias Term

Intuitively, every instance 
is extended with one 
more feature whose value 
is always 1, and we 
already know the weight 
for this feature, i.e., b



Linear regression with bias 

• Think about bias                          for the football player example 



Linear regression with lasso penalty 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                                       that minimises the loss

lasso penalty: L1 norm 
of the parameter, 
encourages sparsity 



Evaluation Metrics 

• Root mean squared error (RMSE) 

• Mean absolute error (MAE) – average L1 error 

• R-square (R-squared) 

• Historically all were computed on training data, and possibly adjusted 
after, but really should cross-validate 



Linear classification 



Linear classification 



Linear classification: natural attempt 

• Given training data                                               i.i.d. from distribution 𝐷

• Hypothesis 
• 𝑦 = 1 if 𝑤𝑇𝑥 > 0 

• 𝑦 = 0 if 𝑤𝑇𝑥 < 0 

• Prediction: 

• where 
• step(m)=1, if m>0 and 

• step(m)=0, otherwise

Piecewise Linear 
model 𝓗

Still, w is the vector of 
parameters to be trained. 

But what is the 
optimisation
objective?



Linear classification: simple approach 

Drawback: not 
robust to “outliers” 



Linear classification: natural attempt 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                          that minimises 

• Drawback: difficult to optimize 
• NP-hard in the worst case 0-1 loss

loss = 0, i.e., no loss, when 
the classification is the 
same as its label. 

loss =1, otherwise. 



logistic regression



Why logistic regression?

• It's tempting to use the linear regression output as probabilities

• but it's a mistake because the output can be negative, and greater 
than 1 whereas probability can not. 

• As regression might actually produce probabilities that could be less 
than 0, or even bigger than 1, logistic regression was introduced.

Logistic regression always 
outputs a value between 0 and 1



Compare the two Linear regression 

Linear classification 



Between the two 

• Prediction bounded in [0,1] 

• Smooth 

• Sigmoid: 



Linear regression: sigmoid prediction 

• Squash the output of the linear function

• Find 𝑤 that minimizes 

Question: Do we 
need to squash y?



Linear classification: logistic regression 

• Squash the output of the linear function

• A better approach: Interpret as a probability Here we 
assume that 
y=0 or y=1



Linear classification: logistic regression 

• Find                          that minimises

• Find w that minimises  

Logistic regression: 
MLE with sigmoid

Why log function 
used? To avoid 
numerical unstability. 



Linear classification: logistic regression 

• Given training data                                               i.i.d. from distribution 𝐷

• Find w that minimises  

No close form solution; 
Need to use gradient descent 



Properties of sigmoid function 



Exercises

• Given the dataset and consider the mean square root error, if we 
have the following two linear functions:
• fw(x) = 2x1 + 1x2 + 20x3 - 330
• fw(x) = 1x1 - 2x2 + 23x3 – 332

please answer the following questions:
• (1) which model is better for linear regression? 
• (2) which model is better for linear classification

by considering 0-1 loss for yT=(No,Yes,Yes,No)? 
• (3) which model is better for logistic regression? 
• (4) According to the logistic regression of the first model, what is the 

prediction result of the first model on a new input (181,92,12.4). 

x1 x2 x3 y

182 87 11.3 325

189 92 12.3 344

178 79 10.6 350

183 90 12.7 320



Extended Materials



Review: binary logistic regression 



Review: binary logistic regression 



Review: binary logistic regression 



Review: binary logistic regression 



Multiclass logistic regression 



Multiclass logistic regression 



Multiclass logistic regression 



Multiclass logistic regression: conclusion 



Softmax



Cross entropy for conditional distribution 



Cross entropy for full distribution 


