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Up to now,

* Three machine learning algorithms:
 decision tree learning
* k-nn
* linear regression
* linear regression

* linear classification
* logistic regression

only optimization
objectives are
discussed, but
how to solve?



Today’s Topics

* Derivative

* Gradient

* Directional Derivative

* Method of Gradient Descent

* Example: Gradient Descent on Linear Regression
* Linear Regression: Analytical Solution



Problem Statement: Gradient-Based
Optimization

* Most ML algorithms involve optimization
* Minimize/maximize a function f (x) by altering x
* Maximization accomplished by minimizing —f(x)
* f (x) referred to as objective function or criterion
* In minimization also referred to as loss function cost, or error

* Example:
* linear least squares
* Linear regression f,(fw) — % S (wTz®) — ()2

* Denote optimum value by x*=argmin f (x)

1
f(@) = 5 llAz b/



Derivative



Derivative of a function

* Suppose we have function y=f (x), x, y real numbers

 Derivative of function denoted: f’(x) or as dy/dx

* Derivative f’(x) gives the slope of f (x) at point x
* It specifies how to scale a small change in input to obtain a corresponding change in the

output:

How to design A?
fx+A)=f(x)+Af (x) :
* It tells how you make a small change in input to make a small improvement in y

Recall what’s the derivative for the
following functions:

f(x) = x2

f(x) = e



Calculus in Optimization

» Suppose we have function ¥y = f(z), where x, y are real numbers
* Sign function: )

if x <0
sign(z) = ¢ 0 ifz =0
|1 if x>0
« We know that This technique is
called gradient
f(:l? — Esign(f’ (m))) < f(E) descent (Cauchy
for small €. 1847)

* Therefore, we can reduce f(x) by moving x in small steps with
opposite sign of derivative

\

Why opposite?



Example

e Function f(x) =x* &£=0.1
e f'(x) = 2x

* Forx =-2, f'(-2) = -4, sign(f’(-2))=-1
e f(-2- €*(-1)) = f(-1.9) < f(-2)

* Forx=2,1'(2) =4, sign(f’(2)) =1
e f(2- €*1) =(1.9) < f(2)



Gradient Descent Illustrated
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Stationary points, Local Optima

* When f’(z) = 0 derivative provides no information about direction of
move

* Points where f’(z) = 0 are known as stationary or critical points

* Local minimum/maximum: a point where f(x) lower/ higher than all its
neighbors

* Saddle Points: neither maxima nor minima

Minimum Maximum Saddle point

N o~




Presence of multiple minima

* Optimization algorithms may fail to find global minimum
* Generally accept such solutions

This local minimum

performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(z)

This local minimum performs
poorly and should be avoided.




Gradient



Minimizing with multiple dimensional inputs
* We often minimize functions with multiple-dimensional inputs
f:R" — R

* For minimization to make sense there must still be only one (scalar)
output



Functions with multiple inputs

e Partial derivatives

5, f (@)

measures how f changes as only variable x; increases at point x

* Gradient generalizes notion of derivative where derivative is wrt a
vector

* Gradient is vector containing all of the partial derivatives denoted

V.f(z) = (aif(m% iﬂf(m))



Example

* ¥ = 5X° + 4x, + X2 + 2

* so what is the exact gradient on instance (1,2,3)?

* the gradient is (25x,%, 4, 2x,)
* On the instance (1,2,3), it is (25,4,6)



Functions with multiple inputs

* Gradient is vector containing all of the partial derivatives denoted

Vol (@) = (5o f (@), s 5o @)

* Element i of the gradient is the partial derivative of f wrt x;

e Critical points are where every element of the gradient is equal to
Zero

Vef(x) =0= <




Example

* ¥ = 5X° + 4x, + X2 + 2

* so what are the critical points?

* the gradient is (25x,%, 4, 2x,)

* We let 25x,* = 0 and 2x, = 0, so all instances whose x, and x; are 0.
but 4 /= 0. So there is no critical point.



Directional Derivative



Recap: dot product in linear algebra

| 8 = arccos{x=y/1211y1)

|2 |2 -'
B -3— B -4_ L)
‘lUT:I} — 2 > 3 ]_ —|— 3 % 4 p— ]_4 Geometric meaning: can be

used to understand the angle
between two vectors



Directional Derivative

* Directional derivative in direction 2 (a unit vector) is the slope of
function f in direction U

* This evaluates to
u!'V, f(z)

* Example: let ! = (ug,u,,u,) be a unit vector in Cartesian
coordinates, so

lul2 = /12 + w2 +u2 =1

then

of of af
uw!'V,f(x) = %um + a—yuy + —u,



Directional Derivative RN

* To minimize f find direction in which f decreases the fastest
min u! Vg f(z) = min ||ulls-||Vef(z)||2 - cosb

u,ulu=1 w,ulu=1

 where @ is angle between 74 and the gradient

e Substitute ||u||2 = 1 and ignore factors that not depend on 1 this simplifies
to

min cos @
U

* This is minimized when U points in direction opposite to gradient

* In other words, the gradient points directly uphill, and the negative
gradient points directly downhill



Method of Gradient Descent



Method of Gradient Descent

* The gradient points directly uphill, and the negative gradient points
directly downhill

* Thus we can decrease f by moving in the direction of the negative
gradient

* This is known as the method of steepest descent or gradient descent

* Steepest descent proposes a new point

' =z —€eVyf(x)

* where € is the learning rate, a positive scalar. Set to a small constant.



Choosing€: Line Search

* We can choose € in several different ways
* Popular approach: set € to a small constant
* Another approach is called line search:

* Evaluate
f($ o Evmf(m))

for several values of € and choose the one that results in smallest objective
function value



Example: Gradient Descent on Linear
Regression



Example: Gradient Descent on Linear
Regression

1 «— T
o |i : — (1) _ (%) N X w — yll?
Linear regression: — E: || w — |3

* The gradient is

Vuol(fw)

Vo (Xw —y)" (Xw —y)]
Volw! Xt Xw — 2wl X1y + y1y]
2XT Xw—2X1y



Example: Gradient Descent on Linear

Regression

e Linear regression: L(f,) = ;Z(w%(":) — y()?2 = 711||Xw —y||2
1=1

* The gradientis V,,L(f,) = 2XT Xw — 2X Ty

e Gradient Descent algorithm is
 Set step size €, tolerance 6 to small, positive numbers.

* While || X" Xw — X*y||o > § do

r+— 1 — (X' Xw— X"y)



Linear Regression: Analytical
solution



Convergence of Steepest Descent

 Steepest descent converges when every element of the gradient is
Zero

* In practice, very close to zero

* We may be able to avoid iterative algorithm and jump to the critical
point by solving the following equation for x

Ve f(z) =0



Linear Regression: Analytical solution

. . . 1 « - - 1
* Linear regression: L(fuw) = — > (w'z® —y)* = —||Xw —y|[3

1=1

* The gradientis V,,L(f,) = 2XT Xw — 2X Ty

* Let Vwi(fw) =2X " Xw-2XTy=0

* Then, we have w = (X1 X)) 1 X1y



Linear Regression: Analytical solution

* Algebraic view of the minimizer
* If X is invertible, just solve Xw =y and getw = X1y
* But typically X is a tall matrix

II=I —-!J

Normal equation: w = (XTX)"1XTy




Generalization to discrete spaces



Generalization to discrete spaces

* Gradient descent is limited to continuous spaces

* Concept of repeatedly making the best small move can be generalized
to discrete spaces

* Ascending an objective function of discrete parameters is called hill
climbing



Exercises
* Given a function f(x)= e*/(1+e*), how many critical points?
* Given a function f(x,,x,)= 9x,%+3x,+4, how many critical points?

* Please write a program to do the following: given any differentiable
function (such as the above two), an €, and a starting x and a target x/,
determine whether it is possible to reach x” from x. If possible, how
many steps? You can adjust € to see the change of the answer.



