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* Briefing about Assignment 2



Up to now,

* Overview of Machine Learning

* Traditional Machine Learning Algorithms
* Deep learning

* Probabilistic Graphical Models

e |ntroduction



Topics

* Recap: Conditional Independence

* Markov Assumption and Definition of [-Maps
* |-Map to Factorization

* Factorization to I-Map

e Perfect Map



Graphs and Distributions

* Relating two concepts:
* Conditional Independencies in distributions
* Conditional Independencies in graphs

* |-Map is a relationship between the two



Recap: Conditional Independence



Recap: Conditional Independence

* Two variables X and Y are conditionally independent given Z if
e P X=z|Y =y,Z=2)=P(X =z|Z =2z) forallvalues x,y,z

* That is, learning the values of Y does not change prediction of X once we
know the value of Z

* notation: (X 1Y |Z)



Recap: Conditional Independence

* X, Yindependent X_1Y or X1Y|}

if and only if:
Y ey Pla,y) = P(2)P(y)

* X and Y are conditionally independent given Z: X 1Y |Z
if and only if:

Ve,y,z . P(x,y|z) = P(x|z)P(y|z)



Independencies in a Distribution

e Let P be a distribution over X

 Define I(P) to be the set of conditional independence assertions of
the form (XLY|Z) that hold in P

* Example:
X and Y are independent in P, e.g.,

X Y | PXY)
v | 008 | P(x!)=0.48+0.12=0.6
v 0.32 P(y")=0.324+0.48=0.8
yO 0.12 P(z!,y")=0.48=0.6x0.8
y

1 0.48

Thus (XL Y|4) EI(P)



Independencies in a Distribution

e Let P be a distribution over X

 Define I(P) to be the set of conditional independence assertions of
the form (XLY|Z) that hold in P

° Examp|63 How about this
X and Y are independent in P, e.g., distribution?
X Y | Py X Y | Py
X0 v | 008 | P(x)=0.48+0.12=0.6 X0 v | 0.10
e y? 0.32 P(y1)=0.32+0.48=0.8 %0 v 0.16
x1 VO 0.12 P($1;y1)=0.48=0.6)(0.8 x1 VO 0.64
x! y? 0.48 x! y? 0.10

Thus (XL Y|4) EI(P)



Markov Assumption
and Definition of I-Map



Markov Assumption

* We now make this independence
assumption more precise for directed
acyclic graphs (DAGs)

 Each random variable X, is
independent of its non-descendents,
given its parents Pa(X)

* Formally,
(X LNonDesc(X)|pa(X))

! Ancestor |
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Can we read off the independencies from a
graph?
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Independencies in a Graph

0.6 | 0.4

* Graph G with CPDs is equivalent to a set of independence assertions

gl

P(D,1,G,S,L)=P(D)P(1)P(GID,[)P(SII)P(L1G) B

ild® oo
il,d' o5 |03

* Local Conditional Independence Assertions (starting from leaf nodes):

231099 | 0.01

I(G)={(L 11,D,S1G), Lis conditionally independent of all other nodes given parent G
(S LD,G,LII), Sis conditionally independent of all other nodes given parent 7
(GLSID,D), Even given parents, G is NOT independent of descendant L
(IL Dl ¢), Nodes with no parents are marginally independent
(DLILS|¢)} D is independent of non-descendants 7 and S

* Parents of a variable shield it from probabilistic influence
* Once value of parents known, no influence of ancestors

* Information about descendants can change beliefs about a node



Definition of I-MAP

* Let G be a graph associated with a set of independencies /(G)
* Let P be a probability distribution with a set of independencies I(P)

* Then Gis an I-Map of P if I(G)E/(P)
* Intuitively, a DAG G is an I-Map of a distribution P if all Markov assumptions
implied by G are satisfied by P
* From direction of inclusion
* distribution can have more independencies than the graph

* Graph does not mislead in independencies existing in P
* Any independence that G asserts must also hold in P



Example of I-MAP

©
O

G, encodes G, encodes no G, encodes no
XLY or Independence, or Independence, or
I(Gy) = {X LY} I(G1) =0 I(G2) =10




Example of I-MAP

©
O

G, encodes
XL1Y or

I(Go) ={X 1Y}

>
s N

H“"-—u
- Bl
o
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G, encodes no
Independence, or
I(G1) =0

P(X,Y)
0.08

0.32
0.12
0.48

X and Y are independent
in P, e.q.,

Gy is an |I-map of P
G, is an |-map of P
G, is an |-map of P

G, encodes no

Independence, or
I(Gz) = @

If G is an I-map of P then it captures some of the independences, not all



Example of I-MAP

©
O

G, encodes G, encodes no
XLYor Independence, or
I(Go) ={X 1Y} I(G1) =0
X and Y are not
X Y PXYy independent in P
x0 y0 04 Thus |(X LY) e I(P)
x0 yl 0.3
Gp is not an |I-map of P
I 0 0
i B G, is an I-map of P
xtoyl 01 G, is an |-map of P

G, encodes no

Independence, or
I(Gz) = @

If G is an I-map of P then it captures some of the independences, not all



Exercise

* Please draw an |-Map for each of the following distributions:

X y P(x,y) X y P(x,y)
0 0 0.25 0 0 0.2
0 1 0.25 0 1 0.3
1 0 0.25 1 0 0.4
1 1 0.25 1 1 0.1




I-map to Factorization



What is factorization?

* factorization or factoring consists of writing a number or
another mathematical object as a product of several factors, usually
smaller or simpler objects of the same kind

* In our context, for example:

P(D,I,G,S,L)= P(D)P(I)P(G | D,[)P(S| )P(L|G)
or
P(I,D,G,L,S) = P(I)P(D|I)P(G|I, D)P(L|I, D,G)P(S|I, D, G, L)



l-map to Factorization

e Consider Joint distribution P(I,D,G, L, S)
* From chain rule of probability
P(I,D,G,L,S)=PI)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G, L)

* Relies on no assumptions, also not very helpful
* Last factor requires evaluation of 24 conditional probabilities
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Factorization Theorem

* Thm: if G is an I-Map of P, then



l-map to Factorization

e Start from P(I,D,G,L,S)= P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G, L)

* Assume G is an I-map
* Apply conditional independence assumptions induced from the graph

(ﬁhgﬁcu!@t} f:f_}_:}eﬂigen_gg;)

* we have (D1I) € I(G) C I(P) \\}&4/ - \\__L__
» and thus P(D|I) = P(D) &-E"fiﬂ? Csar >
 Letter

* Therefore, we have
P(I,D,G,L,S)=P(I)P(D)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)

We can go from graphs to factorization of P



l-map to Factorization

e Start from P(I,D,G,L,S)= P(I)P(D|I)P(G|I, D)P(L|I,D,G)P(S|I,D,G, L)

iy > Cleligenee
* We have (LL1I,D|G) € I(G) C I(P) AN
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* Therefore, we have

P(I,D,G,L,S) = P(I)P(D)P(G|I, D)P(L|G)P(S|I,D,G, L)

We can go from graphs to factorization of P



l-map to Factorization

» Start from P(I,D,G,L,S) = P(I)P(D)P(G|I, D)P(L|G)P(S|I,D,G, L)

» We have (SLD,G,L|I) € I(G) C I(P) Oipaty> - eligmes
* And thus P(S|I,D,G,L) = P(S|I) NN

(_Grade > (_saT D

—
(_ Letter H}

* Therefore, we have S

P(,D,G,L,S) = P(I)P(D)P(G|I, D)P(L|G)P(S|I)

We can go from graphs to factorization of P



Exercise

Earthquake

* Please give the factorization of the
distribution P according to the I-Map
shown in the figure.




Factorization to |-map



Factorization to [-map

* We can also show the opposite
Thm

Proof (Outline) Assume we have graph G, we need to prove
independence

bz X y)- PXY.Z) PPV IXPEZIX) C’[D_’@

P(X.Y) P(X)P(Y | X) P(X,Y,Z) = P(X)P(Z|X)P(Y|X)



Factorization to [-map

* We have seen that we can go from the independences encoded in G,
i.e., I(G), to Factorization of P

e Conversely, We have factorization and associated G. We can show
that conditional independences from I(G) are all in I(P).



Example that independences in G hold in P

* Pis defined by set of CPDs P> g

——

* Starting from factorization and its associated graph \_\_\E{/ “““\:
P(D,I1,G,S,L) = P(I)P(D)P(G|I,D)P(L|G)P(S|I) Cfrf{e_j} c:i;
etter

* Consider independences for Sin G, i.e.,
P(SL1D,G, L|T)

* We need to show that P(S|I,D,G,L) = P(S|]) \

Exercise?



Perfect Map



Perfect Map

* |-map
* All independencies in I(G) present in I(P)
* Trivial case: all nodes interconnected

(6=}

* D-Map

* All independencies in I(P) present in I(G) O

* Trivial case: all nodes disconnected O O
* Perfect map (A LB

* Both an I-map and a D-map

* Interestingly not all distributions P over a given set of variables can be
represented as a perfect map

* Venn Diagram where D is set of distributions that can be represented as a perfect map

-



