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Up to now,

• Four machine learning algorithms: 
• decision tree learning 

• k-nn

• linear regression

• Gradient descent



Topics

• MLE (maximum Likelihood Estimation) and MAP

• Naïve Bayes 



Estimating Parameters 

• Maximum Likelihood Estimate (MLE): choose θ that maximizes 
probability of observed data D

• Maximum a Posteriori (MAP) estimate: choose θ that is most 
probable given prior probability and the data 

posterior



Recall: MAP Queries (Most Probable 
Explanation) 
• Finding a high probability assignment to some subset of variables 

• Most likely assignment to all non-evidence variables W=χ – Y 

i.e., value of w for which P(w,e) is maximum 

P(w,e) = P(w|e) P(e)



Let’s learn classifiers by learning P(Y|X) 

• Consider Y=Wealth, X=<Gender, HoursWorked> 



Let’s learn classifiers by learning P(Y|X) 

• P(gender, hours_worked, wealth) => P(wealth| gender, 
hours_worked) 



How many parameters must we estimate? 

• Suppose X =<X1,... Xn> where Xi and Y are Boolean RV s 

• To estimate P(Y|X1, X2, ... Xn) 

2n quantities need to be estimated! 

• If we have 30 boolean Xi’s: P(Y | X1, X2, ... X30) 

230 ~ 1 billion! 

• You need lots of data or a very small n 

feature vector 



Can we reduce params using Bayes Rule? 

• Suppose X =<X1,... Xn> where Xi and Y are boolean RV’s 

• By Bayes rule: 

• How many parameters for P(X|Y) = P(X1,... Xn|Y)? 

(2n-1)x2 

How many parameters for P(Y)? 

1

For example, 
P(Gender,HrsWorked|Wealth)

For example, P(Wealth)



Naïve Bayes 

• Naïve Bayes assumes

i.e., that Xi and Xj are conditionally independent given Y, for all i=j̸ 

For example, 
P(Gender,HrsWorked|Wealth) = P(Gender|Wealth) * P(HrsWorked|Wealth)



Conditional independence 

• Two variables A,B are independent if 

• Two variables A,B are conditionally independent given C if 



Conditional Independence 

• A is conditionally independent of B given C, if the probability 
distribution governing A is independent of the value of B, given the 
value of C 

• Which we often write 

• Example: 



Assumption for Naïve Bayes

• Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y 

• Given this assumption, then: 

• in general: 

Chain rule 

Conditional 
Independence 

(2n-1)x2 2n

Why? Every P(Xi|Y) takes a 
parameter to remember, and 
we have n Xi. 



Reducing the number of parameters to 
estimate 

• To make this tractable we naively assume conditional independence 
of the features given the class: ie

• Now: I only need to estimate ... parameters: 



Reducing the number of parameters to 
estimate 
How many parameters to describe                             ?            ?

• Without conditional indep assumption? 
• (2n-1)x2+1 

• With conditional indep assumption? 
• 2n+1



Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (given data for X and Y) 

• for each value
• Estimate

• for each value   of each attribute 
• estimate 



Training Naïve Bayes Classifier Using MLE 

• From the data D, estimate class priors:
• For each possible value of Y, estimate Pr(Y=y1), Pr(Y=y2),.... Pr(Y=yk) 

• An MLE estimate: 

• From the data, estimate the conditional probabilities 
• If every Xi has values xi1,...,xik

• for each yi and each Xi estimate q(i,j,k)=Pr(Xi=xij|Y=yk) 

•
Number of 
items in dataset 
D for which 
Y=yk



Exercise

• Consider the following dataset: 

• P(Wealthy=Y) = 

• P(Wealthy=N)=

• P(Gender=F | Wealthy = Y) =

• P(Gender=M | Wealthy = Y) =  

• P(HrsWorked > 40.5 | Wealthy = Y) =

• P(HrsWorked < 40.5 | Wealthy = Y) =  

• P(Gender=F | Wealthy = N) =

• P(Gender=M | Wealthy = N) =  

• P(HrsWorked > 40.5 | Wealthy = N) =

• P(HrsWorked < 40.5 | Wealthy = N) =  

Gender HrsWorked Wealthy?

F 39 Y

F 45 N

M 35 N

M 43 N

F 32 Y

F 47 Y

M 34 Y



Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (given data for X and Y) 

• for each value
• Estimate

• for each value   of each attribute 
• estimate 

• Classify (Xnew) 



Exercise (Continued)

• Consider the following dataset: 

• Classify a new instance 
• Gender = F /\ HrsWorked = 44

Gender HrsWorked Wealthy?

F 39 Y

F 45 N

M 35 N

M 43 N

F 32 Y

F 47 Y

M 34 Y



Example: Live outside of Liverpool? P(L|T,D,E) 

• L=1 iff live outside of Liverpool • D=1 iff Drive or Carpool to Liverpool 

• T=1 iff shop at Tesco                   • E=1 iff Even # letters last name 

P(L=1) : 
P(D=1 | L=1) : 
P(D=1 | L=0) : 
P(T=1 | L=1) : 
P(T=1 | L=0) : 
P(E=1 | L=1) : 
P(E=1 | L=0) : 

P(L=0) : 
P(D=0 | L=1) : 
P(D=0 | L=0) : 
P(T=0 | L=1) : 
P(T=0 | L=0) : 
P(E=0 | L=1) : 
P(E=0 | L=0) : 



Extended Materials



Naïve Bayes: Subtlety #1 

• If unlucky, our MLE estimate for P(Xi | Y) might be zero. (e.g., nobody 
in your sample has Xi <= 40.5 and Y=rich) 

• Why worry about just one parameter out of many? 

• What can be done to avoid this? 

If one of these 
terms is 0... 



Estimating Parameters: Y, Xi discrete-valued 

• Maximum likelihood estimates:

• MAP estimates (Beta, Dirichlet priors): 

Only difference: 
“hallucinated” examples

it is common to use a 
“smoothed” estimate which 
effectively adds in a number 
of additional “hallucinated” 
examples, and which 
assumes these hallucinated 
examples are spread evenly 
over the possible values of 
Xi. 



Naïve Bayes: Subtlety #2 

• Often the Xi are not really conditionally independent

• We use Naïve Bayes in many cases anyway, and it often works pretty 
well 
• often the right classification, even when not the right probability (see 

[Domingos&Pazzani, 1996]) 

• What is effect on estimated P(Y|X)?
• Special case: what if we add two copies: Xi =Xk



Special case: what if we add two copies: 
Xi = Xk

Redundant 
terms 



About Naïve Bayes 

• Naïve Bayes is blazingly fast and quite robust! 



Learning to classify text documents 

• Classify which emails are spam? 

• Classify which emails promise an attachment? 

• Classify which web pages are student home pages? 

• How shall we represent text documents for Naïve Bayes? 



Baseline: Bag of Words Approach 



Learning to classify document: 
P(Y|X) the Bag of Words model 
• Y discrete valued. e.g., Spam or not 

• X = <X1, X2, ... Xn> = document 

• Xi is a random variable describing the word at position i in the 
document 

• possible values for Xi : any word wk in English 

• Document = bag of words: the vector of counts for all wk’s
• (like #heads, #tails, but we have more than 2 values) 



Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (given data for X and Y) 

• for each value
• Estimate

• for each value   of each attribute 
• estimate 

• Classify (Xnew) 

prob that word xj

appears in position i, 
given Y=yk

Additional assumption: 
word probabilities are 
position independent 



MAP estimates for bag of words 

• MAP estimate for multinomial 

• What β s should we choose? 





What you should know: 

• Training and using classifiers based on Bayes rule 

• Conditional independence 
• What it is 
• Why it’s important 

• Naïve Bayes 
• What it is 
• Why we use it so much
• Training using MLE, MAP estimates 


