Naïve Bayes

Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

- Four machine learning algorithms:
 - decision tree learning
 - k-nn
 - linear regression
 - Gradient descent

Topics

- MLE (maximum Likelihood Estimation) and MAP
- Naïve Bayes

Estimating Parameters

 Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data D

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\hat{ heta} = rg\max_{ heta} P(heta|D)$$
 — posterior
 $= rg\max_{ heta} rac{P(D| heta)P(heta)}{P(D)} = rg\max_{ heta} P(D| heta)P(heta)$

Recall: MAP Queries (Most Probable Explanation)

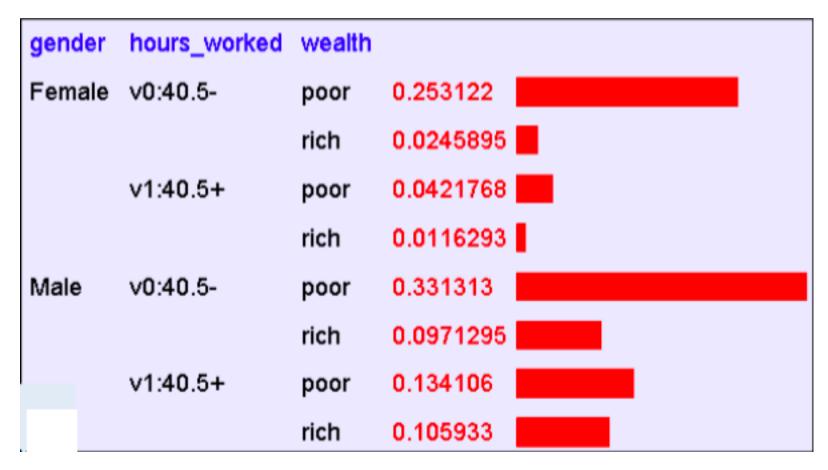
- Finding a high probability assignment to some subset of variables
- Most likely assignment to all non-evidence variables $W=\chi Y$

$$MAP(W | e) = \arg\max_{w} P(w, e) \qquad P(w, e) = P(w | e) P(e)$$

i.e., value of w for which P(w,e) is maximum

Let's learn classifiers by learning P(Y|X)

• Consider Y=Wealth, X=<Gender, HoursWorked>



Let's learn classifiers by learning P(Y|X)

 P(gender, hours_worked, wealth) => P(wealth| gender, hours_worked)

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

How many parameters must we estimate?

feature vector

- Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are Boolean RV s
- To estimate $P(Y|X_1, X_2, ..., X_n)$

2ⁿ quantities need to be estimated!

- If we have 30 boolean X_i's: P(Y | X₁, X₂, ... X₃₀)
 2³⁰ ~ 1 billion!
- You need lots of data or a very small *n*

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

Can we reduce params using Bayes Rule?

- Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's
- By Bayes rule:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

• How many parameters for $P(X|Y) = P(X_1, ..., X_n|Y)$? (2ⁿ-1)x2

```
How many parameters for P(Y)?
1
```

For example, P(Gender,HrsWorked|Wealth)

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

For example, P(Wealth)

Naïve Bayes

• Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_i are conditionally independent given Y, for all $i \neq j$

For example, P(Gender,HrsWorked|Wealth) = P(Gender|Wealth) * P(HrsWorked|Wealth)

Conditional independence

• Two variables A, B are *independent* if

 $P(A \land B) = P(A)P(B)$ $\forall a, b : P(A = a \land B = b) = P(A = a)P(B = b)$

• Two variables A, B are *conditionally independent given* C if

 $P(A \land B|C) = P(A|C)P(B|C)$ $\forall a, b, c : P(A = a \land B = b|C = c) = P(A = a|C = c)P(B = b|C = c)$

Conditional Independence

 A is conditionally independent of B given C, if the probability distribution governing A is independent of the value of B, given the value of C

$$\forall a, b, c : P(A = a | B = b, C = c) = P(A = a | C = c)$$

- Which we often write P(A|B,C) = P(A|C)
- Example: P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Assumption for Naïve Bayes

- Naïve Bayes uses assumption that the X_i are conditionally independent, given Y
- Given this assumption, then:

Chain rule

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$ Conditional
Independence

• in general: $P(X_1...X_n|Y) = \prod_i P(X_i|Y)$ (2ⁿ-1)x2 2n Why? Every P(X_i|Y) takes a parameter to remember, and we have n X_i.

Reducing the number of parameters to estimate

$$P(Y|X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y) P(Y)}{P(X_1, ..., X_n)}$$

• To make this tractable we naively assume conditional independence of the features given the class: ie

$$P(X_1, ..., X_n | Y) = P(X_1 | Y) P(X_2 | Y) ... P(X_n | Y)$$

• Now: I only need to estimate ... parameters:

 $P(X_1|Y), P(X_2|Y), ..., P(X_n|Y), P(Y)$

Reducing the number of parameters to estimate

How many parameters to describe $P(X_1, ..., X_n | Y)$? P(Y)?

- Without conditional indep assumption?
 - (2ⁿ-1)x2+1
- With conditional indep assumption?
 - 2n+1

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)
- for each value y_k
 - Estimate $\pi_k \equiv P(Y=y_k)$
- for each value x_{ij} of each attribute X_i
 - estimate $\theta_{ijk} = P(X_i = x_{ij}|Y = y_k)$

Training Naïve Bayes Classifier Using MLE

- From the data D, estimate *class priors:*
 - For each possible value of Y, estimate $Pr(Y=y_1)$, $Pr(Y=y_2)$,.... $Pr(Y=y_k)$
 - An MLE estimate:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

- From the data, estimate the conditional probabilities
 - If every X_i has values $x_{i1},...,x_{ik}$
 - for each y_i and each X_i estimate $q(i,j,k)=Pr(X_i=x_{ij}|Y=y_k)$

•
$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$
 Number of items in dataset D for which $Y=y_k$

Exercise

- Consider the following dataset:
- P(Wealthy=Y) =
- P(Wealthy=N)=
- P(Gender=F | Wealthy = Y) =
- P(Gender=M | Wealthy = Y) =
- P(HrsWorked > 40.5 | Wealthy = Y) =
- P(HrsWorked < 40.5 | Wealthy = Y) =
- P(Gender=F | Wealthy = N) =
- P(Gender=M | Wealthy = N) =
- P(HrsWorked > 40.5 | Wealthy = N) =
- P(HrsWorked < 40.5 | Wealthy = N) =

Gender	HrsWorked	Wealthy?
F	39	Y
F	45	Ν
Μ	35	Ν
Μ	43	Ν
F	32	Y
F	47	Y
Μ	34	Y

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)
- for each value y_k
 - Estimate $\pi_k \equiv P(Y=y_k)$
- for each value x_{ij} of each attribute X_i
 - estimate $\theta_{ijk} = P(X_i = x_{ij}|Y = y_k)$
- Classify (X_{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$$

Exercise (Continued)

- Consider the following dataset:
- Classify a new instance
 - Gender = F / HrsWorked = 44

Gender	HrsWorked	Wealthy?
F	39	Υ
F	45	Ν
Μ	35	Ν
Μ	43	Ν
F	32	Y
F	47	Y
Μ	34	Υ

Example: Live outside of Liverpool? P(L|T,D,E)

- L=1 iff live outside of Liverpool D=1 iff Drive or Carpool to Liverpool
- T=1 iff shop at Tesco E=1 iff Even # letters last name

P(L=1):	P(L=0):
P(D=1 L=1) :	P(D=0 L=1) :
P(D=1 L=0) :	P(D=0 L=0) :
P(T=1 L=1):	P(T=0 L=1):
P(T=1 L=0):	P(T=0 L=0) :
P(E=1 L=1):	P(E=0 L=1):
P(E=1 L=0):	P(E=0 L=0):

Extended Materials

Naïve Bayes: Subtlety #1

- If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (e.g., nobody in your sample has $X_i \le 40.5$ and Y = rich)
- Why worry about just one parameter out of many?

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

If one of these terms is 0...

• What can be done to avoid this?

Estimating Parameters: Y, X, discrete-valued

• Maximum likelihood estimates:

$$\widehat{\pi}_k = \widehat{P}(Y = y_k) = \frac{\# D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\# D\{X_i = x_j \land Y = y_k\}}{\# D\{Y = y_k\}}$$

• MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + (\beta_k - 1)}{|D| + \sum_m (\beta_m - 1)}$$

it is common to use a "smoothed" estimate which effectively adds in a number of additional "hallucinated" examples, and which assumes these hallucinated examples are spread evenly over the possible values of X_i .

Only difference: "hallucinated" examples

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\} + (\beta_k - 1)}{\#D\{Y = y_k\} + \sum_m (\beta_m - 1)}$$

Naïve Bayes: Subtlety #2

- Often the X_i are not really conditionally independent
- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Special case: what if we add two copies: $X_i = X_k$

Special case: what if we add two copies: $X_i = X_k$

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

Redundant
terms

About Naïve Bayes

• Naïve Bayes is blazingly fast and quite robust!

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

• How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

Learning to classify document: P(Y|X) the Bag of Words model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, ..., X_n \rangle = document$
- X_i is a random variable describing the word at position i in the document
- possible values for X_i : any word w_k in English
- Document = bag of words: the vector of counts for all w_k 's
 - (like #heads, #tails, but we have more than 2 values)

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)
- for each value y_k

• Estimate
$$\pi_k \equiv P(Y=y_k)$$

- for each value x_{ij} of each attribute X_i
 - estimate $\theta_{ijk} = P(X_i = x_{ij}|Y = y_k)$

prob that word x_j
> appears in position i,
given Y=y_k

Additional assumption: word probabilities are position independent

 $\theta_{ijk} = \theta_{mjk}$ for all i, m

• Classify (X_{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$$

MAP estimates for bag of words

MAP estimate for multinomial

$$\theta_i = \frac{\alpha_i + \beta_i - 1}{\sum_{m=1}^k \alpha_m + \sum_{m=1}^k (\beta_m - 1)}$$

 $\theta_{aardvark} = P(X_i = aardvark) = \frac{\# \text{ observed 'aardvark'} + \# \text{ hallucinated 'aardvark'} - 1}{\# \text{ observed words } + \# \text{ hallucinated words } - k}$

• What *β* s should we choose?

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.misc sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates