Probabilistic Graphical Models

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

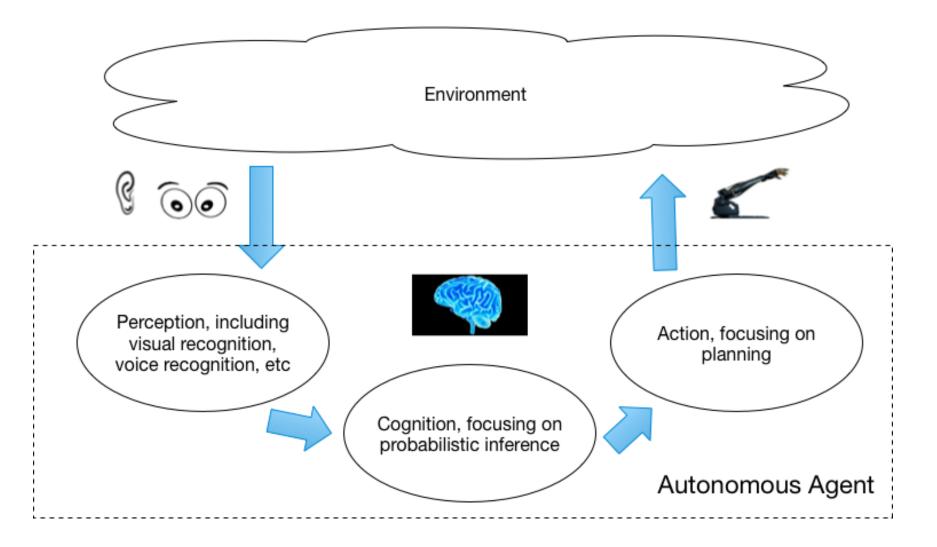
Up to now,

- Overview of Machine Learning
- Traditional Machine Learning Algorithms
- Deep learning

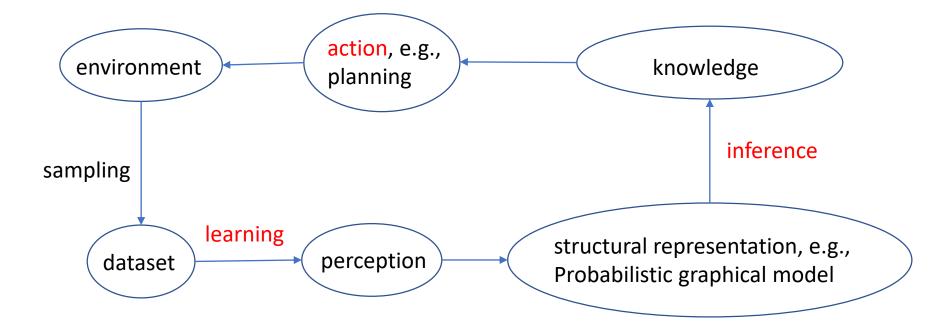
Topics

- Positioning of Probabilistic Inference
- Recap: Naïve Bayes
- Example Bayes Networks
- Example Probability Query
- What is Graphical Model

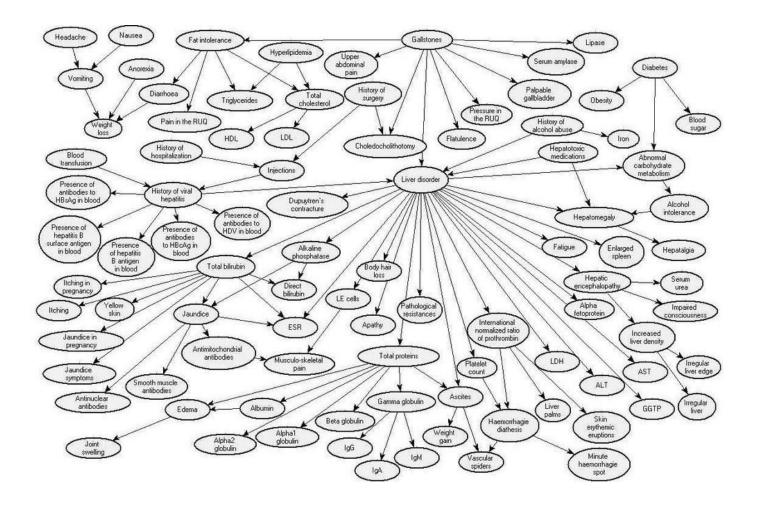
Perception-Cognition-Action Loop



What's left?



What are Graphical Models?



Model

Data:

$$\mathcal{D} \equiv \{X_1^{(i)}, X_2^{(i)}, ..., X_m^{(i)}\}_{i=1}^N$$

Fundamental Questions

- Representation
 - How to capture/model uncertainties in possible worlds?
 - How to encode our domain knowledge/assumptions/constraints?
- Inference
 - How do I answers questions/queries according to my model and/or based on given data?

e.g.: $P(X_i | D)$

- Learning
 - Which model is "right" for the data:

e.g.:
$$\mathcal{M} = \underset{\mathcal{M} \in M}{\operatorname{arg\,max}} F(\mathcal{D}; \mathcal{M})$$

MAP and MLE

Recap: Naïve Bayes

Parameters for Joint Distribution

- Each X_i represents outcome of tossing coin i
 - Assume coin tosses are marginally independent
 - i.e., $X_i ot X_j$ therefore

Recall: assumption for naïve Bayes

 $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2)...P(X_n)$

- If we use standard parameterization of the joint distribution, the independence structure is obscured and required 2ⁿ parameters
- However we can use a more natural set of parameters: n parameters $\theta_1, ..., \theta_n$

Recap of Basic Prob. Concepts

• What is the joint probability distribution on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

- How many state configuration in total?
- Are they all needed to be represented?
- Do we get any scientific insight?

Recall: naïve Bayes

Conditional Parameterization

- Example: Company is trying to hire recent graduates
- Goal is to hire intelligent employees
 - No way to test intelligence directly
 - But have access to Student's score
 - Which is informative but not fully indicative
- Two random variables
 - Intelligence: $Val(I) = \{i^1, i^0\}$, high and low
 - Score: $Val(S) = \{s^1, s^0\}$, high and low
- Joint distribution has 4 entries
 - Need three parameters

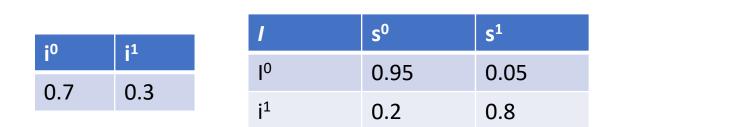
$\mathbf{I}_{i} = \mathbf{I}_{i}$	S	P(I,S)
i ⁰	s ⁰	0.665
i ⁰	S ¹	0.035
i1	s ⁰	0.06
i ¹	S ¹	0.24

Joint distribution

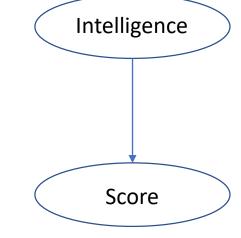
Alternative Representation: Conditional Parameterization

P(I,S) = P(I)P(S|I)

- Representation more compatible with causality
 - Intelligence influenced by Genetics, upbringing
 - Score influenced by Intelligence
- Note: BNs are not required to follow causality but they often do
- Need to specify P(I) and P(S|I)

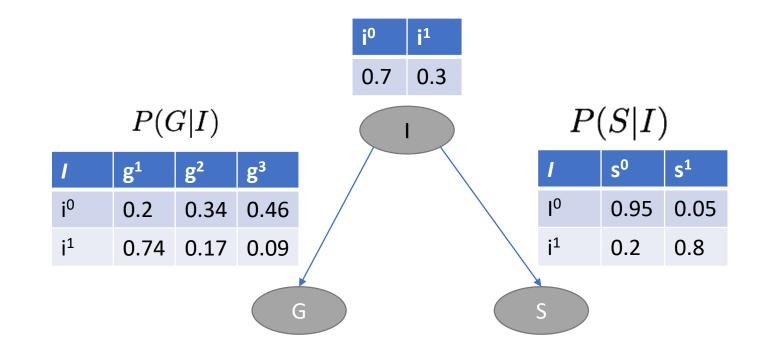


- Three binomial distributions (3 parameters) needed
 - One marginal, two conditionals $P(S|I=i^0)$, $P(S|I=i^1)$



Naïve Bayes Model

• $Val(G) = \{g^1, g^2, g^3\}$ represents grades A, B, C



Conditional Parameterization and Conditional Independences

 Conditional Parameterization is combined with Conditional Independence assumptions to produce very compact representations of high dimensional probability distributions

Recall: Naïve Bayes Model

- Score and Grade are independent given Intelligence (assumption)
 - Knowing Intelligence, Score gives no information about class grade
- Assertions
 - From probabilistic reasoning $P(I, S, G) = P(I)P(S, G \mid I)$
 - From assumption $P \models (S \perp G \mid I)$
- Combining, we have

 $P(S,G \mid I) = P(S \mid I)P(G \mid I)$

 $P(I, S, G) = P(I)P(S \mid I)P(G \mid I)$

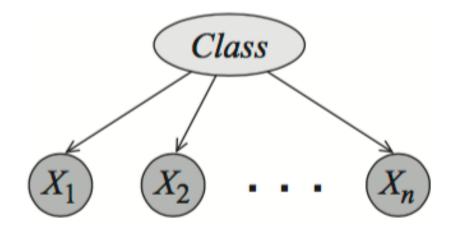
Three binomials,two 3-value multinomials:7 paramsMore compact than joint distribution

Therefore,
$$P(i^1, s^1, g^2) = P(i^1)P(s^1 | i^1)P(g^2 | i^1)$$

= 0.3 * 0.8 * 0.17 = 0.0408

Example Bayes Networks

BN for General Naive Bayes Model

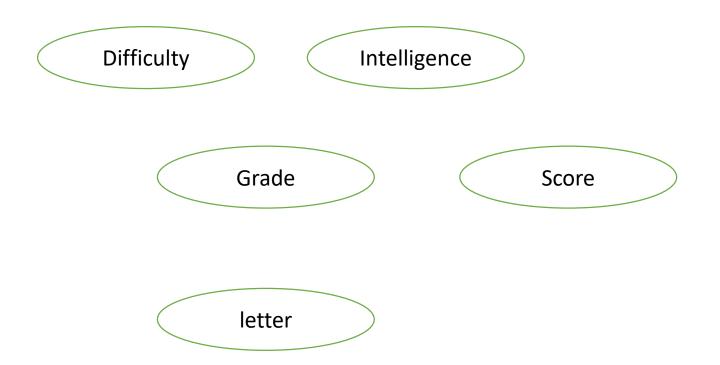


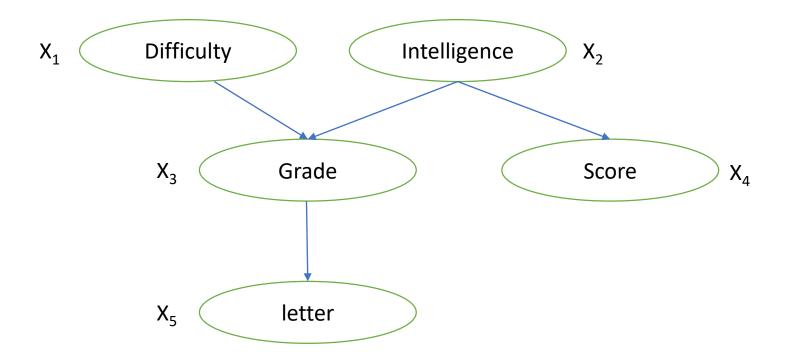
 $P(C, X_1, ..., X_n) = P(C) \prod_{i=1}^{n} P(X_i | C)$ i=1

Encoded using a very small number of parameters Linear in the number of variables

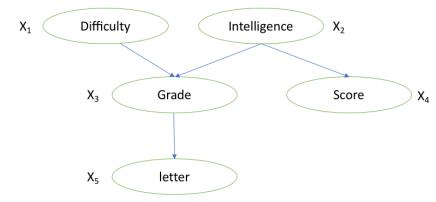
Application of Naive Bayes Model

- Medical Diagnosis
 - Pathfinder expert system for lymph node disease (Heckerman et.al., 1992)
- Full BN agreed with human expert 50/53 cases
- Naive Bayes agreed 47/53 cases





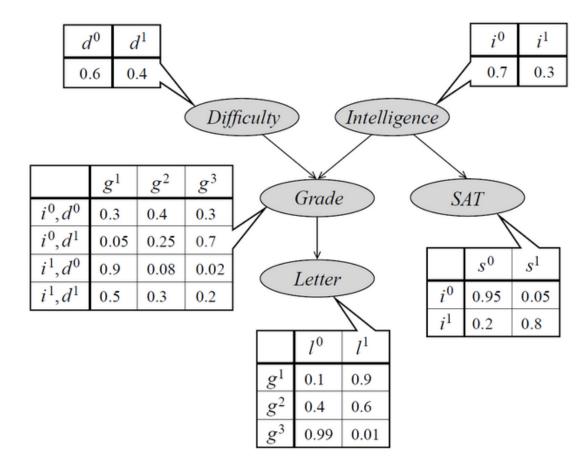
• If Xs are conditionally independent (as described by a PGM), the joint distribution can be factored into a product of simpler terms, e.g.,



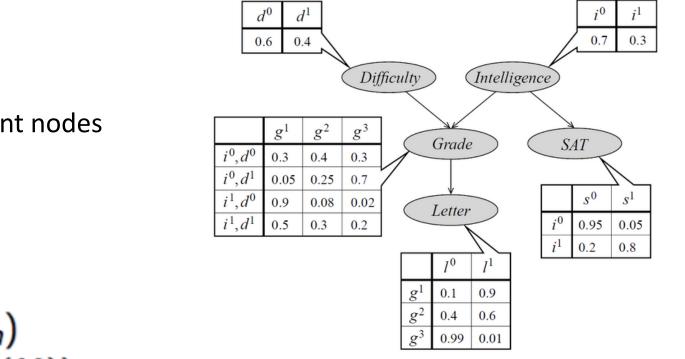
 $\begin{array}{l} P(X_1, X_2, X_3, X_4, X_5) = \\ P(X_1) P(X_2) P(X_3 \mid X_1, X_2) P(X_4 \mid X_2) P(X_5 \mid X_3) \end{array}$

- What's the benefit of using a PGM:
 - Incorporation of domain knowledge and causal (logical) structures
 - 1+1+4+2+2=8, a reduction from 2⁵

- Represents joint probability distribution over multiple variables
- BNs represent them in terms of graphs and conditional probability distributions (CPDs)
- Resulting in great savings in no of parameters needed



Joint distribution from Student BN



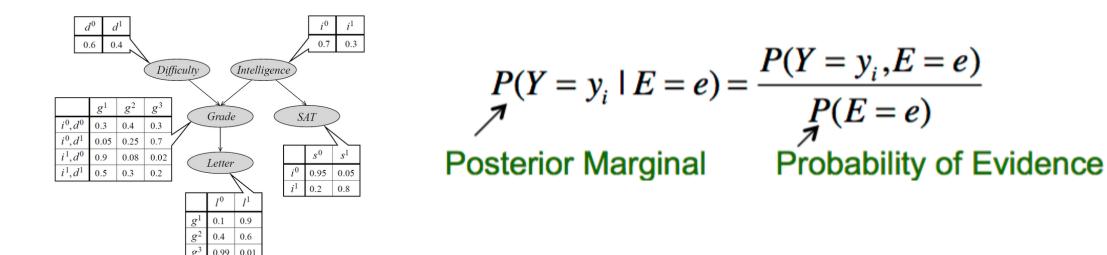
pa: parent nodes

- CPDs: *P*(*X_i* | *pa*(*X_i*))
- Joint Distribution:

 $P(X) = P(X_1, X_2, ..., X_n)$ $P(X) = \prod_{i=1}^{n} P(X_i | pa(X_i))$ P(D, I, G, S, L) = P(D)P(I)P(G | D, I)P(S | I)P(L | G)

Example Probability Query

Example of Probability Query



Posterior Marginal Estimation: $P(I = i^1 | L = I^0, S = s^1) =?$

Probability of Evidence: $P(L = I^0, S = s^1) =?$

• Here we are asking for a specific probability rather than a full distribution

Computing the Probability of Evidence

• Probability Distribution of Evidence

$$P(L,S) = \sum_{D,I,G} P(D,I,G,L,S)$$
 Sum Rule of Probability
$$= \sum_{D,I,G} P(D)P(I)P(G \mid D,I)P(L \mid G)P(S \mid I)$$
 From the Graphical Model

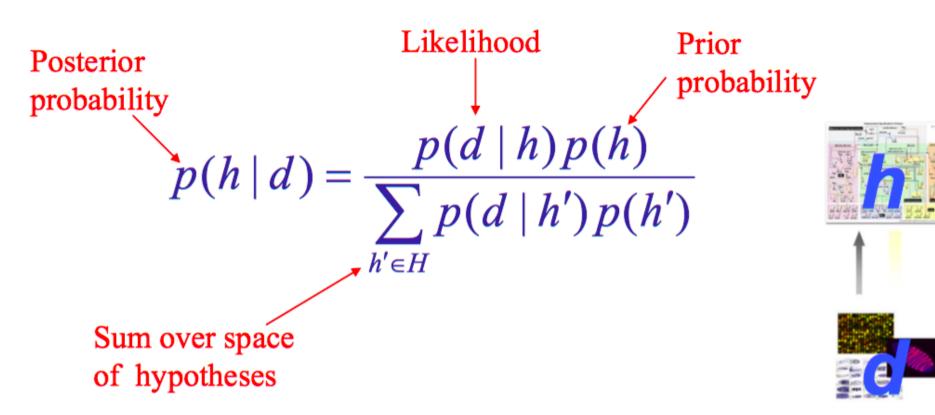
• Probability of Evidence

 $P(L = l^{0}, s = s^{1}) = \sum_{D, I, G} P(D)P(I)P(G \mid D, I)P(L = l^{0} \mid G)P(S = s^{1} \mid I)$

• More Generally $P(E = e) = \sum_{X \setminus E} \prod_{i=1}^{n} P(X_i \mid pa(X_i)) \mid_{E=e}$

Rational Statistical Inference

The Bayes Theorem:



What is a Graphical Model?

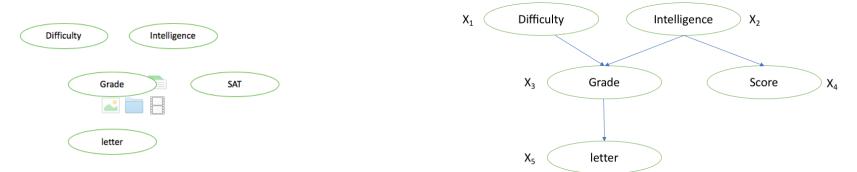
So What is a Graphical Model?

• In a nutshell,

GM = Multivariate Statistics + Structure

What is a Graphical Model?

- The informal blurb:
 - It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with *structured semantics*



- A more formal description:
 - It refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables

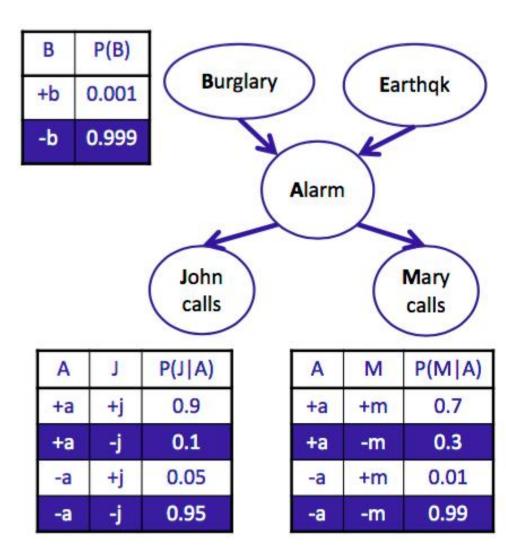
Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

Example: Alarm Network

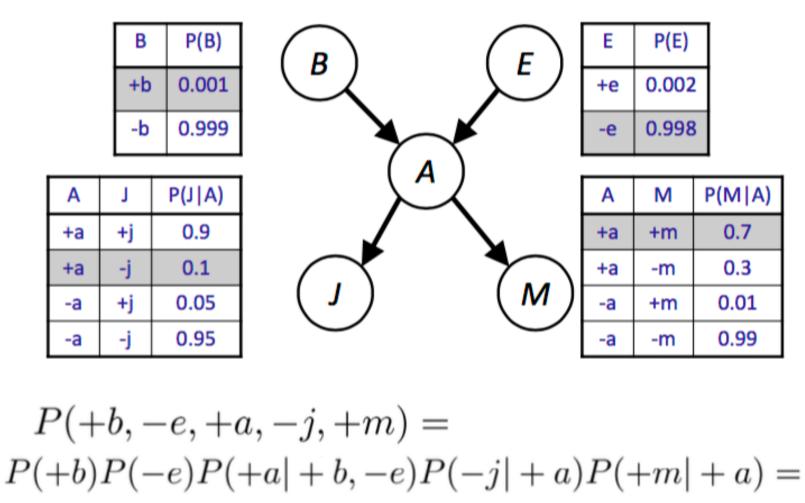
Example: Alarm Network



E	P(E)
+e	0.002
-е	0.998

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network



 $0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999