Overfitting and K-Nearest Neighbour

Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

- Recap basic knowledge
- Decision tree learning
 - General algorithm
 - How to split
 - Identify the best feature to split
 - Stopping criteria
 - Accuracy

Today's Topics

- Overfitting
- k-NN classification

Example: regression using polynomial

RMS: root mean square, i.e., the <u>square root</u> of the <u>mean square</u>

General phenomenon

Overfitting in decision trees

Prevent overfitting

- cause: training error and expected error are different
 - there may be noise in the training data
 - training data is of limited size, resulting in difference from the true distribution
 - larger the hypothesis class, easier to find a hypothesis that fits the difference between the training data and the true distribution
- prevent overfitting:
 - cleaner training data help!
 - more training data help!
 - throwing away unnecessary hypotheses helps! (Occam's Razor)

Overfitting in Decision Tree

Overfitting

- consider error of model M over
 - training data: $Error(D_{training}, M)$
 - entire distribution of data: $Error(D_{true}, M)$
- model $M \in H$ overfits the training data if there is an alternative model $M' \in H$ such that

 $Error(D_{training}, M) < Error(D_{training}, M')$

Perform better on training dataset

 $Error(D_{true}, M) > Error(D_{true}, M')$

Perform worse on true distribution

• suppose

- the target concept is $\,Y=X_1\wedge X_2\,$
- there is noise in some feature values
- we're given the following training set

X ₁	<i>X</i> ₂	X3	<i>X</i> ₄	<i>X</i> ₅	•••	Y
t	t	t	t	t	•••	t
t	t	f	f	t	•••	t
t	f	t	t	f		t
t	f	f	t	f		f
t	f	t	f	f		f
f	t	t	f	t		f
noisy value						

tree that fits noisy training data

correct tree

- What is the accuracy?
 - Accuracy(D_{training}, M) = 5/6
 - Accuracy(D_{true} , M) = 100%

$$Y = X_1 \wedge X_2$$

tree that fits noisy training data

 $Y = X_1 \wedge X_2$

X ₁	<i>X</i> ₂	X ₃	X ₄	X_5	 Y
t	t	t	t	t	 t
t	t	f	f	t	 t
t	f	t	t	f	 t
t	f	f	t	f	 f
t	f	t	f	f	 f
f	t	t	f	t	 f

🔨 noisy value

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true} , M) < 100%

- suppose
 - the target concept is $\ \ Y = X_1 \wedge X_2$
 - $P(X_3 = t) = 0.5$ for both classes
 - P(Y = t) = 0.66
 - we're given the following training set

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

 M_1

 M_2

t

<i>X</i> ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	X ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

$$Y = X_1 \wedge X_2$$

P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true},M) = 50%

X ₁	<i>X</i> ₂	X ₃	X4	X ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

t

$$Y = X_1 \wedge X_2$$

P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 60%
 - Accuracy(D_{true}, M) = 66%

X ₁	X_2	X ₃	<i>X</i> ₄	X ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

 because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance

Avoiding overfitting in DT learning

- two general strategies to avoid overfitting
 - 1. early stopping: stop if further splitting not justified by a statistical test
 - Quinlan's original approach in ID3
 - 2. post-pruning: grow a large tree, then prune back some nodes
 - more robust to myopia of greedy tree learning

Nearest-neighbor classification

Nearest-neighbor classification

- learning stage
 - given a training set $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$, do nothing
 - (it's sometimes called a *lazy learner*)
- classification stage
 - **given**: an instance x^(q) to classify
 - find the training-set instance x⁽ⁱ⁾ that is most similar to x^(q)
 - return the class value y⁽ⁱ⁾

Nearest Neighbor

• When to Consider

- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

The decision regions for nearest-neighbor classification

• Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

- classification task
 - **given**: an instance x^(q) to classify
 - find the k training-set instances (x⁽¹⁾, y⁽¹⁾)... (x^(k), y^(k)) that are the most similar to x^(q)
 - return the class value

$$\hat{y} \leftarrow \underset{v \in \text{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)}) \qquad \qquad \delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$

• (i.e. return the class that have the most number of instances in the k training instances

To classify a new input vector x, examine the k-closest training data points to x and assign the object to the most frequently occurring class

- suppose all features are discrete
 - Hamming distance (or L⁰ norm): count the number of features for which two instances differ
- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - D : in the table
 - New instance: <Friday, No, Rain>
 - Distances = {2, 3, 1, 2}
 - For 1-nn, which instances should be selected?
 - For 2-nn, which instances should be selected?
 - For 3-nn, which instances should be selected?

v1	v2	v3	У
Wed	Yes	Rain	No
Wed	Yes	Sunny	Yes
Thu	No	Rain	Yes
Fri	Yes	Sunny	No

Rain

No

Fri

New datum

- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - New instance: <Friday, No, Rain>
 - For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), (<Fri, Yes, Sunny>, No)}
- Classification:

$$\hat{y} \leftarrow \underset{v \in \text{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)})$$

•
$$\mathbf{v} = \mathbf{Yes.}$$
 $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 0 + 1 + 0 = 1$
• $\mathbf{v} = \mathbf{No.}$ $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 1 + 0 + 1 = 2$

So, which class this new instance should be in?

- suppose all features are continuous
 - Euclidean distance:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt{\sum_{f} \left(x_{f}^{(i)} - x_{f}^{(j)} \right)^{2}}$$

• Manhattan distance:

 $d(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) = \sum_{f} \left| x_{f}^{(i)} - x_{f}^{(j)} \right|$

Recall the difference and similarity with L^p norm

feature of $x^{(i)}$

where $x_f^{(i)}$ represents the f -th

- Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?
 - D: in the table
 - New instance: <185, 91, 13.0>
 - Suppose that Euclidean distance is used.
 - Is this person a soccer player?

v1	v2	v3	У
182	87	11.3	No
189	92	12.3	Yes
178	79	10.6	Yes
183	90	12.7	No

New datum	185	91	13.0		
-----------	-----	----	------	--	--

• if we have a mix of discrete/continuous features:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{f} \begin{cases} \left| x_{f}^{(i)} - x_{f}^{(j)} \right| & \text{if } f \text{ is continuous} \\ 1 - \delta(x_{f}^{(i)}, x_{f}^{(i)}) & \text{if } f \text{ is discrete} \end{cases}$$

- typically want to apply to continuous features some type of normalization (values range 0 to 1) or standardization (values distributed according to standard normal)
- many other possible distance functions we could use ...

Standardizing numeric features

• given the training set D, determine the mean and stddev for feature x_i

$$\mu_i = \frac{1}{|D|} \sum_{d=1}^{|D|} x_i^{(d)} \qquad \sigma_i = \sqrt{\frac{1}{|D|} \sum_{d=1}^{|D|} (x_i^{(d)} - \mu_i)^2}$$

• standardize each value of feature x_i as follows

$$\widehat{x}_i^{(d)} = \frac{x_i^{(d)} - \mu_i}{\sigma_i}$$

• do the same for test instances, using the same μ and σ derived from the training data