
Overfitting and
K-Nearest Neighbour

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

• Recap basic knowledge

• Decision tree learning
• General algorithm

• How to split

• Identify the best feature to split

• Stopping criteria

• Accuracy

Today’s Topics

• Overfitting

• k-NN classification

Example: regression using polynomial

RMS: root mean square,
i.e., the square root of
the mean square

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square

General phenomenon

Overfitting in decision trees

Prevent overfitting

• cause: training error and expected error are different
• there may be noise in the training data

• training data is of limited size, resulting in difference from the true
distribution

• larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

• prevent overfitting:
• cleaner training data help!

• more training data help!

• throwing away unnecessary hypotheses helps! (Occam’s Razor)

Overfitting in Decision Tree

Overfitting

• consider error of model M over
• training data:

• entire distribution of data:

• model overfits the training data if there is an alternative
model such that

Perform better on
training dataset

Perform worse on
true distribution

Example 1: overfitting with noisy data

• suppose
• the target concept is

• there is noise in some feature values

• we’re given the following training set

Example 1: overfitting with noisy data

A noisy data sample:
X1 = t
X2 = f
X3 = t
X4 = t
X5 = f
Y = t

Example 1: overfitting with noisy data

• What is the accuracy?
• Accuracy(Dtraining,M) = 5/6

• Accuracy(Dtrue,M) = 100%

Example 1: overfitting with noisy data

• What is the accuracy?
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) < 100%

Example 1: overfitting with noisy data
Training set
accuracy

True accuracy

5/6 100%

100% < 100 %

M2 is
overfitting!

M1

M2

Example 2: overfitting with noise-free data

• suppose
• the target concept is

• P(X3 = t) = 0.5 for both classes

• P(Y = t) = 0.66

• we’re given the following training set

Example 2: overfitting with noise-free data

M1 M2

Example 2: overfitting with noise-free data

• What is the accuracy?
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) = 50%

P(X3 = t) = 0.5
P(Y=t) = 0.66

Example 2: overfitting with noise-free data

• What is the accuracy?
• Accuracy(Dtraining,M) = 60%

• Accuracy(Dtrue,M) = 66%

P(X3 = t) = 0.5
P(Y=t) = 0.66

Example 2: overfitting with noise-free data

• because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance

Training set
accuracy

True accuracy

100% 50%

60% 66%

M1

M2

M1 is
overfitting!

Avoiding overfitting in DT learning

• two general strategies to avoid overfitting
• 1. early stopping: stop if further splitting not justified by a statistical test

• Quinlan’s original approach in ID3

• 2. post-pruning: grow a large tree, then prune back some nodes
• more robust to myopia of greedy tree learning

Nearest-neighbor classification

Nearest-neighbor classification

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing
• (it’s sometimes called a lazy learner)

• classification stage
• given: an instance x(q) to classify

• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i)

Nearest Neighbor

• When to Consider
• Less than 20 attributes per instance

• Lots of training data

• Advantages
• Training is very fast

• Learn complex target functions

• Do not lose information

• Disadvantages
• Slow at query time

• Easily fooled by irrelevant attributes

The decision regions for nearest-neighbor
classification
• Voronoi diagram: each polyhedron indicates the region of feature

space that is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

• classification task
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar
to x(q)

• return the class value

• (i.e. return the class that have the most number of instances in the k training
instances

How can we determine similarity/distance

• suppose all features are discrete
• Hamming distance (or L0 norm): count the number of features for which two

instances differ

• Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
• D : in the table
• New instance: <Friday, No, Rain>
• Distances = {2, 3, 1, 2}
• For 1-nn, which instances should be selected?
• For 2-nn, which instances should be selected?
• For 3-nn, which instances should be selected?

v1 v2 v3 y

Wed Yes Rain No

Wed Yes Sunny Yes

Thu No Rain Yes

Fri Yes Sunny No

Fri No RainNew datum

How can we determine similarity/distance

• Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
• New instance: <Friday, No, Rain>
• For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes),

(<Fri, Yes, Sunny>, No)}

• Classification:

• v = Yes.

• v = No.

So, which class
this new instance
should be in?

How can we determine similarity/distance

• suppose all features are continuous
• Euclidean distance:

• Manhattan distance:

where xf
(i) represents the f -th

feature of x(i)

Recall the difference and
similarity with Lp norm

How can we determine similarity/distance

• Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used.

• Is this person a soccer player?

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum

How can we determine similarity/distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

• many other possible distance functions we could use ...

Standardizing numeric features

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows

• do the same for test instances, using the same 𝜇 and 𝜎 derived from
the training data

