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Up to now,

* Overview of Machine Learning
* Traditional Machine Learning Algorithms

* Deep learning
* Introduction to Tensorflow
* Introduction to Deep Learning
* Functional view and features



Topics

* Forward and backward computation
* Back-propogation and chain rule
* Regularization



Forward computations

* Collect annotated data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “forward propagation”

e Evaluate predictions

Model Score/Prediction/Output Objective/Loss/Cost/Energy
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* Collect annotated data
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Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions

Model Score/Prediction/Output Objective/Loss/Cost/Energy
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Backward computations

 Collect gradient data
* Define model and initialize randomly Update weight

* Predict based on current model
* In neural network jargon “backpropagation”

e Evaluate predictions
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Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

e Evaluate predictions
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Recall: Training Objective

Given training corpus {X, Y} find optimal parameters

Find an optimal model Ground truth

parameterised over
/ Prediction

0™ « arg ming Z {(y,a; (Ii 01,..L ))

(x y)S(X,Y) \

accumulated loss Loss function



Recall: Minimizing with multiple dimensional
Inputs
* We often minimize functions with multiple-dimensional inputs

f:R" — R

* For minimization to make sense there must still be only one (scalar)
output



Functions with multiple inputs

e Partial derivatives Note: In the training objective case, f is the loss,

and the parameter x is \theta
3mi

measures how f changes as only variable x; increases at point x

* Gradient generalizes notion of derivative where derivative is wrt a
vector

* Gradient is vector containing all of the partial derivatives denoted

V.f(z) = (aif(m% iﬂf(m))



Optimization through Gradient Descent

* As with many model, we optimize our neural network with Gradient

Descent U
gt+1) — g(&) _ ,,

* The most important component in this formulation is the gradient

* Backpropagation to the rescue
* The backward computations of network return the gradients
 How to make the backward computations

J(0,.9,) ‘
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Chain rule

* Assume a nested function, z = f(y) and y= g(x)

* Chain Rule for scalars x, y, z @
dz _ dz dy
dx ay dx

* When x€ R™,ye R" z€R @ @

dz _ ) dz dy;
dx; Jd}’j dx;

* i.e., gradients from all possible paths @ @ @
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Chain rule

* Assume a nested function, z = f(y) and y= g(x)

* ChainRule forscalarsx,y,z: Z=%%
dx dy dx
* When x€ R™,ye R",z€R @

dz -
ax ~ 2 ay; dx,

dyj- dx;
* i.e., gradients from all possible paths @ @

* Or in vector notation -
dz (dy) dz

i \dx) d 1) 2) 3)
d
+ =2 is the Jacobian @ @ @

dx




The Jacobian

* When x€ R3, y€ R?

d
J(y(x)) = % =

dy @)

dx )
ay(ZJ

dx (1)




Chain rule in practice

* f(y) =sin(y) ,y=g(x) =0.5x?

df _ d|[sin(y)] d[0.5x?]

dx  dg dx
= cos(0.5x%) - x



Backpropagation




General Workflow

Step 1- .
Random initialization Desired loss
l Inputs outputs function
Step 7 actual Loss (error)
ep /- outputs
lterate until > Step 2- . D Step3- L metric
convergence Feed Forward Calculate loss function at this step
‘stack
‘ ’ Stack of calculation graph
(automatically created)
gradients unstack gradient
for all for
| layer the last \ J
Step6 eSS T e
Update the weights | '
P 9 Backpropagate derivative of error

Update Optimizer function (delta
frequency rule / adadelta...)




Regularization as Constraints



Recall: what is regularization?

* In general: any method to prevent overfitting or help the optimization

 Specifically: additional terms in the training optimization objective to
prevent overfitting or help the optimization



Recall: Overfitting

* Key: empirical loss and expected loss are different

* Smaller the data set, larger the difference between the two

 Larger the hypothesis class, easier to find a hypothesis that fits the
difference between the two

* Thus has small training error but large test error (overfitting)

 Larger data set helps
 Throwing away useless hypotheses also helps (regularization)



Regularization as hard constraint
* Training objective .
~ 1
min L(f) = ;Zl(f. X, )

subjectto: feXH

* When parametrized
1 n
mén E(H) — EZ I(Q:xi:}’i)
i=1

subjectto: 8 € (2



Regularization as hard constraint

* When () measured by some quantity R

mln L(O) = Z [(6,x;,y;)

subjectto: R(@) <
* Example: [, regularization

n
o 1
min L(6) = ;Z 16, x;, v;)
I=1

subject to: ||0]]|5 < r?



Regularization as soft constraint

* The hard-constraint optimization is equivalent to soft-constraint

n
) 1
min Ly (6) = ;Z 1(6,x;,7:) + A"R(6)
1=1

for some regularization parameter A* >0
* Example: [, regularization

T

R 1

min Lz(6) = > 1(6,%, ) + X'116]
1=1



Regularization as soft constraint

* Showed by Lagrangian multiplier method
L£(6,1) =L(6) + A[R(O) — ]

e Suppose 0* is the optimal for hard-constraint optimization

6* = argmin 131&3{13(9,3.) = L(0) + A[R(O) — 1]
[a =

e Suppose A* is the corresponding optimal for max

9* = argglin £(6,1*) ==L(O) + A*[R(B) — 1]



