K-Nearest Neighbour (Continued)

Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

- Recap basic knowledge
- Decision tree learning
- k-NN classification
 - What is k-nearest-neighbor classification
 - How can we determine similarity/distance
 - Standardizing numeric features (leave this to you)

Today's Topics

- Definition
- Speeding up k-NN
 - edited nearest neighbour
 - k-d trees for nearest neighbour identification
- Variants of k-NN
 - K-NN regression
 - Distance-weighted nearest neighbor
 - Locally weighted regression to handle irrelevant features
- Discussions
 - Strengths and limitation of instance-based learning
 - Inductive bias

Definition

k-nearest-neighbor classification

- classification task
 - **given**: an instance x^(q) to classify
 - find the k training-set instances (x⁽¹⁾, y⁽¹⁾)... (x^(k), y^(k)) that are the most similar to x^(q)
 - return the class value

$$\hat{y} \leftarrow \underset{v \in \text{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)}) \qquad \qquad \delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$

• (i.e. return the class that have the most number of instances in the k training instances

- suppose all features are discrete
 - Hamming distance (or L⁰ norm): count the number of features for which two instances differ
- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - D : in the table
 - New instance: <Friday, No, Rain>
 - Distances = {2, 3, 1, 2}
 - For 1-nn, which instances should be selected?
 - For 2-nn, which instances should be selected?
 - For 3-nn, which instances should be selected?

v1	v2	v3	У
Wed	Yes	Rain	No
Wed	Yes	Sunny	Yes
Thu	No	Rain	Yes
Fri	Yes	Sunny	No

Rain

No

Fri

New datum

- Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
 - New instance: <Friday, No, Rain>
 - For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), (<Fri, Yes, Sunny>, No)}
- Classification:

$$\hat{y} \leftarrow \underset{v \in \text{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, y^{(i)})$$

•
$$\mathbf{v} = \mathbf{Yes.}$$
 $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 0 + 1 + 0 = 1$
• $\mathbf{v} = \mathbf{No.}$ $\sum_{i=1}^{k} \delta(v, y^{(i)}) = 1 + 0 + 1 = 2$

So, which class this new instance should be in?

- suppose all features are continuous
 - Euclidean distance:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt{\sum_{f} \left(x_{f}^{(i)} - x_{f}^{(j)} \right)^{2}}$$

• Manhattan distance:

 $d(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) = \sum_{f} \left| x_{f}^{(i)} - x_{f}^{(j)} \right|$

Recall the difference and similarity with L^p norm

feature of $x^{(i)}$

where $x_f^{(i)}$ represents the f -th

- Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?
 - D: in the table
 - New instance: <185, 91, 13.0>
 - Suppose that Euclidean distance is used.
 - Is this person a soccer player?

v1	v2	v3	У
182	87	11.3	No
189	92	12.3	Yes
178	79	10.6	Yes
183	90	12.7	No

New datum	185	91	13.0		
-----------	-----	----	------	--	--

• if we have a mix of discrete/continuous features:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{f} \begin{cases} \left| x_{f}^{(i)} - x_{f}^{(j)} \right| & \text{if } f \text{ is continuous} \\ 1 - \delta(x_{f}^{(i)}, x_{f}^{(i)}) & \text{if } f \text{ is discrete} \end{cases}$$

- typically want to apply to continuous features some type of normalization (values range 0 to 1) or standardization (values distributed according to standard normal)
- many other possible distance functions we could use ...

Standardizing numeric features

• given the training set D, determine the mean and stddev for feature x_i

$$\mu_i = \frac{1}{|D|} \sum_{d=1}^{|D|} x_i^{(d)} \qquad \sigma_i = \sqrt{\frac{1}{|D|} \sum_{d=1}^{|D|} (x_i^{(d)} - \mu_i)^2}$$

• standardize each value of feature x_i as follows

$$\widehat{x}_i^{(d)} = \frac{x_i^{(d)} - \mu_i}{\sigma_i}$$

• do the same for test instances, using the same μ and σ derived from the training data

Speeding up k-NN

Issues

- Choosing k
 - Increasing k reduces variance, increases bias
- For high-dimensional space, problem that the nearest neighbor may not be very close at all!
- Memory-based technique. Must make a pass through the data for each classification. This can be prohibitive for large data sets.

Nearest neighbour problem

- Given sample $S = ((x_1, y_1), \dots, (x_m, y_m))$ and a test point x,
- it is to find the nearest k neighbours of x.

• Note: for the algorithms, dimensionality N, i.e., number of features, is crucial.

Efficient Indexing: N=2

- Algorithm
 - compute Voronoi diagram in O(m log m)
 - See algorithm in https://en.wikipedia.org/wiki/Fortune's_algorithm
 - use point location data structure to determine nearest neighbours
 - complexity: O(m) space, O(log m) time.

Efficient Indexing: N>2

- Voronoi diagram: size in O(m^{N/2})
- Linear algorithm (no pre-processing):
 - compute distance $||x x_i||$ for all $i \in [1, m]$.
 - complexity of distance computation: $\Omega(N m)$.
 - no additional space needed.

k-NN is a "lazy" learning algorithm – does virtually nothing at training time

but classification/prediction time can be costly when the training set is large

Efficient Indexing: N>2

- two general strategies for alleviating this weakness
 - don't retain every training instance (edited nearest neighbor)
 - pre-processing. Use a smart data structure to look up nearest neighbors (e.g. a k-d tree)

Edited instance-based learning

- select a subset of the instances that still provide accurate classifications
- incremental deletion Q1: I start with all training instances in memory for each training instance $(x^{(i)}, y^{(i)})$ if other training instances provide correct classification for $(x^{(i)}, y^{(i)})$ delete it from the memory Q2: If optime
- incremental growth

start with an empty memory for each training instance $(x^{(i)}, y^{(i)})$

> if other training instances in memory **don't** correctly classify $(x^{(i)}, y^{(i)})$ add it to the memory

Q1: Does ordering matter?

Q2: If following the optimal ordering, do the two approaches produce the same subset of instances?

k-d trees

- a k-d tree is similar to a decision tree except that each internal node
 - stores one instance
 - splits on the median value of the feature having the highest variance

Construction of k-d tree

median value of the feature having the
highest variance?
-- point f, x₁ = 6

x₁>6 f

Construction of k-d tree

median value of the feature having the highest variance?

-- point c,
$$x_2 = 10$$
 and point h, $x_2 = 5$

Construction of k-d tree

There can be other methods of constructing k-d trees, see e.g., https://en.wikipedia.org/wiki/K-d_tree#Nearest_neighbour_search

Finding nearest neighbors with a k-d tree

- use branch-and-bound search
- priority queue stores
 - nodes considered
 - lower bound on their distance to query instance
- lower bound given by distance using a single feature
- average case: O(log₂m)
- worst case: O(m) where m is the size of the training-set

Finding nearest neighbours in a k-d tree

```
NearestNeighbor(instance x^{(q)})
   PQ = \{\}
                                                                // minimizing priority queue
    best_dist = ∞
                                                                // smallest distance seen so far
   PQ.push(root, 0)
   while PQ is not empty
          (node, bound) = PQ.pop();
          if (bound \geq best_dist)
                     return best_node.instance
                                                                // nearest neighbor found
          dist = distance(x^{(q)}, node. instance)
          if (dist < best dist)
                     best dist = dist
                     best node = node
          if (q[node.feature] - node.threshold > 0)
                     PQ.push(node.left, x<sup>(q)</sup>[node.feature] - node.threshold)
                     PQ.push(node.right, 0)
          else
                     PQ.push(node.left, 0)
                     PQ.push(node.right, node. threshold - x^{(q)} [node.feature])
```

return best_node. instance

Intuitively, for a pair (*node*,*value*), *value* represents the smallest guaranteed distance, i.e., greatest lower bound up to now, from the instance $x^{(q)}$ to the set of instances over which *node* is the selected one to split

For example, the set of instances where *root* is the selected one to split over is the whole training set.

(root,0) means that at the beginning, the guaranteed smallest distance to the training set is 0

distance	best distance	best node	priority queue
	∞		(f, 0)

(node, bound) = PQ.pop();if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist) best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)PQ.push(node.left, x^(q)[node.feat PQ.push(node.right, 0) else

> PQ.push(node.left, 0) PQ.push(node.right, node. thresh

(node, bound) = PQ.pop(); if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist)</p> best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)PQ.push(node.left, x^(q)[node.feati PQ.push(node.right, 0) else

PQ.push(node.left, 0)
PQ.push(node.right, node. thresh

	distance	best distance	best node	priority queue
		∞		(f, 0)
pop f	4.0	4.0	f	

pop f

distance	best distance	best node	priority queue	
	∞		(f, 0)	olse
4.0	4.0	f	(c, 0)	6150

(node, bound) = PQ.pop(); if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist) best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)PQ.push(node.left, x^(q)[node.feati PQ.push(node.right, 0)

PQ.push(node.left, 0) PQ.push(node.right, node. thresh

pop f

distance	best distance	best node	priority queue	
	∞		(f, 0)	
4.0	4.0	f	(c, 0) (h, 4)]`

(node, bound) = PQ.pop(); if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist) best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)PQ.push(node.left, x^(q)[node.feati PQ.push(node.right, 0)

PQ.push(node.left, 0)

PQ.push(node.right, node. thresh

distance	best distance	best node	priority queue	
	œ		(f, 0)	
4.0	4.0	f	(c, 0) (h, 4)] '
10.0	4.0	f		

pop f

pop c

PQ.push(node.left, 0) PQ.push(node.right, node. thresh

PQ.push(node.right, 0)

	distance	best distance	best node	priority queue
		×		(f, 0)
f	4.0	4.0	f	(c, 0) (h, 4)
c	10.0	4.0	f	(e, 0) (h, 4) (b, 7)

pop

pop

(node, bound) = PQ.pop(); if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist) best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)Ò PQ.push(node.left, x^(q)[node.feati PQ.push(node.right, 0) else

PQ.push(node.left, 0)

PQ.push(node.right, node. thresh

	distance	best distance	best node	priority queue	
		œ		(f, 0)	مادم
pop f	4.0	4.0	f	(c, 0) (h, 4)	6130
рор с	10.0	4.0	f	(e, 0) (h, 4) (b, 7)	
pop e	1.0	1.0	e		

PQ.push(node.left, 0) PQ.push(node.right, node. thresh

PQ.push(node.left, x^(q)[node.feati

PQ.push(node.right, 0)

distance	best distance	best node	priority queue	
	00		(f, 0)	
4.0	4.0	f	(c, 0) (h, 4)	eis
10.0	4.0	f	(e, 0) (h, 4) (b, 7)	
1.0	1.0	e	(d, 1) (h, 4) (b, 7)	

pop f

pop c

pop e

(node, bound) = PQ.pop(); if (bound \geq best_dist) return best_node.instance dist = distance($x^{(q)}$, node. instance) if (dist < best_dist) best_dist = dist best_node = node if (q[node.feature] - node.threshold > 0)PQ.push(node.left, x^(q)[node.feati PQ.push(node.right, 0)

PQ.push(node.left, 0)

PQ.push(node.right, node. thresh

pop f

pop c

pop e

pop d

\mapsto (node, bound) = PQ.pop();
→ if (bound ≥ be	est_dist)
retu	urn best_node.instance
dist = distanc	e(x ^(q) , node. instance)
if (dist < best	_dist)
bes	st_dist = dist
bes	st_node = node
if (q[node.feature] - node.threshold > 0)	
PQ	.push(node.left, x ^(q) [node.feat
PQ	.push(node.right, 0)
else	

distance	best distance	best node	priority queue
	∞		(f, 0)
4.0	4.0	f	(c, 0) (h, 4)
10.0	4.0	f	(e, 0) (h, 4) (b, 7)
1.0	1.0	e	(d, 1) (h, 4) (b, 7)
return e			

PQ.push(node.left, 0) PQ.push(node.right, node. thresh

Extended Materials: Voronoi Diagram Generation

- <u>https://en.wikipedia.org/wiki/Voronoi_diagram</u>
- <u>https://courses.cs.washington.edu/courses/cse326/00wi/projects/vor</u> <u>onoi.html</u>

Variants of k-NN

k-nearest-neighbor *regression*

- learning stage
 - given a training set $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$, do nothing
 - (it's sometimes called a *lazy learner*)
- classification stage
 - **given**: an instance x^(q) to classify
 - find the k training-set instances (x⁽¹⁾, y⁽¹⁾)... (x^(k), y^(k)) that are most similar to x^(q)
 - return the value

$$\hat{y} \leftarrow \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

Average over neighbours' values

Distance-weighted nearest neighbor

- We can have instances contribute to a prediction according to their distance from $x^{(q)}$

Irrelevant features in instance-based learning

here's a case in which there is one relevant feature x_1 and a 1-NN rule classifies each instance correctly

Can you find a point (a,b) which is red, if classified only according to feature x1, but is green, if classified according to both features? consider the effect of an irrelevant feature x₂ on distances and nearest neighbors

Locally weighted regression

- one way around this limitation is to weight features differently
- *locally weighted regression* is one nearest-neighbor variant that does this
- prediction task
 - **given**: an instance x^(q) to make a prediction for
 - find the k training-set instances $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(k)}, y^{(k)})$ that are most similar to $\mathbf{x}^{(q)}$
 - return the value $f(x^{(q)})$

What's function f?

Locally weighted regression

- Determining function f
 - Assume that f is a linear function over the features, i.e.,

 $f(x^{(i)}) = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)}$

• find the weights w_i for each x^(q) by

k

can do this using gradient descent (to be covered soon)

$$\arg\min_{w_0, w_1, \dots, x_n} \sum_{i=1}^{k} (f(x^{(i)}) - y^{(i)})^2 - be \cos(x^{(i)}) = 0$$

• After obtaining weights, for $x^{(q)}$, we have $f(\mathbf{x}^{(q)}) = w_0 + w_1 x_1^{(q)} + w_2 x_2^{(q)} + ... + w_n x_n^{(q)}$

Discussions

Strengths of instance-based learning

- simple to implement
- "training" is very efficient
- adapts well to on-line learning
- robust to noisy training data (when k > 1)
- often works well in practice

Limitations of instance-based learning

- sensitive to range of feature values
- sensitive to irrelevant and correlated features, although ...
 - there are variants (such as locally weighted regression) that learn weights for different features
- classification/prediction can be inefficient, although ...
 - edited methods and k-d trees can help alleviate this weakness
- doesn't provide much insight into problem domain because there is no explicit model

Inductive bias

- inductive bias is the set of assumptions a learner uses to be able to predict yi for a previously unseen instance xi
- two components
 - *hypothesis space bias*: determines the models that can be represented
 - *preference bias*: specifies a preference ordering within the space of models
- in order to *generalize* (i.e. make predictions for previously unseen instances) a learning algorithm must have an inductive bias

Consider the inductive bias of DT and k-NN learners

learner	hypothesis space bias	preference bias
ID3 decision tree	trees with single-feature, axis- parallel splits	small trees identified by greedy search
k-NN	Voronoi decomposition determined by nearest neighbors	instances in neighborhood belong to same class