Machine Learning Overview

Dr. Xiaowei Huang

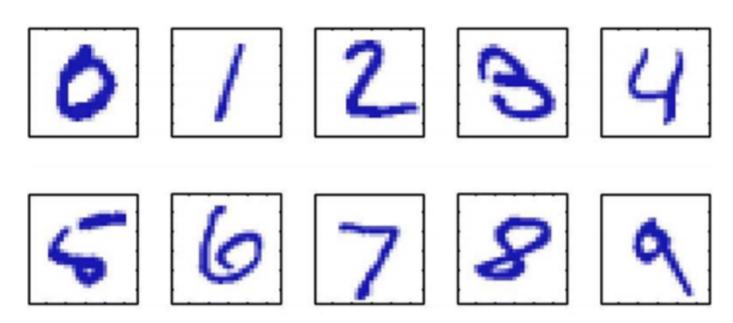
https://cgi.csc.liv.ac.uk/~xiaowei/

In the last lecture,

Module Information

Contents of the module

What is machine learning?


Today's Content

- A few applications of machine learning
- define the supervised and unsupervised learning tasks
- consider how to represent instances as fixed-length feature vectors
- understand the concepts

Where Machine Learning is used/useful?

- Can be applied in situations where it is very challenging (= impossible) to define rules by hand, e.g.:
 - Face detection
 - Speech recognition
 - Stock prediction

Example 1: hand-written digit recognition

Images are 28 x 28 pixels

Represent input image as a vector $x \in \mathbb{R}^{784}$, learn a classifier f(x) such that

$$f: \mathbb{R}^{784} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

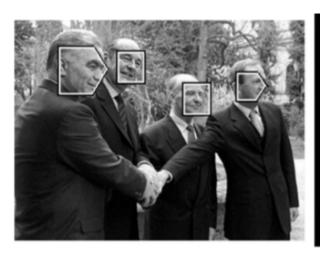
How to proceed ...

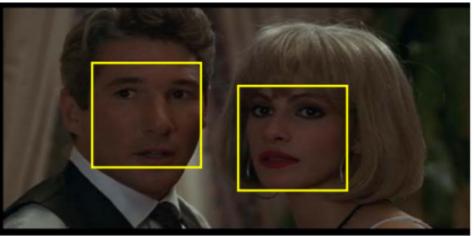
- As a supervised classification problem
- Start with training data, e.g. 6000 examples of each digit

```
00011(1110

00011(1110

0224012333

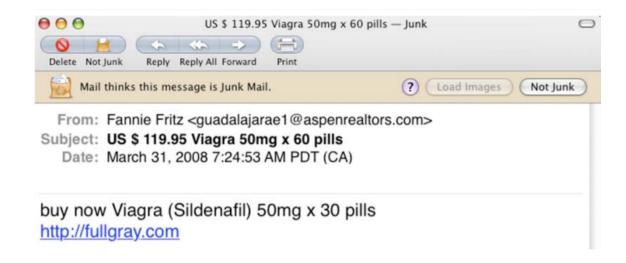

3444475555


4477771388

888194949
```

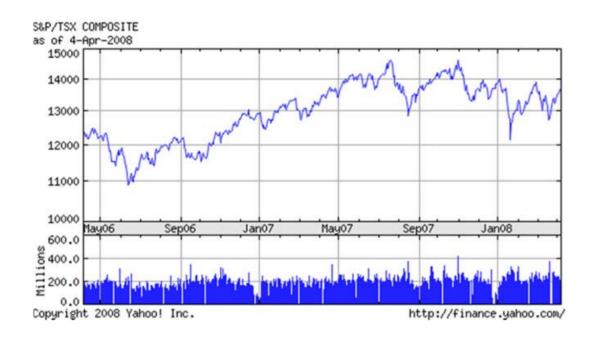
- Can achieve testing error of 0.4%
- One of the first commercial and widely used ML systems (for zip codes & checks)

Example 2: Face detection


- Again, a supervised classification problem
- Need to classify an image window into three classes:
 - non-face
 - frontal-face
 - profile-face

Classifier is learnt from labelled data

- Training data for frontal faces
 - 5000 faces
 - All near frontal
 - Age, race, gender, lighting
 - 10⁸ non faces
 - faces are normalized
 - scale, translation (a **translation** is a geometric **transformation** that moves every point of a figure or a space by the same distance in a given direction)



Example 3: Spam detection

- This is a classification problem
- Task is to classify email into spam/non-spam
- Data x_i is word count, e.g. of viagra, outperform, "you may be surprised to be contacted" ...
- Requires a learning system as "enemy" keeps innovating

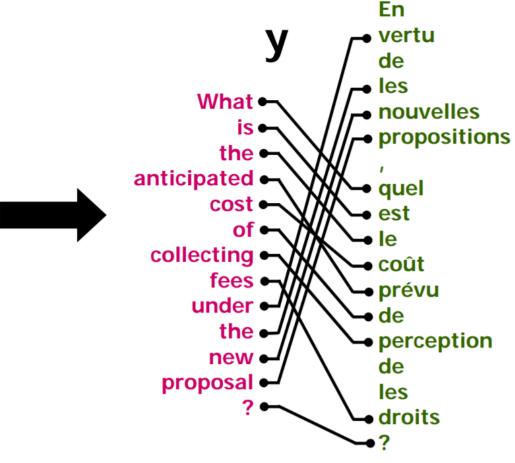
Example 4: Stock price prediction

- Task is to predict stock price at future date
- This is a regression task, as the output is continuous

Example 5: Computational biology

 \mathbf{X} \mathbf{y} AVITGACERDLOCG KGTCCAVSLWIKSV RVCTPVGTSGEDCH **PASHKIPFSGQRMH** HTCPCAPNLACVQT SPKKFKCLSK Protein Structure and Disulfide Bridges Regression task: given sequence predict 3D structure Protein: 1IMT

- Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence
- based on the dataset alone, the algorithm can learn how to combine multiple <u>features</u> of the input data into a more abstract set of features from which to conduct further learning


Web examples: Machine translation

Use of aligned text

X

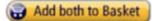
What is the anticipated cost of collecting fees under the new proposal?

En vertu des nouvelles propositions, quel est le coût prévu de perception des droits?

e.g. Google translate

Web examples: Recommender systems

People who bought Hastie ...


Frequently Bought Together

Customers buy this book with <u>Pattern Recognition and Machine Learning (Information Science and Statistics) (Information Science and Statistics)</u> by Christopher M. Bishop

Price For Both: £104.95

Customers Who Bought This Item Also Bought

Page 1

Pattern Recognition and Machine Learning (Infor... by Christopher M. Bishop

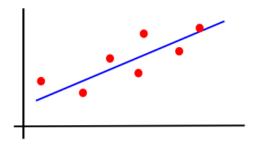
♣ Show related items

MACHINE LEARNING (Mcgraw-Hill International Edit) by Thom M. Mitchell 会会会会(3) £42.74

+ Show related items

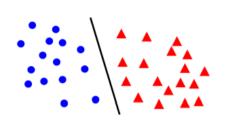
Pattern Classification, Second Edition: 1 (A Wi... by Richard O. Duda 会社会 (1) £78.38

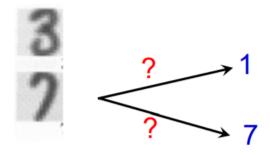
+ Show related items


Data Mining: Practical
Machine Learning Tools a...
by Ian H. Witten
全文文章 (1) £37.04

+ Show related items

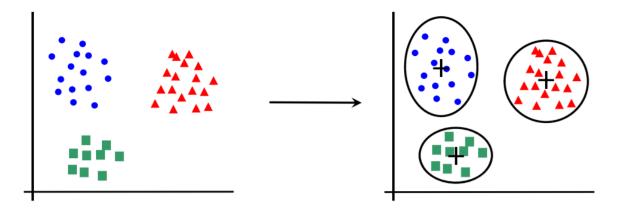
Three canonical learning problems

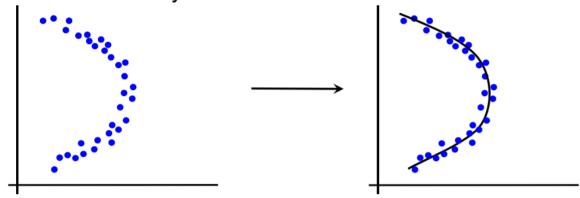

1. Regression - supervised


estimate parameters, e.g. of weight vs height

2. Classification - supervised

estimate class, e.g. handwritten digit classification




Three canonical learning problems

3. <u>Unsupervised learning</u> – model the data

clustering

dimensionality reduction

Can I eat this mushroom?

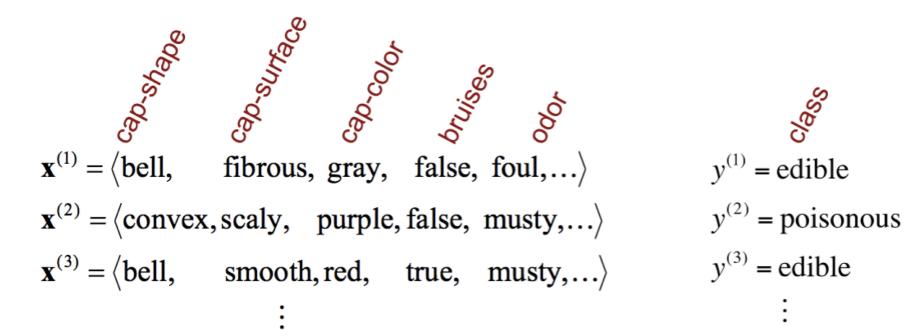
I don't know what type it is — I've never seen it before. Is it edible or poisonous?

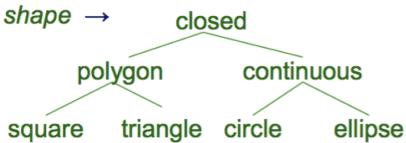
Can I eat this mushroom?

suppose we're given examples of edible and poisonous mushrooms (we'll refer to these as *training examples* or *training instances*)

edible

poisonous



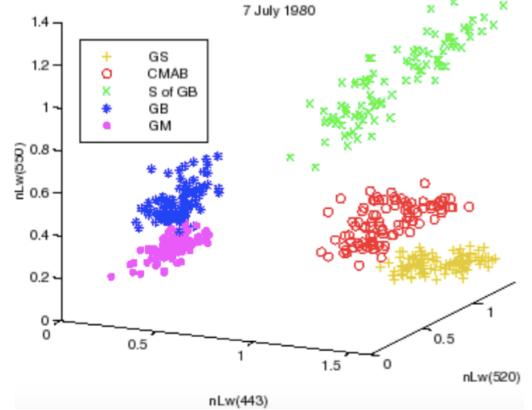

Representing instances using feature vectors

- we need some way to represent each instance
- one common way to do this: use a fixed-length vector to represent features (a.k.a. attributes) of each instance
- also represent *class label* of each instance

Standard feature types

- nominal (including Boolean)
 - no ordering among possible values
 - e.g. color ∈ {red, blue, green} (vs. color = 1000 Hertz)
- ordinal
 - possible values of the feature are totally ordered e.g. size ∈ {small, medium, large}
- numeric (continuous)
 - *E.g.,* weight ∈ [0...500]
- hierarchical
 - possible values are partially ordered in a hierarchy

Feature hierarchy example


• Lawrence et al., Data Mining and Knowledge Discovery 5(1-2), 2001

Product Pet Foods Tea Structure of one feature 2,302 Product Dried Canned Cat Food Subclasses Cat Food **Friskies** ~30K Liver, 250g **Products**

Feature space

 we can think of each instance as representing a point in a ddimensional feature space where d is the number of features

example: optical properties of oceans in three spectral bands [Traykovski and Sosik, Ocean Optics XIV Conference Proceedings, 1998]

How about a 3-dimensional space for height, weight, and body fat percentage?

Another view of the feature-vector representation: a single database table

	feature 1	feature 2	 feature d	class
instance 1	0.0	small	red	true
instance 2	9.3	medium	red	false
instance 3	8.2	small	blue	false
instance n	5.7	medium	green	true

The supervised learning task

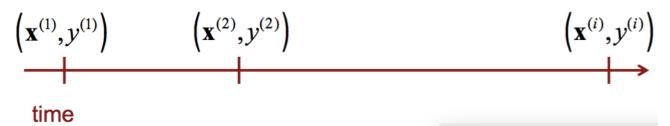
- problem setting
 - set of possible instances: X
 - unknown *target function:* $f: X \rightarrow Y$
 - set of models (a.k.a. hypotheses): $H = \{h \mid h : X \rightarrow Y\}$
- given training set of instances of unknown target function f $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$
- Output
 - ullet model $h \in H$ that best approximates target function

The supervised learning task

• when y is discrete, we term this a *classification* task (or *concept learning*)

• when y is continuous, it is a regression task

• there are also tasks in which each y is more structured object like a *sequence* of discrete labels (as in e.g. image segmentation, machine translation)


Batch vs. online learning

• In batch learning, the learner is given the training set as a batch (i.e. all at once)

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$$

 In online learning, the learner receives instances sequentially, and updates the model after each (for some tasks it might have to classify/make a prediction for each x(i) before seeing y(i))

