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• Briefing about Assignment 2



Up to now, 

• Overview of Machine Learning

• Traditional Machine Learning Algorithms

• Deep learning

• Probabilistic Graphical Models
• Introduction



Topics 

• Recap: Conditional Independence

• Markov Assumption and Definition of I-Maps

• I-Map to Factorization 

• Factorization to I-Map 

• Perfect Map 



Graphs and Distributions 

• Relating two concepts: 
• Conditional Independencies in distributions 

• Conditional Independencies in graphs 

• I-Map is a relationship between the two 



Recap: Conditional Independence



Recap: Conditional Independence

• Two variables X and Y are conditionally independent given Z if
• for all values x,y,z

• That is, learning the values of Y does not change prediction of X once we 
know the value of Z

• notation:



Recap: Conditional Independence

• X, Y independent            or 

if and only if: 

• X and Y are conditionally independent given Z: 

if and only if: 



Independencies in a Distribution 

• Let P be a distribution over X 

• Define   to be the set of conditional independence assertions of 
the form that hold in P 

• Example: 

X Y P(X,Y)

x0 y0 0.08

x0 y1 0.32

x1 y0 0.12

x1 y1 0.48



Independencies in a Distribution 

• Let P be a distribution over X 

• Define   to be the set of conditional independence assertions of 
the form that hold in P 

• Example: 

X Y P(X,Y)

x0 y0 0.10

x0 y1 0.16

x1 y0 0.64

x1 y1 0.10

X Y P(X,Y)

x0 y0 0.08

x0 y1 0.32

x1 y0 0.12

x1 y1 0.48

How about this 
distribution?



Markov Assumption 

and Definition of I-Map



Markov Assumption

• We now make this independence 
assumption more precise for directed 
acyclic graphs (DAGs)

• Each random variable X, is 
independent of its non-descendents, 
given its parents Pa(X)

• Formally, 



Can we read off the independencies from a 
graph? 



Independencies in a Graph 

• Graph G with CPDs  is equivalent to a set of independence assertions

• Local Conditional Independence Assertions (starting from leaf nodes):

• Parents of a variable shield it from probabilistic influence
• Once value of parents known, no influence of ancestors

• Information about descendants can change beliefs about a node 



Definition of I-MAP 

• Let G be a graph associated with a set of independencies I(G) 

• Let P be a probability distribution with a set of independencies I(P) 

• Then G is an I-Map of P if I(G)⊆I(P) 
• Intuitively, a DAG G is an I-Map of a distribution P if all Markov assumptions 

implied by G are satisfied by P

• From direction of inclusion 
• distribution can have more independencies than the graph 

• Graph does not mislead in independencies existing in P 
• Any independence that G asserts must also hold in P 



Example of I-MAP 

G0 encodes 
X⊥Y or

G1 encodes no 
Independence, or

G2 encodes no 
Independence, or



Example of I-MAP 

G0 encodes 
X⊥Y or

G1 encodes no 
Independence, or

G2 encodes no 
Independence, or

If G is an I-map of P then it captures some of the independences, not all 



Example of I-MAP 

G0 encodes 
X⊥Y or

G1 encodes no 
Independence, or

G2 encodes no 
Independence, or

If G is an I-map of P then it captures some of the independences, not all 



Exercise 

• Please draw an I-Map for each of the following distributions: 

x y P(x,y)

0 0 0.25

0 1 0.25

1 0 0.25

1 1 0.25

x y P(x,y)

0 0 0.2

0 1 0.3

1 0 0.4

1 1 0.1



I-map to Factorization 



What is factorization? 

• factorization or factoring consists of writing a number or 
another mathematical object as a product of several factors, usually 
smaller or simpler objects of the same kind

• In our context, for example: 

or 



I-map to Factorization 

• Consider Joint distribution
• From chain rule of probability 

• Relies on no assumptions, also not very helpful
• Last factor requires evaluation of 24 conditional probabilities 

Gstudent



Factorization Theorem

• Thm: if G is an I-Map of P, then


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I-map to Factorization 

• Start from 

• Assume G is an I-map
• Apply conditional independence assumptions induced from the graph

• we have                         

• and thus  

• Therefore, we have 

We can go from graphs to factorization of P 



I-map to Factorization 

• Start from 

• We have 

• And thus 

• Therefore, we have 

We can go from graphs to factorization of P 



I-map to Factorization 

• Start from 

• We have 

• And thus 

• Therefore, we have 

We can go from graphs to factorization of P 



Exercise

• Please give the factorization of the 
distribution P according to the I-Map 
shown in the figure. 

Earthquake

Radio

Burglary

Alarm

Call



Factorization to I-map 



Factorization to I-map 

• We can also show the opposite

Thm

 G is an I-Map of P

Proof (Outline)   Assume we have graph G, we need to prove 
independence  
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P(X,Y,Z) = P(X)P(Z|X)P(Y|X)



Factorization to I-map 

• We have seen that we can go from the independences encoded in G, 
i.e., I(G), to Factorization of P 

• Conversely, We have factorization and associated G. We can show
that conditional independences from I(G) are all in I(P). 



Example that independences in G hold in P 

• P is defined by set of CPDs

• Starting from factorization and its associated graph

• Consider independences for S in G, i.e., 

• We need to show that 
Exercise?



Perfect Map 



Perfect Map 

• I-map
• All independencies in I(G) present in I(P) 
• Trivial case: all nodes interconnected 

• D-Map
• All independencies in I(P) present in I(G) 
• Trivial case: all nodes disconnected 

• Perfect map 
• Both an I-map and a D-map 
• Interestingly not all distributions P over a given set of variables can be 

represented as a perfect map 
• Venn Diagram where D is set of distributions that can be represented as a perfect map


