
## Introduction to COMP219

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

















Yes, they are Al-driven.

But to get there, it is nothing easy.

This module is not to do these fancy things, but to establish a foundation for you to be able to do them in the future.

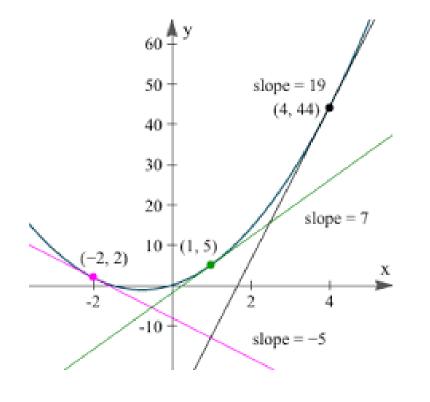
#### Pre-requisite Knowledge - Probability

| Number of Orders<br>per Week<br>x <sub>i</sub> | Probability<br>P <sub>i</sub> |
|------------------------------------------------|-------------------------------|
| 41                                             | .03                           |
| 42                                             | .10                           |
| 43                                             | .15                           |
| 44                                             | .17                           |
| 45                                             | .25                           |
| 46                                             | .15                           |
| 47                                             | .10                           |
| 48                                             | .05                           |

|                  | Rains | Doesn't rain |       |
|------------------|-------|--------------|-------|
| Dog barks        | 9/48  | 18/48        | 27/48 |
| Dog doesn't bark | 3/48  | 18/48        | 21/48 |
|                  | 12/48 | 36/48        | 48/48 |



(2)


#### Pre-requisite knowledge – linear algebra

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

(1)

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} * \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}$$
$$1*9 + 2*8 + 3*7 = 46$$
$$4*9 + 5*8 + 6*7 = 118$$
$$x = \begin{pmatrix} 46 \\ 118 \end{pmatrix}$$

# Pre-requisite knowledge – derivative and partial derivative



$$z = 3x^{2} + 2xy - y^{2}$$
  
= 3(1)<sup>2</sup> + 2(1)(2) - (2)<sup>2</sup>  
= 3  
$$\frac{\partial z}{\partial x} = 6x + 2y = 6(1) + 2(2) = 10$$
$$\frac{\partial z}{\partial x} = 2x + 2y = 2(1) + 2(2) = 6$$

(1)

(2)

#### Warning

• A lot of maths in the first few weeks.

• If you choose this module, make sure that you are prepared (with knowledge, passion, persistency, etc)

#### Today's Content

- Module Information
- Contents of the module

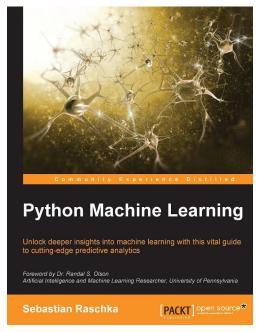
#### Module Outline

- The module consists of
  - 25~30 lectures
  - ~6 lab sessions
- Please ensure sufficient time on self study

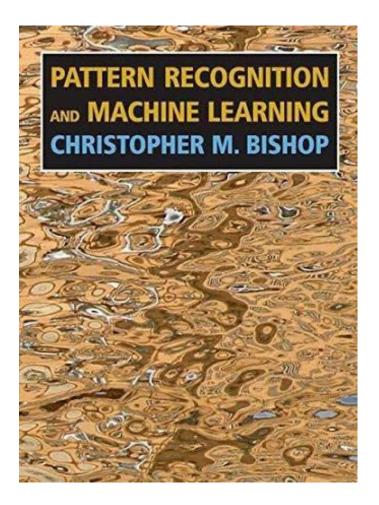
#### Module Outline

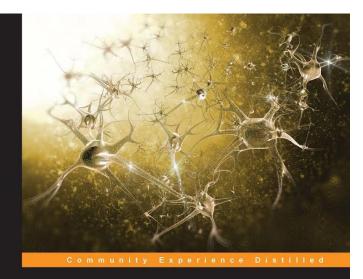
- Assessment
  - a two-hour exam (80%)
  - two practical assignments (10% each)
- Module information on Vital or course webpage (<u>https://cgi.csc.liv.ac.uk/~xiaowei/ai.html</u>)
  - 2018 course webpage for general information (<u>https://cgi.csc.liv.ac.uk/~xiaowei/ai2018.html</u>)
  - We will update this year

#### Module Delivery: Demonstrators


- 6 lab sessions
- 216 students registered
- Who is going to support this?
  - Mr Wei Huang and
  - Mr Gaojie Jin

#### Timetable: Lectures


- Tuesday 11am
- Wednesday 11am
- Thursday 10am
- Will be away on Tuesday, 15<sup>th</sup> October (4<sup>th</sup> week)
- Slides will be distributed the day before the lecture (for example, I may distribute the slides Monday evening for Tuesday lecture)


#### Lab Session

- We prepared 6-7 lab exercises
- Other than this, please follow the book "Python Machine Learning" to practice your ML skills
  - All codes are available at <u>https://github.com/rasbt/python-machine-learning-book</u>
- Demonstrators will try to help you



### Reading





#### **Python Machine Learning**

Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics

Foreword by Dr. Randal S. Olson Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania

Sebastian Raschka

#### PROBABILISTIC GRAPHICAL MODELS PRINCIPLES AND TECHNIQUES



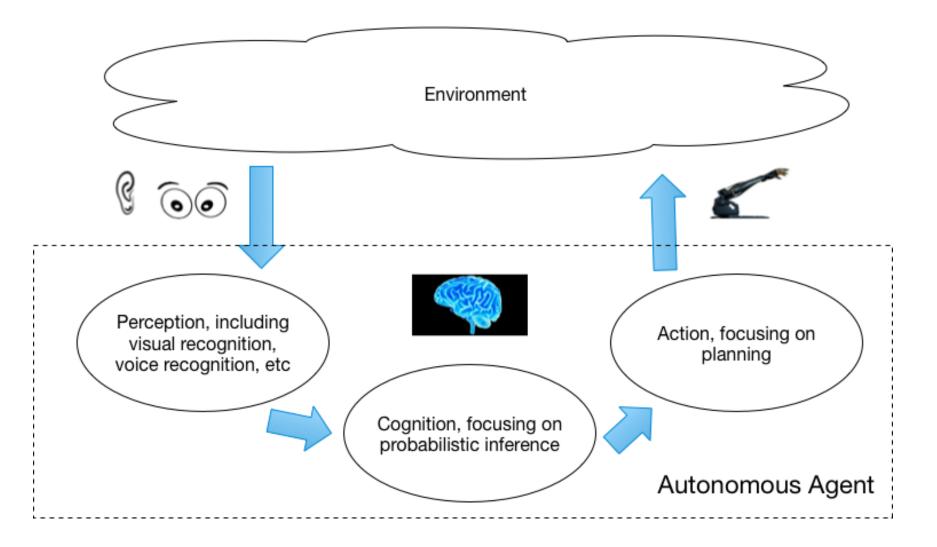
DAPHNE KOLLER AND NIR FRIEDMAN

#### Other Reading:



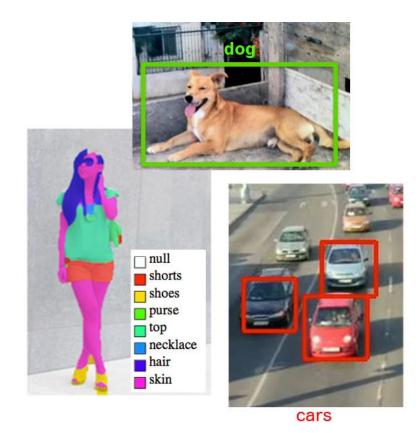
### Other Reading:

- Tensorflow on-line documentations
- Github (plenty of resources, code, tutorials, etc)
- Various on-line courses
- Reddit, quite some good discussions. Experts are around there.
- Kaggle competitions, you can participate in to get more hand-on experience
- Wikipedia, for various concepts, key pointers, etc
- .... Many other on-line resources, please Google whatever you want


#### COMP111

- Brief history of AI including recent developments
- Intelligent Agents: A classification
- Search (applications: route planning, game playing)
- Knowledge Representation (applications: structured web search output)
- Reasoning under Uncertainty (application: almost everywhere)
- Learning (applications: face recognition, selfdriving cars)
- Philosophy and Ethics of AI (motivation: deducing sexual orientation from your picture ok? Visit https:

#### Aims


- To equip students with the knowledge about basic algorithms that have been used to enable the AI agents to conduct the perception, inference, and planning tasks;
- To equip students with the knowledge about machine learning algorithms;
- To provide experience in applying basic AI algorithms to solve problems;
- To provide experience in applying machine learning algorithms to practical problems;

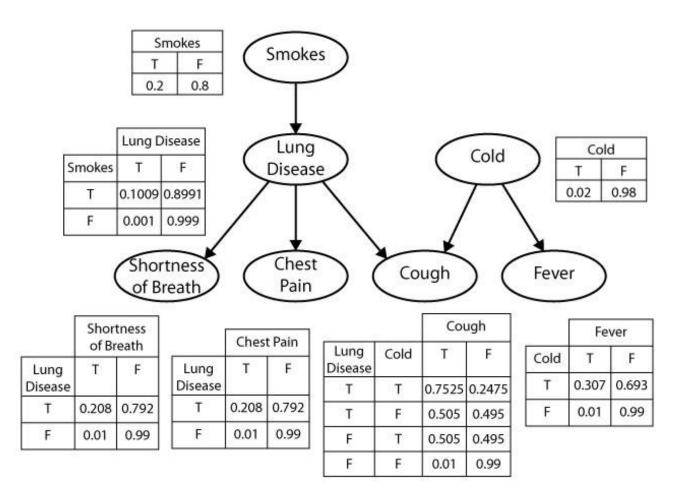
#### Perception-Cognition-Action Loop



Teaching content: traditional learning, deep learning

#### Perception



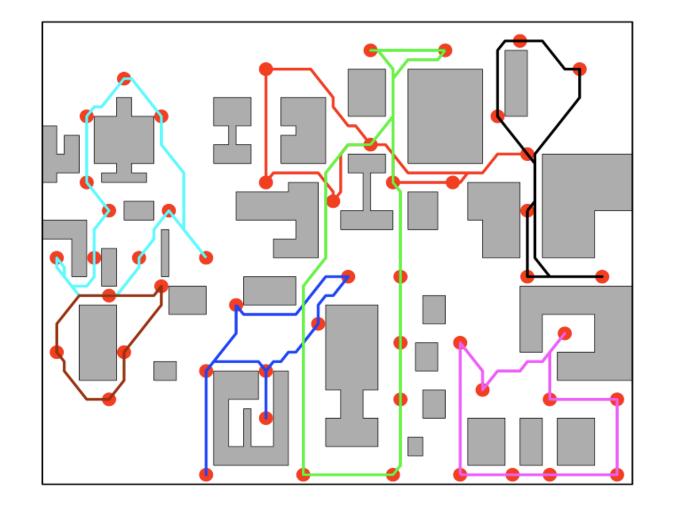



#### **Visual Recognition**

#### **Voice Recognition**

Teaching content: Probabilistic graphical models

### Cognition by Probabilistic Inference




Q. how to automatically infer the disease (e.g., lung disease, cold, etc) from the symptoms (e.g., smokes, shortness of breath, chest pain, cough, fever, etc)?

Note: Symptoms obtained from perception.

Teaching content: in other modules, e.g., COMP111, COMP222

### Action by Planning



After cognition, we may use the obtained knowledge to react to the environment

Q: in the factory floor as shown in the left diagram, how many robots is needed to patrol the area? and how to plan their activities?

#### Learning Outcomes

- Ability to explain in detail how the techniques in the perceiveinference-action loop work
- Ability to choose, compare, and apply suitable basic learning algorithms to simple applications
- Ability to explain how deep neural networks are constructed and trained, and apply deep neural networks to work with large scale datasets
- Ability to conduct probabilistic inference.

### Contents of this module

- Introduction
- preliminary knowledge (probabilistic foundation, linear algebra)
- Traditional machine learning (gradient descent, decision tree learning, K-nn, model evaluation, linear regression, naïve Bayes)
- Practical tutorial (python, tensorflow)
- Deep learning
- Probabilistic graphical models
- (optional) advanced topics

#### Credits

• I used many resources from the web