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Up to now,

* Three machine learning algorithms:
 decision tree learning
* k-nn
* linear regression

only optimization
objectives are
discussed, but
how to solve?



Today’s Topics

* Derivative

* Gradient

* Directional Derivative

* Method of Gradient Descent

* Example: Gradient Descent on Linear Regression
* Linear Regression: Analytical Solution



Problem Statement: Gradient-Based
Optimization

* Most ML algorithms involve optimization

* Minimize/maximize a function f (x) by altering x
* Usually stated as a minimization of e.g., the loss etc
* Maximization accomplished by minimizing —f(x)

* f (x) referred to as objective function or criterion

* In minimization also referred to as loss function cost, or error
* Example:

* linear least squares /() = %Ilz‘lw—bll2

e Linear regression L(fw)= £ 30, (wTz® — ¢))2

e Denote optimum value by x*=argmin f (x)



Derivative



Derivative of a function

* Suppose we have function y=f (x), x, y real numbers

 Derivative of function denoted: f’(x) or as dy/dx

* Derivative f’(x) gives the slope of f (x) at point x
* It specifies how to scale a small change in input to obtain a corresponding change in the

output:

fix+e)=fx)+ef (x)

* It tells how you make a small change in input to make a small improvement in y

Recall what’s the derivative for the
following functions:

f(x) = x2

f(x) = e



Calculus in Optimization

» Suppose we have function ¥y = f(z), where x, y are real numbers
* Sign function: )

if x <0
sign(z) = ¢ 0 ifz =0
|1 if x>0
« We know that This technique is
called gradient
f(:l? — Esign(f’ (m))) < f(E) descent (Cauchy
for small €. 1847)

* Therefore, we can reduce f(x) by moving x in small steps with
opposite sign of derivative

\

Why opposite?



Example

e Function f(x) =x* &£=0.1
e f'(x) = 2x

* Forx =-2, f'(-2) = -4, sign(f’(-2))=-1
e f(-2- €*(-1)) = f(-1.9) < f(-2)

* Forx=2,1'(2) =4, sign(f’(2)) =1
e f(2- €*1) =(1.9) < f(2)



Gradient Descent Illustrated
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Stationary points, Local Optima

* When f’(z) = 0 derivative provides no information about direction of
move

* Points where f’(z) = 0 are known as stationary or critical points

* Local minimum/maximum: a point where f(x) lower/ higher than all its
neighbors

* Saddle Points: neither maxima nor minima

Minimum Maximum Saddle point

N o~




Presence of multiple minima

* Optimization algorithms may fail to find global minimum
* Generally accept such solutions

This local minimum

performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(z)

This local minimum performs
poorly and should be avoided.




Gradient



Minimizing with multiple dimensional inputs
* We often minimize functions with multiple-dimensional inputs
f:R" — R

* For minimization to make sense there must still be only one (scalar)
output



Functions with multiple inputs

e Partial derivatives

5, f (@)

measures how f changes as only variable x; increases at point x

* Gradient generalizes notion of derivative where derivative is wrt a
vector

* Gradient is vector containing all of the partial derivatives denoted

V.f(z) = (aif(m% iﬂf(m))



Example

* ¥ = 5X° + 4x, + X2 + 2

* so what is the exact gradient on instance (1,2,3)

* the gradient is (25x,%, 4, 2x,)
* On the instance (1,2,3), it is (25,4,6)



Functions with multiple inputs

* Gradient is vector containing all of the partial derivatives denoted

Vol (@) = (5o f (@), s 5o @)

* Element i of the gradient is the partial derivative of f wrt x;

e Critical points are where every element of the gradient is equal to
Zero

Vef(x) =0= <




Example

* ¥ = 5X° + 44X, + X2 + 2

* so what are the critical points?

* the gradient is (25x,%, 4, 2x,)

* We let 25x,* = 0 and 2x, = 0, so all instances whose x, and x; are 0.
but 4 /= 0. So there is no critical point.



Directional Derivative



Directional Derivative

* Directional derivative in direction 2 (a unit vector) is the slope of
function f in direction U

* This evaluates to
u!'V, f(z)

* Example: let ! = (ug,u,,u,) be a unit vector in Cartesian
coordinates, so

lul2 = /12 + w2 +u2 =1

then

of of af
uw!'V,f(x) = %um + a—yuy + —u,



Directional Derivative

* To minimize f find direction in which f decreases the fastest

min w!'Vaf(z) = min ||ulls-||Vzf(2)||2- cosb
u,ulu=1 w,ulu=1

 where @ is angle between 74 and the gradient

e Substitute ||u||2 = 1 and ignore factors that not depend on 1 this simplifies
to

min cos @
U

* This is minimized when U points in direction opposite to gradient

* In other words, the gradient points directly uphill, and the negative
gradient points directly downhill



Method of Gradient Descent



Method of Gradient Descent

* The gradient points directly uphill, and the negative gradient points
directly downhill

* Thus we can decrease f by moving in the direction of the negative
gradient

* This is known as the method of steepest descent or gradient descent

* Steepest descent proposes a new point

' =z —€eVyf(x)

* where € is the learning rate, a positive scalar. Set to a small constant.



Choosing€: Line Search

* We can choose € in several different ways
* Popular approach: set € to a small constant
* Another approach is called line search:

* Evaluate
f($ o Evmf(m))

for several values of € and choose the one that results in smallest objective
function value



Example: Gradient Descent on Linear
Regression



Example: Gradient Descent on Linear
Regression

1 «— T
o |i : — (1) _ (%) N X w — yll?
Linear regression: — E: || w — |3

* The gradient is

Vuol(fw)

Vo (Xw —y)" (Xw —y)]
Volw! Xt Xw — 2wl X1y + y1y]
2XT Xw—2X1y



Example: Gradient Descent on Linear

Regression

e Linear regression: L(f,) = ;Z(w%(":) — y()?2 = 711||Xw —y||2
1=1

* The gradientis V,,L(f,) = 2XT Xw — 2X Ty

e Gradient Descent algorithm is
 Set step size €, tolerance 6 to small, positive numbers.

* While || X" Xw — X*y||o > § do

r+— 1 — (X' Xw— X"y)



Linear Regression: Analytical
solution



Convergence of Steepest Descent

 Steepest descent converges when every element of the gradient is
Zero

* In practice, very close to zero

* We may be able to avoid iterative algorithm and jump to the critical
point by solving the following equation for x

Ve f(z) =0



Linear Regression: Analytical solution

. . . 1 « - - 1
* Linear regression: L(fuw) = — > (w'z® —y)* = —||Xw —y|[3

1=1

* The gradientis V,,L(f,) = 2XT Xw — 2X Ty

* Let Vwi(fw) =2X " Xw-2XTy=0

* Then, we have w = (X1 X)) 1 X1y



Linear Regression: Analytical solution

* Algebraic view of the minimizer
* If X is invertible, just solve Xw =y and getw = X1y
* But typically X is a tall matrix

II=I —-!J

Normal equation: w = (XTX)"1XTy




Generalization to discrete spaces



Generalization to discrete spaces

* Gradient descent is limited to continuous spaces

* Concept of repeatedly making the best small move can be generalized
to discrete spaces

* Ascending an objective function of discrete parameters is called hill
climbing



Exercises
* Given a function f(x)= e*/(1+e*), how many critical points?
* Given a function f(x,,x,)= 9x,%+3x,+4, how many critical points?

* Please write a program to do the following: given any differentiable
function (such as the above two), an €, and a starting x and a target x/,
determine whether it is possible to reach x’ from x. If possible, how
many steps? You can adjust € to see the change of the answer.



Extended Materials



Beyond Gradient: Jacobian and Hessian
matrices

 Sometimes we need to find all derivatives of a function whose input
and output are both vectors

* If we have function f: R, -> R,
* Then the matrix of partial derivatives is known as the Jacobian matrix J

defined as

.
J -=a—$jf(m)_

i,] z




Second derivative

* Derivative of a derivative

* For a function f: Rgz—> R the derivative wrt x; of the derivative of f wrt
X; is denoted as 52,5z, f

2
* In a single dimension we can denote %f by f”(x)
 Tells us how the first derivative will change as we vary the input

* This is important as it tells us whether a gradient step will cause as
much of an improvement as based on gradient alone



Second derivative measures curvature

* Derivative of a derivative
e Quadratic functions with different curvatures
Positive curvature

No curvature

N cEat Ive curvature

Dashed line is
value of cost
function predicted
by gradient alone = h

Gradient Predicts Decreas/e

decrease correclly s slower than expected
Actually increases

fiz)
Jizx)
/)

Decrease is
faster than predicted
by Gradient Descent



Hesslan

* Second derivative with many dimensions

* H(f) (x)is defined as H(f)(x) = n .-:'9
T Oz

f(x)

* Hessian is the Jacobian of the gradient

* Hessian matrix is symmetric, i.e., H;; =H,

* anywhere that the second partial derivatives are continuous

e So the Hessian matrix can be decomposed into a set of real eigenvalues and
an orthogonal basis of eigenvectors

* Eigenvalues of H are useful to determine learning rate as seen in next two slides



Role of eigenvalues of Hessian

e Second derivative in direction d is d’Hd

* If d is an eigenvector, second derivative in that direction is given by its
eigenvalue

* For other directions, weighted average of eigenvalues (weights of 0 to 1, with
eigenvectors with smallest angle with d receiving more value)

* Maximum eigenvalue determines maximum second derivative and
minimum eigenvalue determines minimum second derivative



Learning rate from Hessian

* Taylor’s series of f(x) around current point x(?

flx)= flx")+(x-x ]l'g—l—%{.r-.r" ) H(x-x"")

« where g is the gradient and H is the Hessian at x(©
* If we use learning rate £ the new point x is given by x(?%-£g. Thus we get

il i L 2. 1
flx" —eg)= f(x")—eg g+ ,5 9 Hy
* There are three terms:
e original value of f,
* expected improvement due to slope, and
e correction to be applied due to curvature T

* Solving for step size when correction is least gives ¥ ~ sf J
g Hg




Second Derivative Test: Critical Points

* On a critical point f’(x)=0

 When f”(x)>0 the first derivative f’(x) increases as we move to the
right and decreases as we move left

 We conclude that x is a local minimum
* For local maximum, f’(x)=0 and f”’(x)<0

 When f”(x)=0 test is inconclusive: x may be a saddle point or part of a
flat region



Multidimensional Second derivative test

* In multiple dimensions, we need to examine second derivatives of all
dimensions

e Eigendecomposition generalizes the test

 Test eigenvalues of Hessian to determine whether critical point is a
local maximum, local minimum or saddle point

 When H is positive definite (all eigenvalues are positive) the point is a
local minimum

e Similarly negative definite implies a maximum



Saddle point

* Contains both positive and negative curvature
* Function is f(x)=x,%-x,?

 Along axis x;, function curves upwards: this axis is an eigenvector of H and has
a positive value

* Along x,, function corves downwards; its direction is an eigenvector of H with
negative eigenvalue

* At a saddle point eigen values are both positive and negative



Inconclusive Second Derivative Test

* Multidimensional second derivative test can be inconclusive just like
univariate case

* Test is inconclusive when all non-zero eigen values have same sign but
at least one value is zero

* since univariate second derivative test is inconclusive in cross-section
corresponding to zero eigenvalue



Poor Condition Number

* There are different second derivatives in each direction at a single
point

* Condition numberof He.g., A__./A,_. measures how much they differ
* Gradient descent performs poorly when H has a poor condition no.

* Because in one direction derivative increases rapidly while in another
direction it increases slowly

» Step size must be small so as to avoid overshooting the minimum, but it will
be too small to make progress in other directions with less curvature



Gradient Descent without H

 H with condition no, 5

* Direction of most curvature has five times more curvature than direction of
least curvature

* Due to small step size Gradient
descent wastes time

* Algorithm based on Hessian can
predict that steepest descentis &
not promising

-30 -20 -10 0 10 20



Newton’s method uses Hessian

* Another second derivative method
* Using Taylor’s series of f(x) around current x(?

f(x)= f(x")+(x-x")'V_f(x J-;{x-x ) H(f)(x-x")(x-x")

* solve for the critical point of this function to give xt = x _ H()(x™) 3'1.7rf|:_1- v }

 When fis a quadratic (positive definite) function use solution to jump to the
minimum function directly

* When not quadratic apply solution iteratively

* Can reach critical point much faster than gradient descent
* But useful only when nearby point is a minimum



Summary of Gradient Methods

* First order optimization algorithms: those that use only the gradient

* Second order optimization algorithms: use the Hessian matrix such as
Newton’s method

* Family of functions used in ML is complicated, so optimization is more
complex than in other fields

* No guarantees

 Some guarantees by using Lipschitz continuous functions,

|- 1) < e~ |

e with Lipschitz constant L




Convex Optimization

e Applicable only to convex functions — functions which are well-
behaved,

* e.g., lack saddle points and all local minima are global minima

* For such functions, Hessian is positive semi-definite everywhere

* Many ML optimization problems, particularly deep learning, cannot
be expressed as convex optimization



Constrained Optimization

* We may wish to optimize f(x) when the solution x is constrained to lie
InsetS
e Such values of x are feasible solutions

e Often we want a solution that is small, such as | | x| |<1

* Simple approach: modify gradient descent taking constraint into
account (using Lagrangian formulation)



Ex: Least squares with Lagrangian

1 2
 We wish to minimize [f®) =73l 4x=blF

* Subject to constraint x'x< 1

« We introduce the Lagrangian ‘L(“’“"}: f'im]*:)‘(mrm‘l)‘
* And solve the problem |min rpﬁL(mJﬂ

* For the unconstrained problem (no Lagrangian) the smallest norm
solution is x=A+b

* If this solution is not feasible, differentiate Lagrangian wrt x to obtain ATAx-
ATb+2Ax=0
 Solution takes the form x = (ATA+2A/)1A’b

* Choosing A: continue solving linear equation and increasing A until x has the
correct norm




Generalized Lagrangian: KKT

* More sophisticated than Lagrangian

e Karush-Kuhn-Tucker is a very general solution to constrained
optimization

* While Lagrangian allows equality constraints, KKT allows both equality
and inequality constraints

* To define a generalized Lagrangian we need to describe S in terms of
equalities and inequalities



Generalized Lagrangian

* Set Sis described in terms of m functions g(i) and n functions h(j) so
that ¢ _ {x| Vi, g(x) = 0 and Vj,h%(x) < 0}

* Functions of g are equality constraints and functions of h are inequality
constraints

* Introduce new variables A; and ¢; for each constraint (called KKT
multipliers) giving the generalized Lagrangian

Lz, )\ ) = f(:c)-r-Z)tq (z) -{-Zurh (z)

* We can now solve the unconstralned optlmlzatlon problem




