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Up to now, 

• Recap basic knowledge

• Decision tree learning
• How to split

• Identify the best feature to split

• Accuracy and overfitting



Today’s Topics

• Decision tree 
• Overfitting (continued) and stopping criteria

• k-NN classification



Overfitting (Continued) and 

Stopping Criteria



Overfitting in decision trees 



Example 3: regression using polynomial 

Regression using 
polynomial of 
degree M

y = wMxM + wM-1xM-1 + … + w1x + w0



Example 3: regression using polynomial 

y = c 



Example 3: regression using polynomial 

y = w1x + w0



Example 3: regression using polynomial 

y = w3x3 + w2x2 + w1x + w0



Example 3: regression using polynomial 

y = w9x9 + w8x8 + … + w1x + w0

Overfits, why?



Example 3: regression using polynomial 

RMS: root mean square, 
i.e., the square root of 
the mean square

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square


General phenomenon 



Prevent overfitting 

• cause: training error and expected error are different 
• there may be noise in the training data 

• training data is of limited size, resulting in difference from the true 
distribution 

• larger the hypothesis class, easier to find a hypothesis that fits the difference 
between the training data and the true distribution 

• prevent overfitting: 
• cleaner training data help! 

• more training data help! 

• throwing away unnecessary hypotheses helps! (Occam’s Razor) 



Avoiding overfitting in DT learning 

• two general strategies to avoid overfitting 
• 1. early stopping: stop if further splitting not justified by a statistical test 

• Quinlan’s original approach in ID3 

• 2. post-pruning: grow a large tree, then prune back some nodes 
• more robust to myopia of greedy tree learning 



Stopping criteria 



Stopping criteria 

• We should form a leaf when 
• all of the given subset of instances are of the same class 

• we’ve exhausted all of the candidate splits 

• Is there a reason to stop earlier, or to prune back the tree? 



Pruning in C4.5 

• split given data into training and validation (tuning) sets 

• a validation set (a.k.a. tuning set) is a subset of the training set that is 
held aside 
• not used for primary training process (e.g. tree growing) 

• but used to select among models (e.g. trees pruned to varying degrees) 



Pruning in C4.5 

• split given data into training and validation (tuning) sets 

• Grow a complete tree

• do until further pruning is harmful 
• evaluate impact on tuning-set accuracy of pruning each node 

• greedily remove the one that most improves tuning-set accuracy 



Nearest-neighbor classification 



Nearest-neighbor classification 

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing 
• (it’s sometimes called a lazy learner) 

• classification stage
• given: an instance x(q) to classify

• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i) 



The decision regions for nearest-neighbor
classification 
• Voronoi diagram: each polyhedron indicates the region of feature 

space that is in the nearest neighborhood of each training instance 



k-nearest-neighbor classification 

• classification task
• given: an instance x(q) to classify 

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar 
to x(q)

• return the class value 

• (i.e. return the class that have the most instances) 



How can we determine similarity/distance 

• suppose all features are discrete 
• Hamming distance (or L0 norm): count the number of features for which two 

instances differ 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• D : in the table
• New instance: <Friday, No, Rain>
• Distances = {2, 3, 1, 2} 
• For 1-nn, which instances should be selected? 
• For 2-nn, which instances should be selected? 
• For 3-nn, which instances should be selected? 

v1 v2 v3 y

Wed Yes Rain No

Wed Yes Sunny Yes

Thu No Rain Yes

Fri Yes Sunny No

Fri No RainNew datum



How can we determine similarity/distance 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• New instance: <Friday, No, Rain>
• For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), 

(<Fri, Yes, Sunny>, No)}

• Classification:

• v = Yes.

• v = No. 

So, which class 
this new instance 
should be in? 



How can we determine similarity/distance 

• suppose all features are continuous
• Euclidean distance: 

• Manhattan distance: 

where xf
(i) represents the f -th

feature of x(i)

Recall the difference and 
similarity with Lp norm



How can we determine similarity/distance 

• Example: X = (Height, Weight, RunningSpeed)  Y = SoccerPlayer? 
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used. 

• Is this person a soccer player? 

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum



How can we determine similarity/distance 

• if we have a mix of discrete/continuous features: 

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal) 

• many other possible distance functions we could use ... 



Standardizing numeric features 

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows 

• do the same for test instances, using the same 𝜇 and 𝜎 derived from 
the training data 


