Nalve Bayes

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/



Up to now,

* Three machine learning algorithms:
 decision tree learning
* k-nn
* linear regression + gradient descent

* linear regression

linear classification

logistic regression

gradient descent

gradient descent on Linear Regression
Linear Regression: Analytical Solution



Topics

* MLE (maximum Likelihood Estimation) and MAP
* Naive Bayes



Recall: MAP Queries (Most Probable
Explanation)

* Finding a high probability assignment to some subset of variables
* Most likely assignment to all non-evidence variables W

MAP(W | e) = arg max P(w,e) P(w,e) = P(w|e) P(e)

i.e., value of w for which P(w,e) is maximum



Estimating Parameters

* Maximum Likelihood Estimate (MLE): choose 6 that maximizes
probability of observed data D

f = arg mgax P(D|0)

 Maximum a Posteriori (MAP) estimate: choose 0 that is most
probable given prior probability and the data

é — arg mgax P(9|D) posterior

vz PLIOPO)

: (D) = arg méa,xP(DW)P(Q)



Reducing the number of
parameters to estimate



Let’s learn classifiers by learning P(Y | X)

e Consider Y=Wealth, X=<Gender, HoursWorked>
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Let’s learn classifiers by learning P(Y | X)

* P(gender, hoursWorked, wealth) => P(wealth|gender, hoursWorked)

Gender HrsWorked P(rich | P(poor |
G,HW) G,HW)
F <40.5 .09 91
F >40.5 21 79
M <40.5 23 77
M >40.5 .38 62




How many parameters must we estimate?

— feature vector

* Suppose X =<X,,... X.> where X. and Y are Boolean real variables

* To estimate P(Y|X,, X,, ... X))
2" gquantities need to be estimated
or collected!

* If we have 30 Boolean X.s: P(Y | X, X, ...

230~ 1 billion!

* You need lots of data or a very small n
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Can we reduce parameters using Bayes Rule?

* Suppose X =<X,,... X.> where X. and Y are Boolean real variables
* By Bayes rule:

p (Y‘ X) . P (X |Y) P (Y) Gender HrsWorked F;’r;l% | Pé?::‘;.) |
B P(X) F <40.5 .09 91
F >40.5 21 79
M <40.5 23 77
* How many parameters for P(X|Y) = P(X,,... X_[Y)? [  >0s 38 e

P(Gender,HrsWorked | Wealth)
1

(2-1)x2 \
How many parameters for P(Y)? For example,

For example, P(Wealth)



Naive Bayes

* Naive Bayes assumes

P(Xq1...Xp|Y) = HP(XZ-|Y)

i.e., that X; and X; are conditionally independent given Y, for all i

For example,
P(Gender,HrsWorked | Wealth) = P(Gender | Wealth) * P(HrsWorked | Wealth)



Recap: Conditional independence

* Two variables A,B are independent if
P(ANB)=P(A)P(B)
Va,b: P(A=aAB=0b)=P(A=a)P(B =D
* Two variables A,B are conditionally independent given C if
P(ANB|C)=P(A|C)P(B|C)
Va,b,c: PLA=aAB =b|C =c)=P(A=a|C =c)P(B =5|C=c)



Recap: Conditional Independence

* A is conditionally independent of B given C, if the probability
distribution governing A is independent of the value of B, given the

value of C

Va,b,c: P(A=a|B=05b,C =c)=P(A=a|C=c)

* Which we often write P(A|B,C) = P(A|C)

* Example: P(Thunder|Rain, Lightning) = P(Thunder|Lightning)



Assumption for Naive Bayes

* Naive Bayes uses assumption that the X. are conditionally
independent, given Y

e Given this assumption, then:

Chain rule
P(X1,XolY) = P(X1]X2,Y)P(X5]Y)
— P(Xl‘Y)P(X2|Y) Conditional
Independence

*ingeneral:  p(x;..X,|Y)=][P(X;]Y)
i Why? Every P(X.|Y) takes a
(2n-1)x2 n _ parameter, and we have n X.



Reducing the number of parameters to

estimate
P(X1,...,Xn)

* To make this tractable we naively assume conditional independence
of the features given the class: ie
P(X1, ., Xn|Y) = P(X1|Y)P(X3]Y)..P(X,|Y)
* Now: | only need to estimate ... parameters:

P(XI‘Y):P(XZ‘Y)::P(XR‘Y):P(Y)

P(Y|Xq, .., Xp) =



Reducing the number of parameters to
estimate

How many parameters to describe P(X1,..., X,|Y)? P(Y) ?

* Without conditional independent assumption?
e (27-1)x2+1

* With conditional independent assumption?
* 2n+1



Naive Bayes Algorithm



Naive Bayes Algorithm — discrete X.

* Train Naive Bayes (given data for X and Y)
 for each value Yk

* Estimate 71, = P(Y = y,rg)
* for each value ;; of each attribute X;

* estimate (;?i-jk = P(Xf,; = $ij|Y — ?!k)



Training Naive Bayes Classifier

* From the data D, estimate class priors:
* For each possible value of Y, estimate Pr(Y=y1), Pr(Y=y2),.... Pr(Y=yk)
* An estimate:

* From the data, estimate the conditional probabilities
* If every X, has values x,,...,x;,
* for each y;and each X; estimate q(i j,k)=Pr(X=x;[Y=y,)
) #D{X, = Tij N Y =y} Number of

_ items in dataset
#%l){}/'—'yk} ~———— D for which

Y=y,

0k = P(X; = a45]Y = yg) =



Exercise

* Consider the following dataset:

* P(Wealthy=Y) =

* P(Wealthy=N)=

* P(Gender=F | Wealthy =Y) =

* P(Gender=M | Wealthy =Y) =

* P(HrsWorked > 40.5 | Wealthy = Y) =
* P(HrsWorked < 40.5 | Wealthy =Y) =
* P(Gender=F | Wealthy =N) =

* P(Gender=M | Wealthy = N) =
 P(HrsWorked > 40.5 | Wealthy = N) =
* P(HrsWorked < 40.5 | Wealthy = N) =
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Naive Bayes Algorithm — discrete X.

* Train Naive Bayes (given data for X and Y)

e for each value Yk
* Estimate 7, = P(Y — yk)

e for each value Z;; of each attribute X,
e estimate Qijk — P(X?: — ;gij|Y — yk)

* Classify (X,.,,)
Y —argmax P(Y = yp) | [ P(XP)Y = )
k .

1

Y™ «— arg max % || 0ijk
i



Exercise (Continued)

* Consider the following dataset:

* Classify a new instance
* Gender = F /\ HrsWorked = 44

Gender

HrsWorked

Wealthy?
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43
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<|=<|=<|z|lz|z]|<

34




Example: Live outside of Liverpool? P(L|T,D,E)

e L=1 iff live outside of Liverpool ® D=1 iff Drive or Carpool to Liverpool

e T=1 iff shop at Tesco e E=1 iff Even # letters last name

P(L=1) : P(L=0) :

P(D=1 | L=1) : P(D=0 | L=1) :
P(D=1 | L=0) : P(D=0 | L=0) :
P(T=1 | L=1): P(T=0 | L=1) :
P(T=1 | L=0) : P(T=0 | L=0)
P(E=1 | L=1): P(E=0 | L=1):
P(E=1 | L=0) : P(E=0 | L=0) :




