
Decision Tree (Continued)
and K-Nearest Neighbour

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

• Recap basic knowledge

• Decision tree learning
• How to split

• Identify the best feature to split

• Accuracy and overfitting

Today’s Topics

• Decision tree
• Overfitting (continued) and stopping criteria

• k-NN classification

Overfitting (Continued) and

Stopping Criteria

Overfitting in decision trees

Example 3: regression using polynomial

Regression using
polynomial of
degree M

y = wMxM + wM-1xM-1 + … + w1x + w0

Example 3: regression using polynomial

y = c

Example 3: regression using polynomial

y = w1x + w0

Example 3: regression using polynomial

y = w3x3 + w2x2 + w1x + w0

Example 3: regression using polynomial

y = w9x9 + w8x8 + … + w1x + w0

Overfits, why?

Example 3: regression using polynomial

RMS: root mean square,
i.e., the square root of
the mean square

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square

General phenomenon

Prevent overfitting

• cause: training error and expected error are different
• there may be noise in the training data

• training data is of limited size, resulting in difference from the true
distribution

• larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

• prevent overfitting:
• cleaner training data help!

• more training data help!

• throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

• two general strategies to avoid overfitting
• 1. early stopping: stop if further splitting not justified by a statistical test

• Quinlan’s original approach in ID3

• 2. post-pruning: grow a large tree, then prune back some nodes
• more robust to myopia of greedy tree learning

Stopping criteria

Stopping criteria

• We should form a leaf when
• all of the given subset of instances are of the same class

• we’ve exhausted all of the candidate splits

• Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

• split given data into training and validation (tuning) sets

• a validation set (a.k.a. tuning set) is a subset of the training set that is
held aside
• not used for primary training process (e.g. tree growing)

• but used to select among models (e.g. trees pruned to varying degrees)

Pruning in C4.5

• split given data into training and validation (tuning) sets

• Grow a complete tree

• do until further pruning is harmful
• evaluate impact on tuning-set accuracy of pruning each node

• greedily remove the one that most improves tuning-set accuracy

Nearest-neighbor classification

Nearest-neighbor classification

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing
• (it’s sometimes called a lazy learner)

• classification stage
• given: an instance x(q) to classify

• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i)

The decision regions for nearest-neighbor
classification
• Voronoi diagram: each polyhedron indicates the region of feature

space that is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

• classification task
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar
to x(q)

• return the class value

• (i.e. return the class that have the most instances)

How can we determine similarity/distance

• suppose all features are discrete
• Hamming distance (or L0 norm): count the number of features for which two

instances differ

• Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
• D : in the table
• New instance: <Friday, No, Rain>
• Distances = {2, 3, 1, 2}
• For 1-nn, which instances should be selected?
• For 2-nn, which instances should be selected?
• For 3-nn, which instances should be selected?

v1 v2 v3 y

Wed Yes Rain No

Wed Yes Sunny Yes

Thu No Rain Yes

Fri Yes Sunny No

Fri No RainNew datum

How can we determine similarity/distance

• Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
• New instance: <Friday, No, Rain>
• For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes),

(<Fri, Yes, Sunny>, No)}

• Classification:

• v = Yes.

• v = No.

So, which class
this new instance
should be in?

How can we determine similarity/distance

• suppose all features are continuous
• Euclidean distance:

• Manhattan distance:

where xf
(i) represents the f -th

feature of x(i)

Recall the difference and
similarity with Lp norm

How can we determine similarity/distance

• Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used.

• Is this person a soccer player?

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum

How can we determine similarity/distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

• many other possible distance functions we could use ...

Standardizing numeric features

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows

• do the same for test instances, using the same 𝜇 and 𝜎 derived from
the training data

