Introduction to Tensorflow

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

- Overview of Machine Learning
- Traditional Machine Learning Algorithms
- Deep Learning
 - Introduction
 - Functional view & features
 - Forward and backward computation
 - CNNs

Today's topic

- Where learning is used?
- Introduction to Tensorflow
- Example: Linear Regression in TensorFlow

Perception-Cognition-Action Loop

Teaching content: traditional learning, deep learning

Perception

Visual Recognition

Voice Recognition

Teaching content: Probabilistic graphical models

Cognition by Probabilistic Inference

Q. how to automatically infer the disease (e.g., lung disease, cold, etc) from the symptoms (e.g., smokes, shortness of breath, chest pain, cough, fever, etc)?

Note: Symptoms obtained from perception.

Teaching content: in other modules, e.g., COMP111, COMP222

Action by Planning

After cognition, we may use the obtained knowledge to react to the environment

Q: in the factory floor as shown in the left diagram, how many robots is needed to patrol the area? and how to plan their activities?

What's left?

Introduction to Tensorflow

Deep-Learning Package Design Choices

- Model specification:
 - Configuration file (e.g. Caffe, DistBelief, CNTK) versus
 - programmatic generation (e.g. Torch, Theano, Tensorflow)
- For programmatic models, choice of high-level language:
 - Lua (Torch) vs. Python (Theano, Tensorflow) vs others.
- We chose to work with python because of rich community and library infrastructure.

I used these two

What is TensorFlow?

- TensorFlow is a deep learning library open-sourced by Google.
- But what does it actually do?
 - TensorFlow provides primitives for defining functions on tensors and automatically computing their derivatives.

But what's a Tensor?

• Formally, tensors are multilinear maps from vector spaces to the real numbers (V vector space, and V* dual space)

$$f: \underbrace{V^* \times \cdots V^*}_{p \text{ copies}} \times \underbrace{V \times \cdots V}_{q \text{ copies}} \to \mathbb{R}$$

A scalar is a tensor $(f : \mathbb{R} \to \mathbb{R}, f(e_1) = c)$ A vector is a tensor $(f : \mathbb{R}^n \to \mathbb{R}, f(e_i) = v_i)$ A matrix is a tensor $(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, f(e_i, e_j) = A_{ij})$

• Common to have fixed basis, so a tensor can be represented as a multidimensional array of numbers.

TensorFlow vs. Numpy

- Few people make this comparison, but TensorFlow and Numpy are quite similar. (Both are N-d array libraries!)
- Numpy has Ndarray support, but doesn't offer methods to create tensor functions and automatically compute derivatives (+ no GPU support).

Simple Numpy Recap

```
In [23]: import numpy as np
```

```
In [24]: a = np.zeros((2,2)); b = np.ones((2,2))
```

```
In [25]: np.sum(b, axis=1)
Out[25]: array([ 2., 2.])
```

```
In [26]: a.shape
Out[26]: (2, 2)
```

```
In [27]: np.reshape(a, (1,4))
Out[27]: array([[ 0., 0., 0., 0.]])
```


Numpy to TensorFlow Dictionary

Numpy	TensorFlow
<pre>a = np.zeros((2,2)); b = np.ones((2,2))</pre>	a = tf.zeros((2,2)), b = tf.ones((2,2))
<pre>np.sum(b, axis=1)</pre>	<pre>tf.reduce_sum(a,reduction_indices=[1])</pre>
a.shape	a.get_shape()
np.reshape(a, (1,4))	tf.reshape(a, (1,4))
b * 5 + 1	b * 5 + 1
np.dot(a,b)	tf.matmul(a, b)
a[0,0], a[:,0], a[0,:]	a[0,0], a[:,0], a[0,:]

TensorFlow requires explicit evaluation!

```
In [37]: a = np.zeros((2,2))
```

```
In [38]: ta = tf.zeros((2,2))
```

```
In [39]: print(a)
[[ 0. 0.]
[ 0. 0.]]
```

```
In [40]: print(ta)
Tensor("zeros_1:0", shape=(2, 2), dtype=float32)
```

```
In [41]: print(ta.eval())
[[ 0. 0.]
[ 0. 0.]]
```

TensorFlow computations define a computation graph that has no numerical value until evaluated!

TensorFlow Session Object (1)

 "A Session object encapsulates the environment in which Tensor objects are evaluated"

```
In [20]: a = tf.constant(5.0)
In [21]: b = tf.constant(6.0)
                                                       c.eval() is just syntactic sugar for
                                                       sess.run(c) in the currently active
In [22]: c = a * b
                                                       session!
In [23]: with tf.Session() as sess:
   ....: print(sess.run(c))
   ....: print(c.eval())
   ....
30.0
30.0
```

TensorFlow Session Object (2)

- tf.InteractiveSession() is just convenient syntactic sugar for keeping a default session open in ipython.
- sess.run(c) is an example of a TensorFlow Fetch. Will say more on this soon

Tensorflow Computation Graph

- "TensorFlow programs are usually structured into
 - a construction phase, that assembles a graph, and
 - an execution phase that uses a session to execute ops in the graph."
- All computations add nodes to global default graph

TensorFlow Variables (1)

- "When you train a model you use variables to hold and update parameters. Variables are in-memory buffers containing tensors"
- All tensors we've used previously have been constant tensors, not variables

TensorFlow Variables (2)

sess.run(tf.initialize_all_variables())
print(sess.run(W2))
....:

```
[[ 1. 1.]
[ 1. 1.]]
[[ 0. 0.]
[ 0. 0.]]
```

Note the initialization step tf. initialize_all_variables()

TensorFlow Variables (3)

• TensorFlow variables must be initialized before they have values! Contrast with constant tensors

```
Variable objects can be
initialized from constants or
random values
In [39]: R = tf.Variable(tf.random_normal((2,2)), name="random_weights")
In [40]: with tf.Session() as sess:
...: sess.run(tf.initialize_all_variables())
...: print(sess.run(W))
...: print(sess.run(R))
....: Initializes all variables with
specified values.
```

Updating Variable State

```
In [63]: state = tf.Variable(0, name="counter")
In [64]: new_value = tf.add(state, tf.constant(1)) <--</pre>
                                                             Roughly new_value = state + 1
                                                             Roughly state = new value
In [65]: update = tf.assign(state, new value) +
                                                             Roughly
In [66]: with tf.Session() as sess:
                                                              state = 0
            sess.run(tf.initialize_all_variables())
   ....
   ....: print(sess.run(state))
                                                              print(state)
   ....: for _ in range(3):
                                                              for in range(3):
                sess.run(update)
   ....
                                                                state = state + 1
                print(sess.run(state))
   . . . . :
                                                                print(state)
   . . . . :
0
1
2
3
```

Fetching Variable State (1)

Calling sess.run(var) on a tf.Session() object retrieves its value. Can retrieve multiple variables simultaneously with sess.run([var1, var2]) (See Fetches in TF docs)

Fetching Variable State (2)

Inputting Data

- All previous examples have manually defined tensors. How can we input external data into TensorFlow?
- Simple solution: Import from Numpy:

Placeholders and Feed Dictionaries (1)

- Inputting data with tf.convert_to_tensor() is convenient, but doesn't scale.
- Use tf.placeholder variables (dummy nodes that provide entry points for data to computational graph).
- A feed_dict is a python dictionary mapping from tf. placeholder vars (or their names) to data (numpy arrays, lists, etc.).

Placeholders and Feed Dictionaries (2)

```
In [96]: input1 = tf.placeholder(tf.float32)
                                                              Define tf.placeholder
                                                              objects for data entry.
In [97]: input2 = tf.placeholder(tf.float32)
In [98]: output = tf.mul(input1, input2)
In [99]: with tf.Session() as sess:
                print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
   ....
   . . . . :
[array([ 14.], dtype=float32)]
                                 Fetch value of output
                                                               Feed data into
                                 from computation graph.
                                                               computation graph.
```

Placeholders and Feed Dictionaries (3)

Variable Scope (1)

- Complicated TensorFlow models can have hundreds of variables.
 - tf.variable_scope() provides simple name-spacing to avoid clashes.
 - tf.get_variable() creates/accesses variables from within a variable scope.

Variable Scope (2)

• Variable scope is a simple type of namespacing that adds prefixes to variable names within scope

```
with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
assert v.name == "foo/bar/v:0"
```

Variable Scope (3)

• Variable scopes control variable (re)use

```
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
    tf.get_variable_scope().reuse_variables()
    v1 = tf.get_variable("v", [1])
assert v1 == v
```

• You'll need to use reuse_variables() to implement RNNs in homework

Ex: Linear Regression in TensorFlow (1)

import numpy as np
import seaborn

Define input data
X_data = np.arange(100, step=.1)
y_data = X_data + 20 * np.sin(X_data/10)

Plot input data
plt.scatter(X_data, y_data)

Ex: Linear Regression in TensorFlow (2)

Define data size and batch size n_samples = 1000 batch_size = 100

```
# Tensorflow is finicky about shapes, so resize
X_data = np.reshape(X_data, (n_samples,1))
y_data = np.reshape(y_data, (n_samples,1))
```

```
# Define placeholders for input
X = tf.placeholder(tf.float32, shape=(batch_size, 1))
y = tf.placeholder(tf.float32, shape=(batch_size, 1))
```

Ex: Linear Regression in TensorFlow (3)

Ex: Linear Regression in TensorFlow (4)

```
# Sample code to run one step of gradient descent
                                                                  Note TensorFlow scope is
In [136]: opt = tf.train.AdamOptimizer()
                                                                  not python scope! Python
                                                                  variable Loss is still visible.
In [137]: opt_operation = opt.minimize(loss)
In [138]: with tf.Session() as sess:
               sess.run(tf.initialize all variables())
   . . . . . . :
               sess.run([opt operation], feed dict={X: X data, y: y data})
   . . . . . . .
   . . . . . .
                                                 But how does this actually work under the
                                                 hood? Will return to TensorFlow
```

computation graphs and explain.

Ex: Linear Regression in TensorFlow (4)

```
# Sample code to run full gradient descent:
# Define optimizer operation
opt_operation = tf.train.AdamOptimizer().minimize(loss)
```

```
with tf.Session() as sess:
    # Initialize Variables in graph
    sess.run(tf.initialize_all_variables())
    # Gradient descent loop for 500 steps
    for _ in range(500):
        # Select random minibatch
        indices = np.random.choice(n_samples, batch_size)
        X_batch, y_batch = X_data[indices], y_data[indices]
        # Do gradient descent step
        _, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})
```


Ex: Linear Regression in TensorFlow (6)

Concept: Auto-Differentiation

- Linear regression example computed L² loss for a linear regression system. How can we fit model to data?
 - tf.train.Optimizer creates an optimizer.
 - tf.train.Optimizer.minimize(loss, var_list) adds optimization operation to computation graph.
- Automatic differentiation computes gradients without user input!

TensorFlow Gradient Computation

- TensorFlow nodes in computation graph have attached gradient operations.
- Use backpropagation (using node-specific gradient ops) to compute required gradients for all variables in graph.

TensorBoard

- TensorFlow has some neat built-in visualization tools (TensorBoard).
- We won't use TensorBoard for assignments, but encourage you to check it out for your projects.