
Gradient Descent
Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/ 



Up to now,

• Three machine learning algorithms: 
• decision tree learning 

• k-nn

• linear regression

only optimization 
objectives are 
discussed, but 
how to solve?



Today’s Topics

• Derivative 

• Gradient

• Directional Derivative

• Method of Gradient Descent

• Example: Gradient Descent on Linear Regression 

• Linear Regression: Analytical Solution



Problem Statement: Gradient-Based 
Optimization 
• Most ML algorithms involve optimization 

• Minimize/maximize a function f (x) by altering x 
• Usually stated as a minimization of e.g., the loss etc

• Maximization accomplished by minimizing –f(x) 

• f (x) referred to as objective function or criterion 
• In minimization also referred to as loss function cost, or error

• Example: 
• linear least squares 

• Linear regression 

• Denote optimum value by x*=argmin f (x) 



Derivative



Derivative of a function

• Suppose we have function y=f (x), x, y real numbers 
• Derivative of function denoted: f’(x) or as dy/dx 

• Derivative f’(x) gives the slope of f (x) at point x 

• It specifies how to scale a small change in input to obtain a corresponding change in the 
output: 

f (x + ε) ≈ f (x) + ε f’ (x)
• It tells how you make a small change in input to make a small improvement in y 

Recall what’s the derivative for the 
following functions: 
f(x) = x2

f(x) = ex

…



Calculus in Optimization 

• Suppose we have function                , where x, y are real numbers 

• Sign function: 

• We know that 

for small ε. 

• Therefore, we can reduce   by moving x in small steps with 
opposite sign of derivative 

This technique is 
called gradient 
descent (Cauchy 
1847) 

Why opposite?



Example

• Function f(x) = x2 ε = 0.1

• f’(x) = 2x

• For x = -2, f’(-2) = -4, sign(f’(-2))=-1 

• f(-2- ε*(-1)) = f(-1.9) < f(-2)

• For x = 2, f’(2) = 4, sign(f’(2)) = 1

• f(2- ε*1) = f(1.9) < f(2) 



Gradient Descent Illustrated 

For x>0, f(x) increases with x 
and f’(x)>0 

For x<0, f(x) decreases with x 
and f’(x)<0 

Use f’(x) to follow 
function downhill 

Reduce f(x) by going in direction                                                         
opposite sign of derivative f’(x) 



Stationary points, Local Optima 

• When derivative provides no information about direction of 
move 

• Points where are known as stationary or critical points 
• Local minimum/maximum: a point where f(x) lower/ higher than all its 

neighbors

• Saddle Points: neither maxima nor minima 



Presence of multiple minima 

• Optimization algorithms may fail to find global minimum 

• Generally accept such solutions 



Gradient



Minimizing with multiple dimensional inputs 

• We often minimize functions with multiple-dimensional inputs

• For minimization to make sense there must still be only one (scalar) 
output 



Functions with multiple inputs 

• Partial derivatives 

measures how f changes as only variable xi increases at point x 

• Gradient generalizes notion of derivative where derivative is wrt a 
vector 

• Gradient is vector containing all of the partial derivatives denoted 



Example

• y = 5x1
5 + 4x2 + x3

2  + 2

• so what is the exact gradient on instance (1,2,3)

• the gradient is (25x1
4, 4, 2x3)

• On the instance (1,2,3), it is (25,4,6)



Functions with multiple inputs 

• Gradient is vector containing all of the partial derivatives denoted 

• Element i of the gradient is the partial derivative of f wrt xi

• Critical points are where every element of the gradient is equal to 
zero 



Example

• y = 5x1
5 + 4x2 + x3

2  + 2

• so what are the critical points? 

• the gradient is (25x1
4, 4, 2x3)

• We let 25x1
4 = 0 and 2x3 = 0, so all instances whose x1 and x3 are 0. 

but 4 /= 0. So there is no critical point. 



Directional Derivative 



Directional Derivative 

• Directional derivative in direction       (a unit vector) is the slope of 
function in direction 

• This evaluates to

• Example: let                              be a unit vector in Cartesian 
coordinates, so 

then



Directional Derivative 

• To minimize f find direction in which f decreases the fastest 

• where is angle between     and the gradient 
• Substitute                    and ignore factors that not depend on      this simplifies 

to 

• This is minimized when      points in direction opposite to gradient 

• In other words, the gradient points directly uphill, and the negative 
gradient points directly downhill 



Method of Gradient Descent 



Method of Gradient Descent 

• The gradient points directly uphill, and the negative gradient points 
directly downhill 

• Thus we can decrease f  by moving in the direction of the negative 
gradient 
• This is known as the method of steepest descent or gradient descent 

• Steepest descent proposes a new point 

• where is the learning rate, a positive scalar. Set to a small constant. 



Choosing : Line Search 

• We can choose in several different ways 

• Popular approach: set     to a small constant 

• Another approach is called line search: 
• Evaluate 

for several values of and choose the one that results in smallest objective 
function value 



Example: Gradient Descent on Linear 
Regression



Example: Gradient Descent on Linear 
Regression

• Linear regression: 

• The gradient is



Example: Gradient Descent on Linear 
Regression

• Linear regression: 

• The gradient is

• Gradient Descent algorithm is 
• Set step size , tolerance δ to small, positive numbers. 

• While     do 



Linear Regression: Analytical 
solution



Convergence of Steepest Descent 

• Steepest descent converges when every element of the gradient is 
zero 
• In practice, very close to zero 

• We may be able to avoid iterative algorithm and jump to the critical 
point by solving the following equation for x



Linear Regression: Analytical solution

• Linear regression: 

• The gradient is

• Let

• Then, we have  



Linear Regression: Analytical solution

• Algebraic view of the minimizer

• If 𝑋 is invertible, just solve 𝑋𝑤 = 𝑦 and get 𝑤 = 𝑋−1𝑦

• But typically 𝑋 is a tall matrix 



Generalization to discrete spaces 



Generalization to discrete spaces 

• Gradient descent is limited to continuous spaces 

• Concept of repeatedly making the best small move can be generalized 
to discrete spaces 

• Ascending an objective function of discrete parameters is called hill 
climbing 



Exercises

• Given a function f(x)= ex/(1+ex), how many critical points? 

• Given a function f(x1,x2)= 9x1
2+3x2+4, how many critical points? 

• Please write a program to do the following: given any differentiable 
function (such as the above two), an ε, and a starting x and a target x’, 
determine whether it is possible to reach x’ from x. If possible, how 
many steps? You can adjust ε to see the change of the answer. 



Extended Materials



Beyond Gradient: Jacobian and Hessian 
matrices 
• Sometimes we need to find all derivatives of a function whose input 

and output are both vectors 

• If we have function f: Rm -> Rn

• Then the matrix of partial derivatives is known as the Jacobian matrix J 
defined as 



Second derivative 

• Derivative of a derivative 

• For a function f: Rn -> R the derivative wrt xi of the derivative of f wrt
xj is denoted as

• In a single dimension we can denote             by f’’(x)

• Tells us how the first derivative will change as we vary the input 

• This is important as it tells us whether a gradient step will cause as 
much of an improvement as based on gradient alone 



Second derivative measures curvature 

• Derivative of a derivative

• Quadratic functions with different curvatures 



Hessian 

• Second derivative with many dimensions 

• H ( f ) (x) is defined as 

• Hessian is the Jacobian of the gradient 

• Hessian matrix is symmetric, i.e., Hi,j =Hj,i

• anywhere that the second partial derivatives are continuous 

• So the Hessian matrix can be decomposed into a set of real eigenvalues and 
an orthogonal basis of eigenvectors 
• Eigenvalues of H are useful to determine learning rate as seen in next two slides 



Role of eigenvalues of Hessian 

• Second derivative in direction d is dTHd
• If d is an eigenvector, second derivative in that direction is given by its 

eigenvalue 

• For other directions, weighted average of eigenvalues (weights of 0 to 1, with 
eigenvectors with smallest angle with d receiving more value) 

• Maximum eigenvalue determines maximum second derivative and 
minimum eigenvalue determines minimum second derivative 



Learning rate from Hessian 

• Taylor’s series of f(x) around current point x(0) 

• where g is the gradient and H is the Hessian at x(0)

• If we use learning rate ε the new point x is given by x(0)-εg. Thus we get 

• There are three terms:
• original value of f,
• expected improvement due to slope, and 
• correction to be applied due to curvature 

• Solving for step size when correction is least gives



Second Derivative Test: Critical Points 

• On a critical point f’(x)=0 

• When f’’(x)>0 the first derivative f’(x) increases as we move to the 
right and decreases as we move left 

• We conclude that x is a local minimum 

• For local maximum, f’(x)=0 and f’’(x)<0 

• When f’’(x)=0 test is inconclusive: x may be a saddle point or part of a 
flat region 



Multidimensional Second derivative test 

• In multiple dimensions, we need to examine second derivatives of all 
dimensions 

• Eigendecomposition generalizes the test 

• Test eigenvalues of Hessian to determine whether critical point is a 
local maximum, local minimum or saddle point 

• When H is positive definite (all eigenvalues are positive) the point is a 
local minimum 

• Similarly negative definite implies a maximum



Saddle point 

• Contains both positive and negative curvature 

• Function is f(x)=x1
2-x2

2

• Along axis x1, function curves upwards: this axis is an eigenvector of H and has 
a positive value 

• Along x2, function corves downwards; its direction is an eigenvector of H with 
negative eigenvalue 

• At a saddle point eigen values are both positive and negative 



Inconclusive Second Derivative Test 

• Multidimensional second derivative test can be inconclusive just like 
univariate case 

• Test is inconclusive when all non-zero eigen values have same sign but 
at least one value is zero 
• since univariate second derivative test is inconclusive in cross-section 

corresponding to zero eigenvalue 



Poor Condition Number 

• There are different second derivatives in each direction at a single 
point 

• Condition number of H e.g., λmax/λmin measures how much they differ 
• Gradient descent performs poorly when H has a poor condition no. 

• Because in one direction derivative increases rapidly while in another 
direction it increases slowly 

• Step size must be small so as to avoid overshooting the minimum, but it will 
be too small to make progress in other directions with less curvature 



Gradient Descent without H 

• H with condition no, 5 
• Direction of most curvature has five times more curvature than direction of 

least curvature 

• Due to small step size Gradient                                                              
descent wastes time 

• Algorithm based on Hessian can                                                               
predict that steepest descent is                                                                       
not promising 



Newton’s method uses Hessian 

• Another second derivative method
• Using Taylor’s series of f(x) around current x(0) 

• solve for the critical point of this function to give

• When f is a quadratic (positive definite) function use solution to jump to the 
minimum function directly 

• When not quadratic apply solution iteratively 

• Can reach critical point much faster than gradient descent 
• But useful only when nearby point is a minimum 



Summary of Gradient Methods 

• First order optimization algorithms: those that use only the gradient 

• Second order optimization algorithms: use the Hessian matrix such as 
Newton’s method 

• Family of functions used in ML is complicated, so optimization is more 
complex than in other fields 
• No guarantees 

• Some guarantees by using Lipschitz continuous functions, 

• with Lipschitz constant L 



Convex Optimization 

• Applicable only to convex functions – functions which are well-
behaved, 
• e.g., lack saddle points and all local minima are global minima 

• For such functions, Hessian is positive semi-definite everywhere 

• Many ML optimization problems, particularly deep learning, cannot 
be expressed as convex optimization 



Constrained Optimization 

• We may wish to optimize f(x) when the solution x is constrained to lie 
in set S 
• Such values of x are feasible solutions 

• Often we want a solution that is small, such as ||x||≤1 

• Simple approach: modify gradient descent taking constraint into 
account (using Lagrangian formulation) 



Ex: Least squares with Lagrangian

• We wish to minimize 
• Subject to constraint xTx ≤ 1 

• We introduce the Lagrangian
• And solve the problem 

• For the unconstrained problem (no Lagrangian) the smallest norm 
solution is x=A+b
• If this solution is not feasible, differentiate Lagrangian wrt x to obtain ATAx-

ATb+2λx=0 
• Solution takes the form x = (ATA+2λI)-1ATb 
• Choosing λ: continue solving linear equation and increasing λ until x has the 

correct norm 



Generalized Lagrangian: KKT 

• More sophisticated than Lagrangian

• Karush-Kuhn-Tucker is a very general solution to constrained 
optimization 

• While Lagrangian allows equality constraints, KKT allows both equality 
and inequality constraints 

• To define a generalized Lagrangian we need to describe S in terms of 
equalities and inequalities 



Generalized Lagrangian

• Set S is described in terms of m functions g(i) and n functions h(j) so 
that 

• Functions of g are equality constraints and functions of h are inequality 
constraints 

• Introduce new variables λi and αj for each constraint (called KKT 
multipliers) giving the generalized Lagrangian

• We can now solve the unconstrained optimization problem 


