
Deep Learning:
Functional View and Features

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

• Traditional Machine Learning Algorithms

• Deep learning
• Introduction to Deep Learning (history of deep learning, including perceptron,

multi-layer perceptron, why now?, etc)

Today’s Topics

• Functional View of DNNs

• Learning Representations & Features

Functional View of DNNs

What is a function?

• In programming, a named section of a program that performs a
specific task. In this sense, a function is a type
of procedure or routine.

• The term function is also used synonymously
with operation and command. For example,
you execute the delete function to erase a word.

What is a nested function?

• a nested function (or nested procedure or subroutine) is
a function which is defined within another function, the enclosing
function.

Functional View of DNNs

• A family of parametric, non-linear and hierarchical representation
learning functions, which are massively optimized with stochastic
gradient descent to encode domain knowledge, i.e. domain
invariances, stationarity.

Illustration of DNN function

(v1,v2,…,vn)

Input space

Illustration of DNN function

x=(v1,v

2,…,vn)

Input space space
of 1st hidden layer

Illustration of DNN function

x=(v1,v

2,…,vn)

Input space space
of 1st hidden layer

space
of 2nd hidden layer

Illustration of DNN function

x=(v1,v

2,…,vn)

Input space space
of 1st hidden layer

…

Output spacespace
of 2nd hidden layer

Note:

• Functions h1, h2, …, hL, are usually given.

• Parameters are obtained by learning algorithm

Training Objective

Given training corpus {𝑋, 𝑌} find optimal parameters

Loss function

Prediction

Ground truth

accumulated loss

Find an optimal model
parameterised over

Learning Representations & Features

Raw digital representation -- Image

Raw digital representation -- Video

Learning Representations & Features

• Traditional pattern recognition

• End-to-end learning Features are also learned from data

SVM, decision
tree, etc

Eye, nose, etc

CNN Fully-connected/multi-layer perceptron

Non-separability of linear machines

• 𝑋= {𝑥1,𝑥2,...,𝑥𝑛 } ∈ R𝑑

• Given the 𝑛 points there are in
total 2𝑛 dichotomies

• Only about 𝑑 are linearly separable

• With 𝑛 > 𝑑 the probability 𝑋 is linearly
separable converges to 0 very fast

• The chances that a dichotomy is linearly
separable is very small

Non-linearizing linear machines

• Most data distributions and tasks are non-linear

• A linear assumption is often convenient, but not necessarily truthful

• Problem: How to get non-linear machines without too much effort?

• Solution: Make features non-linear

• What is a good non-linear feature?
• Non-linear kernels, e.g., polynomial, RBF, etc

• Explicit design of features (SIFT, HOG)?

Kernel: low dimension -> high dimension

SIFT

Good features

• Invariant
• But not too invariant

• Repeatable
• But not bursty

• Discriminative
• But not too class-specific

• Robust
• But sensitive enough

Data manifold

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds

• This is so-called "swiss roll". The data points are in 3d, but they all lie on 2d
manifold, so the dimensionality of the manifold is 2, while the
dimensionality of the input space is 3.

Every point
represents an
input sample.

Data manifold is usually lower dimensional
than the original

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds

• Although the data points may consist of thousands of features, they
may be described as a function of only a few underlying parameters.
• That is, the data points are actually samples from a low-dimensional manifold

that is embedded in a high-dimensional space.

• Goal: discover these lower dimensional manifolds
• These manifolds are most probably highly non-linear

Hypothesis

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds
• Goal: discover these lower dimensional manifolds

• These manifolds are most probably highly non-linear

• Hypothesis (1): Compute the coordinates of the input (e.g. a face
image) to this non-linear manifold -> data become separable

• Hypothesis (2): Semantically similar things lie closer together than
semantically dissimilar things

Hypothesis (1) -> existence of functional
mapping
• High-dimensional data (e.g. faces) lie in lower dimensional manifolds

• So there should be a (non-linear) function mapping from 3d space to
2d space, on which the data can be linearly separable.

Every point
represents an
input sample.

Hypothesis (2) -> some existing dimensional
reduction methods

It is not linear, but can
be largely separated
with a dimensionality
much less than 28*28

Hypothesis (2) -> some existing dimensional
reduction methods

PCA (Principle
Component Analysis),
2-dimensional

The digits manifolds

• There are good features and bad features, good manifold
representations and bad manifold representations

• 28 pixels x 28 pixels = 784 dimensions

Difficulties of simply using dimensionality
reduction or kernel
• Raw data live in huge dimensionalities

• Semantically meaningful raw data prefer lower dimensional manifolds
• Which still live in the same huge dimensionalities

• Can we discover this manifold to embed our data on?

End-to-end learning of feature hierarchies

• A pipeline of successive modules

• Each module’s output is the input for the next module

• Modules produce features of higher and higher abstractions
• Initial modules capture low-level features (e.g. edges or corners)

• Middle modules capture mid-level features (e.g. circles, squares, textures)

• Last modules capture high level, class specific features (e.g. face detector)

• Preferably, input as raw as possible
• Pixels for computer vision, words for NLP

Convolutional networks in a nutshell

Feature visualization by CNN

Why learn the features?

• Manually designed features
• Often take a lot of time to come up with and implement
• Often take a lot of time to validate
• Often they are incomplete, as one cannot know if they are optimal for the

task

• Learned features
• Are easy to adapt
• Very compact and specific to the task at hand
• Given a basic architecture in mind, it is relatively easy and fast to optimize

• Time spent for designing features now spent for designing
architectures

