Decision Tree (Continued) and K-Nearest Neighbour

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

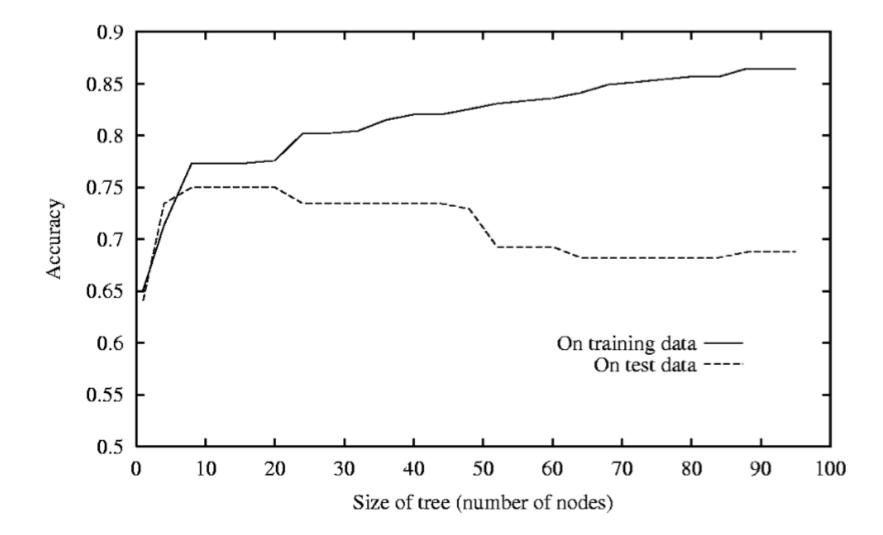
- Recap basic knowledge
- Decision tree learning
 - How to split
 - Identify the best feature to split
 - Accuracy and overfitting

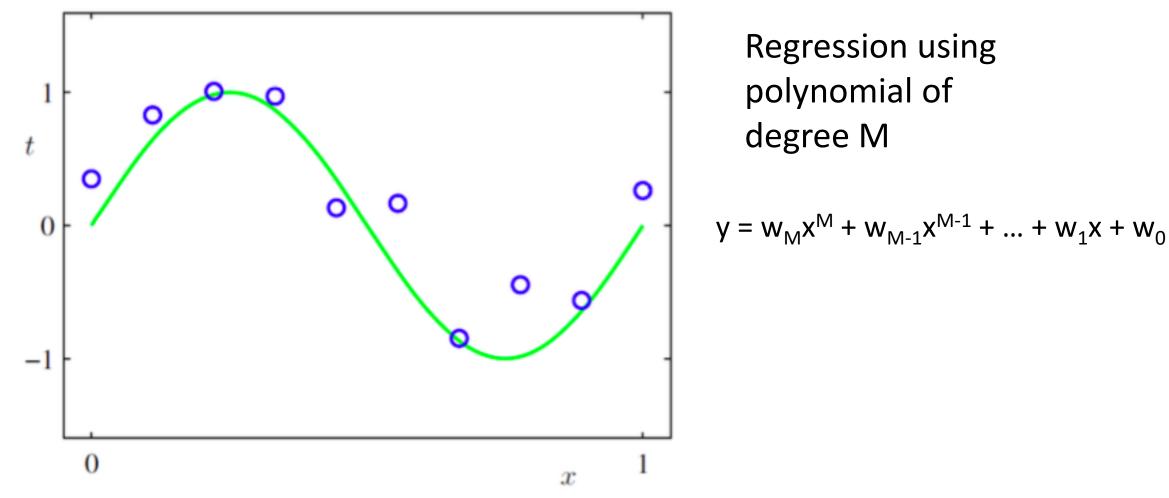
Today's Topics

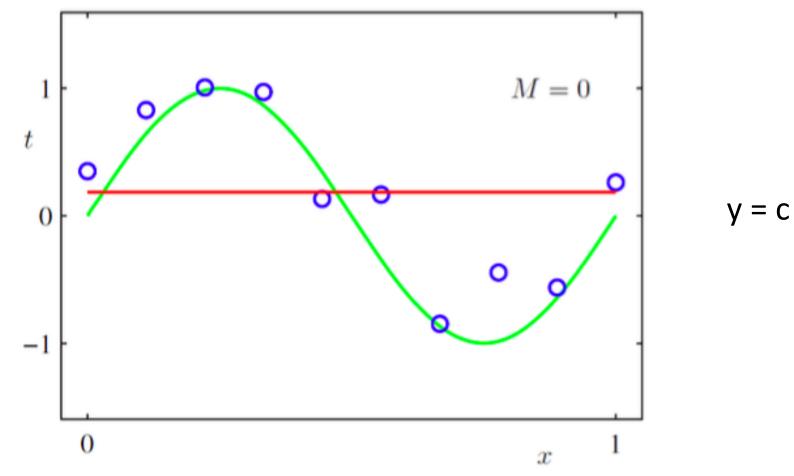
- Decision tree
 - Overfitting (continued) and stopping criteria
- k-NN classification

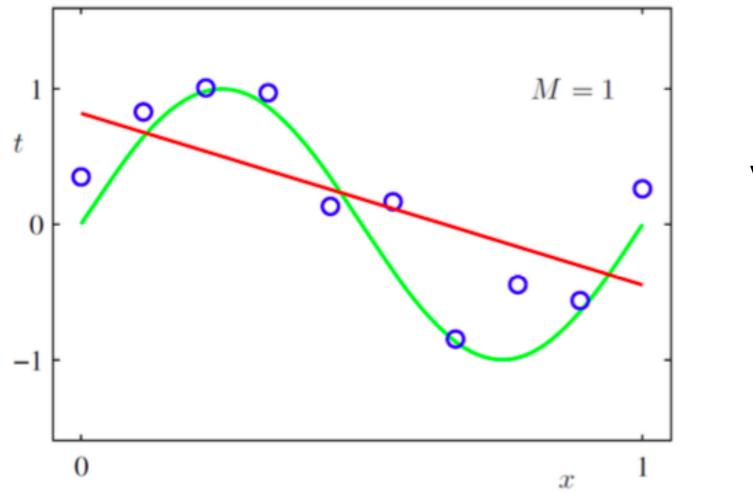
Overfitting (Continued) and Stopping Criteria

Overfitting in decision trees

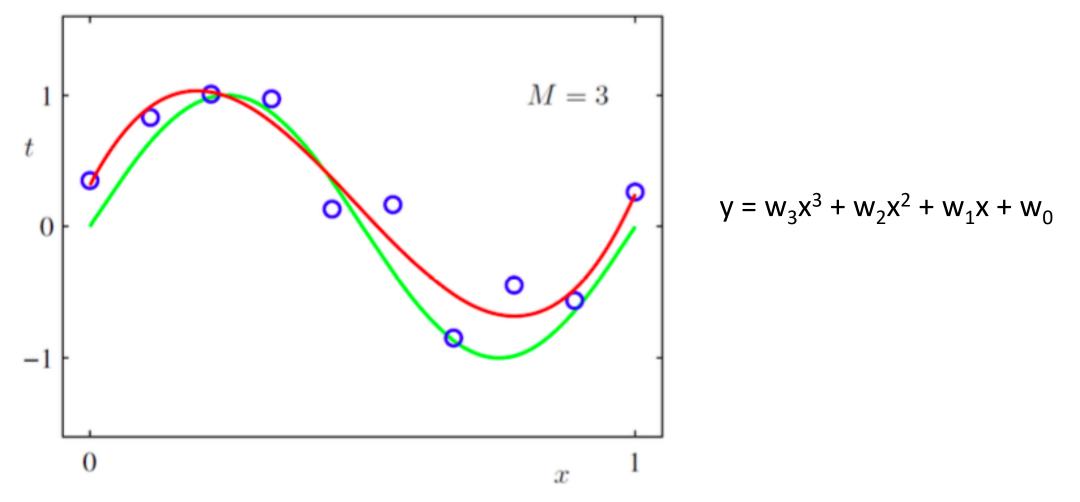




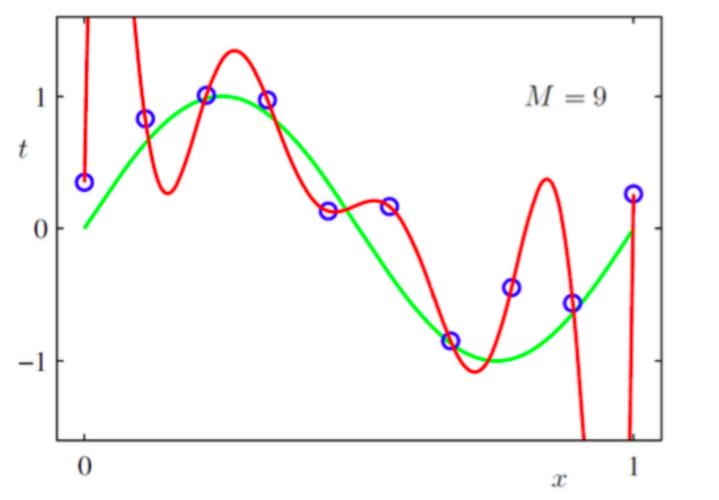




$$y = w_1 x + w_0$$

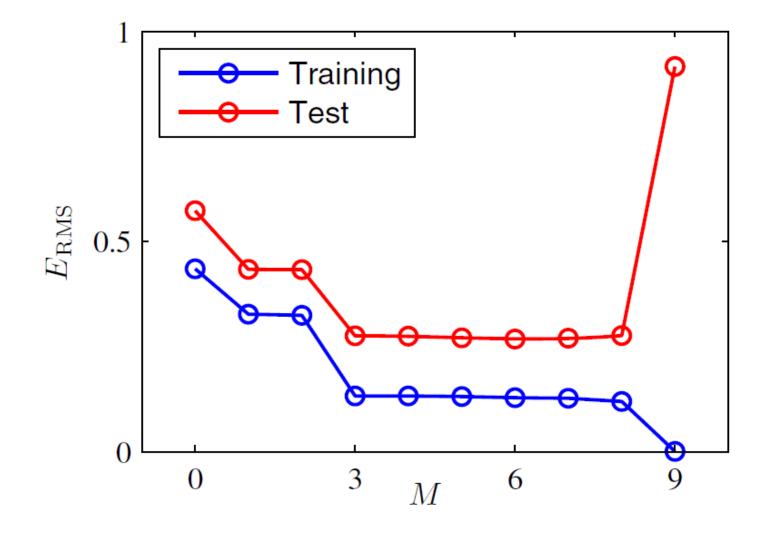


 $t = \sin(2\pi x) + \epsilon$



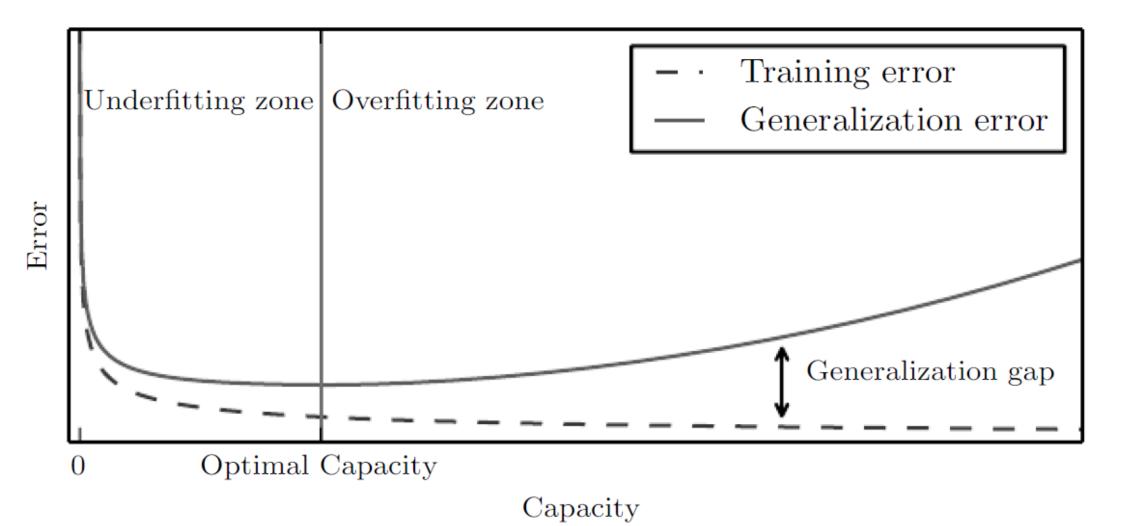
$$y = w_9 x^9 + w_8 x^8 + \dots + w_1 x + w_0$$

Overfits, why?



RMS: root mean square, i.e., the <u>square root</u> of the <u>mean square</u>

General phenomenon



Prevent overfitting

- cause: training error and expected error are different
 - there may be noise in the training data
 - training data is of limited size, resulting in difference from the true distribution
 - larger the hypothesis class, easier to find a hypothesis that fits the difference between the training data and the true distribution
- prevent overfitting:
 - cleaner training data help!
 - more training data help!
 - throwing away unnecessary hypotheses helps! (Occam's Razor)

Avoiding overfitting in DT learning

- two general strategies to avoid overfitting
 - 1. early stopping: stop if further splitting not justified by a statistical test
 - Quinlan's original approach in ID3
 - 2. post-pruning: grow a large tree, then prune back some nodes
 - more robust to myopia of greedy tree learning

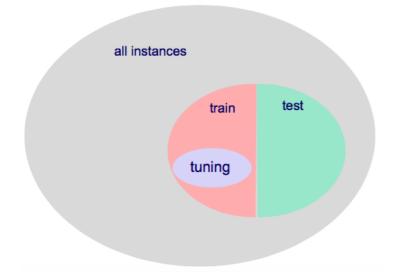
Stopping criteria

Stopping criteria

- We should form a leaf when
 - all of the given subset of instances are of the same class
 - we've exhausted all of the candidate splits
- Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

- split given data into training and *validation* (*tuning*) sets
- a *validation set* (a.k.a. *tuning set*) is a subset of the training set that is held aside
 - not used for primary training process (e.g. tree growing)
 - but used to select among models (e.g. trees pruned to varying degrees)



Pruning in C4.5

- split given data into training and *validation* (*tuning*) sets
- Grow a complete tree
- do until further pruning is harmful
 - evaluate impact on tuning-set accuracy of pruning each node
 - greedily remove the one that most improves tuning-set accuracy

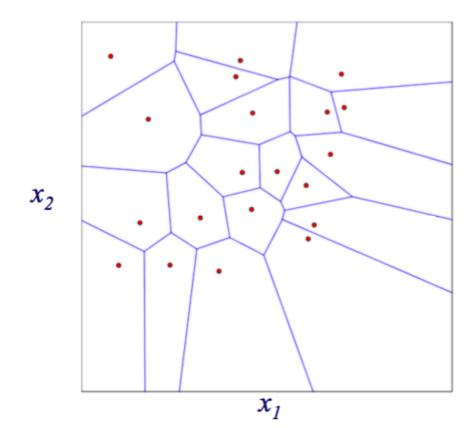
Nearest-neighbor classification

Nearest-neighbor classification

- learning stage
 - given a training set $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$, do nothing
 - (it's sometimes called a *lazy learner*)
- classification stage
 - **given**: an instance x^(q) to classify
 - find the training-set instance x⁽ⁱ⁾ that is most similar to x^(q)
 - return the class value y⁽ⁱ⁾

The decision regions for nearest-neighbor classification

• Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance



k-nearest-neighbor classification

- classification task
 - **given**: an instance x^(q) to classify
 - find the k training-set instances (x⁽¹⁾, y⁽¹⁾)... (x^(k), y^(k)) that are the most similar to x^(q)
 - return the class value

$$\hat{y} \leftarrow \underset{v \in \text{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)}) \qquad \qquad \delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$

• (i.e. return the class that have the most instances)

- suppose all features are discrete
 - Hamming distance (or L⁰ norm): count the number of features for which two instances differ
- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - D : in the table
 - New instance: <Friday, No, Rain>
 - Distances = {2, 3, 1, 2}
 - For 1-nn, which instances should be selected?
 - For 2-nn, which instances should be selected?
 - For 3-nn, which instances should be selected?

v1	v2	v3	У
Wed	Yes	Rain	No
Wed	Yes	Sunny	Yes
Thu	No	Rain	Yes
Fri	Yes	Sunny	No

Rain

No

Fri

- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - New instance: <Friday, No, Rain>
 - For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), (<Fri, Yes, Sunny>, No)}
- Classification: $\hat{y} \leftarrow \underset{v \in values(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)})$

•
$$v = Yes.$$
 $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 0 + 1 + 0 = 1$
• $v = No.$ $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 1 + 0 + 1 = 0$

So, which class this new instance should be in?

- suppose all features are continuous
 - Euclidean distance:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt{\sum_{f} \left(x_{f}^{(i)} - x_{f}^{(j)} \right)^{2}}$$

• Manhattan distance:

 $d(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) = \sum_{f} \left| x_{f}^{(i)} - x_{f}^{(j)} \right|$

Recall the difference and similarity with L^p norm

feature of $x^{(i)}$

where $x_f^{(i)}$ represents the f -th

- Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?
 - D: in the table
 - New instance: <185, 91, 13.0>
 - Suppose that Euclidean distance is used.
 - Is this person a soccer player?

v1	v2	v3	У
182	87	11.3	No
189	92	12.3	Yes
178	79	10.6	Yes
183	90	12.7	No

185

91

13.0

• if we have a mix of discrete/continuous features:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{f} \begin{cases} \left| x_f^{(i)} - x_f^{(j)} \right| & \text{if } f \text{ is continuous} \\ 1 - \delta(x_f^{(i)}, x_f^{(i)}) & \text{if } f \text{ is discrete} \end{cases}$$

- typically want to apply to continuous features some type of normalization (values range 0 to 1) or standardization (values distributed according to standard normal)
- many other possible distance functions we could use ...

Standardizing numeric features

• given the training set D, determine the mean and stddev for feature x_i

$$\mu_{i} = \frac{1}{|D|} \sum_{d=1}^{|D|} x_{i}^{(d)} \qquad \sigma_{i} = \sqrt{\frac{1}{|D|} \sum_{d=1}^{|D|} (x_{i}^{(d)} - \mu_{i})^{2}}$$

• standardize each value of feature x_i as follows

$$\hat{x}_i^{(d)} = \frac{x_i^{(d)} - \mu_i}{\sigma_i}$$

- do the same for test instances, using the same μ and σ derived from the training data