Decision Tree (Continued)
and K-Nearest Neighbour

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

* Recap basic knowledge

* Decision tree learning
* How to split
* |dentify the best feature to split
e Accuracy and overfitting

Today’s Topics

* Decision tree
» Overfitting (continued) and stopping criteria

 k-NN classification

Overfitting (Continued) and
Stopping Criteria

Overfitting in decision trees

Accuracy

09

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

——

—————————————

On training data —
On test data -—--

10

20

30 40 50 60 70 80 90

Size of tree (number of nodes)

100

Example 3: regression using polynomial

Regression using
|} 0—0 : polynomial of
f degree M

O 1 y=wyxM+wy, xM+ L+ wx+w,

0 : |

Example 3: regression using polynomial

| F M =1 -
o
f
O o)

o
of 7/ v 4 y=c

0 _ I

Example 3: regression using polynomial

OF

0 , I

Y = WX+ W,

Example 3: regression using polynomial

OF

0 \ I

— W.ox3 2
Y = WX + WX~ + WX + W,

Example 3: regression using polynomial

= w.x? g
) Y = WX + WeX3 + .. + WX + W,

Overfits, why?

0 . l

Example 3: regression using polynomial

1
©— Training
©— Test
RMS: root mean square,
i.e., the square root of
0N the mean square
= 057
=]
0 O

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square

General phenomenon

Error

Underfitting zone| Overfitting zone

Training error

(Generalization error

——
e .

Optimal Capacity
Capacity

Prevent overfitting

e cause: training error and expected error are different
* there may be noise in the training data

* training data is of limited size, resulting in difference from the true
distribution

* larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

* prevent overfitting:
* cleaner training data help!
* more training data help!

* throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

* two general strategies to avoid overfitting
» 1. early stopping: stop if further splitting not justified by a statistical test
* Quinlan’s original approach in ID3

» 2. post-pruning: grow a large tree, then prune back some nodes
* more robust to myopia of greedy tree learning

Stopping criteria

Stopping criteria

* We should form a leaf when
* all of the given subset of instances are of the same class
* we've exhausted all of the candidate splits

* Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

* split given data into training and validation (tuning) sets

* a validation set (a.k.a. tuning set) is a subset of the training set that is
held aside

* not used for primary training process (e.g. tree growing)
* but used to select among models (e.g. trees pruned to varying degrees)

all instances

train test

tuning

Pruning in C4.5

* split given data into training and validation (tuning) sets
* Grow a complete tree

* do until further pruning is harmful
e evaluate impact on tuning-set accuracy of pruning each node
* greedily remove the one that most improves tuning-set accuracy

Nearest-neighbor classification

Nearest-neighbor classification

* learning stage
e given a training set (x(!), y1)) ... (x\™), yim), do nothing
* (it’'s sometimes called a lazy learner)

e classification stage
* given: an instance x(¥ to classify
* find the training-set instance x!! that is most similar to x(@
* return the class value y()

The decision regions for nearest-neighbor
classification

* Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

e classification task
e given: an instance x@ to classify

* find the k training-set instances (x'1), yt1)... (x%%), yk)) that are the most similar
to X(Q)

* return the class value

k

y < argmax Y 5(v,»") S(a,b) = {

vevalues(Y) ;=]

1 ifa=»5b

0 otherwise

* (i.e. return the class that have the most instances)

How can we determine similarity/distance

* suppose all features are discrete

 Hamming distance (or LY norm): count the number of features for which two

instances differ

* Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?

* D:inthe table

* New instance: <Friday, No, Rain>

Distances ={2, 3, 1, 2}

For 1-nn, which instances should be selected?
For 2-nn, which instances should be selected?
For 3-nn, which instances should be selected?

New datum

Vi v vy
Wed Yes

Rain No
Wed Yes Sunny Yes
Thu No Rain Yes
Fri Yes Sunny No

How can we determine similarity/distance

* Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
* New instance: <Friday, No, Rain>

* For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes),
(<Fri, Yes, Sunny>, No)}

e Classification: k |
y < argmax Y 5(v,»")
vevalues(Y) ;o1
k
Y 6w,y =0+1+0=1 So, which class
* v=Yes. ‘5

this new instance

k
| -
ev=No. 2. 0wy?)=14+0+1=0 should be in-

=1

How can we determine similarity/distance

 suppose all features are continuous
* Euclidean distance:

Y - -) ts the f -th
(1) ()Y — (@ _ () where x; represents
4(x.x7) \/; X T feature of xt

e Manhattan distance:

(1) (i)Y — (i) _ () Recall the difference and
d(l -) B Z‘If xf ‘ similarity with LP norm
f y

How can we determine similarity/distance

 Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?

 D:in the table

* New instance: <185, 91, 13.0>
* Suppose that Euclidean distance is used.

* |s this person a soccer player?

New datum

Vi v vy

182
189
178
183

87
92
79
90

11.3
12.3
10.6
12.7

No
Yes
Yes
No

G ;3o |

How can we determine similarity/distance

* if we have a mix of discrete/continuous features:

[@) _ D] 3f £ :
Xp —Xj ‘ if f 1s continuous

1-6 (x?},xfj’)if f is discrete

d(X{f},X[‘jJ) — Z<
/

* typically want to apply to continuous features some type of
normalization (values range O to 1) or standardization (values
distributed according to standard normal)

* many other possible distance functions we could use ...

Standardizing numeric features

* given the training set D, determine the mean and stddev for feature x;
D D

1 (a) 1 (a) 2
#E—ID_lzx,; g; = mdzl(x,; —m)
d=1 \ =

* standardize each value of feature x; as follows

(d)
~(d) X% T Hi

X, =
o

* do the same for test instances, using the same u and o derived from
the training data

