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Up to now,

* Overview of Machine Learning
* Traditional Machine Learning Algorithms
* Deep learning



Topics

* Positioning of Probabilistic Inference
* Recap: Naive Bayes

* Example Bayes Networks

* Example Probability Query

 What is Graphical Model
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What are Graphical Models?
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Fundamental Questions

* Representation
* How to capture/model uncertainties in possible worlds?
* How to encode our domain knowledge/assumptions/constraints?

* Inference
* How do | answers questions/queries according to my model and/or based on
given data?
e.g.:. P(X.|D)
* Learning

* Which model is “right” for the data: €.2.: M = argmax F(D;M)

/ MeM

?
MAP and MLE ——



Recap: Nailve Bayes



Parameters for Joint Distribution

* Each X; represents outcome of tossing coin i Recall: assumption

* Assume coin tosses are marginally independent for naive Bayes
*ie, X;1 X, therefore

P(Xq, Xo, ... Xn) = P(X;)P(Xo)...P(Xp)

* If we use standard parameterization of the joint distribution, the
independence structure is obscured and required 2" parameters

e However we can use a more natural set of parameters: n parameters
81,....0,



Recap of Basic Prob. Concepts

* What is the joint probability distribution on multiple variables?
P(Xl=X2=X3=X4=X5=X55X?=Xs)

* How many state configuration in total?
* Are they all needed to be represented?
* Do we get any scientific insight? Recall: naive Bayes



Conditional Parameterization

* Example: Company is trying to hire recent graduates
e Goal is to hire intelligent employees

* No way to test intelligence directly --m

 But have access to Student’s score

* Which is informative but not fully indicative 0.665
. i0 1
* Two random variables | S 0.035
* Intelligence: Val(I) = {i',i°}, high and low it s° 0.06
* Score: Val(S) = {s',5°}, high and low il sl 0.24
* Joint distribution has 4 entries Joint distribution

* Need three parameters



Alternative Representation:
Conditional Parameterization

* Representation more compatible with causality

_F‘(Ij S) — P(I)P(S‘I) * |Intelligence influenced by Genetics, upbringing

* Score influenced by Intelligence

* Note: BNs are not required to follow causality but they often do
* Need to specify P(I) and P(S|I)

Intelligence
. Cstgece
0.7 0.3

|0 0.95 0.05
it 0.2 0.8

* Three binomial distributions (3 parameters) needed @
* One marginal, two conditionals P(S|I =i% , P(S|I = i)




Naive Bayes Model

e Val(G) = {91,92,93} represents grades A, B, C

it
0.7 0.3
P(GI|I) P(S|I)
_-ﬂﬂ INENE
i0 0.34 0.46 10 0.95 0.05

it 0.74 0.17 0.09 it 0.2 0.8



Conditional Parameterization and Conditional
Independences

* Conditional Parameterization is combined with Conditional
Independence assumptions to produce very compact representations
of high dimensional probability distributions



Recall: Naive Bayes Model

e Score and Grade are independent given Intelligence (assumption)
* Knowing Intelligence, Score gives no information about class grade

* Assertions
* From probabilistic reasoning P(1, S, G) = P(\P(S,G| I)
* From assumption P = (SLG| /)

Three binomials,
* Combining, we have

two 3-value multinomials:

B 7/ params
P(S,GI1)=P(SINP(GI]) More compact than joint distribution
P(1,S,G) = P(NP(S|1NP(GI])

Therefore, P(i',s',g%) = P(i")P(s' | i"YP(g° | i")
=0.3%0.8+0.17 = 0.0408



Example Bayes Networks



BN for General Naive Bayes Model

P(C.X,,.X )= P(C)ﬁ P(X.|C)

Encoded using a very small number of parameters
Linear in the number of variables



Application of Naive Bayes Model

* Medical Diagnosis

— Pathfinder expert system for lymph node disease (Heckerman et.al.,
1992)

 Full BN agreed with human expert 50/53 cases
* Naive Bayes agreed 47/53 cases



Student Bayesian Network

Difficulty Intelligence

Grade Score

letter



Student Bayesian Network
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Student Bayesian Network

* If Xs are conditionally independent (as described by a PGM), the joint
distribution can be factored into a product of simpler terms, e.g.,

< o~ P(X1, Xo, Xa, Xa, X5) =
o o e PX)P(X2)P(Xa | X1, X2)P(Xa | X2)P(Xs5 | X3)
l
Xs letter

* What's the benefit of using a PGM:

* Incorporation of domain knowledge and causal (logical) structures
* 1+1+4+2+2=8, a reduction from 2°



Student Bayesian Network

Represents joint probability

distribution over multiple

variables
* BNs represent them in
terms of graphs and E;T |
conditional probability L 05 [o0s | 002| ~o K
distributions (CPDs) 7|05 |03 |02 Q f e
e Resulting in great savings in P
no of parameters needed Z TR
231099 | 0.01




Joint distribution from Student BN

pa: parent nodes o
/ 04" | 03
0.dt 005|025 07
- CPDs: P(X; | pa(X;)) Tl
* Joint Distribution: .
P(X) = P(X1, Xo, ..., Xp) AEam

P(X) = I1i_y P(Xi | pa(Xi))
P(D,I,G,S,L) = P(D)P(hP(G| D,NP(S| HP(L| G)



Example Probability Query



Example of Probability Query

- - - - - Q- ..6
NN N
B | S| S [ *

rall R0

0.01

PY =y l|E=¢e)=

Posterior Marginal

P(Y=y1.,E=e)

;(E =e)
Probability of Evidence

Posterior Marginal Estimation: P(/=i"|L=F,8=s") =?

Probability of Evidence: P(L = P,8=s")=?

Here we are asking for a specific probability rather than a full distribution



Computing the Probability of Evidence

* Probability Distribution of Evidence
P(L,S)= 2 P(D,I1,G,L,S) Sum Rule of Probability

D,1,G

— Z P(D)P(I)P(G | D,1)P(L1G)P(S 1) From the Graphical Model

D,IG

* Probability of Evidence

P(L=1",s=5s")= Z P(D)P(HP(GID,HP(L=1"1G)P(S=5s"11I)

D.I,G

* More Generally P(E=¢)= ) []P(X, ! pa(X))l,.,

X\E i=1



Rational Statistical Inference

The Bayes Theorem:

Posterior Likelihood Prior
probability l robability
p(h|d)= p(d | h)p(h) o
> p(d | 1) p(h')
h'eH

b

Sum over space
of hypotheses



What is a Graphical Model?



So What is a Graphical Model?

* |n a nutshell,

GM = Multivariate Statistics + Structure



What is a Graphical Model?

 The informal blurb:

* |t is a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with structured semantics

X, Difficulty Intelligence X,
Difficulty Intelligence <

Grade SAT X5 Grade Score X4

letter
Xs letter

* A more formal description:

* It refers to a family of distributions on a set of random variables that are compatible
with all the probabilistic independence propositions encoded by a graph that
connects these variables



Two types of GMs

* Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

* Undirected edges simply give correlations between variables (Markov
Random Field or Undirected Graphical model):



Example: Alarm Network



Example: Alarm Network
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Example: Alarm Network

B | P(B) E P(E) .
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0.001 x 0.998 x 0.94 x 0.1 x 0.7



