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* Probabilistic Graphical Models el
* Introduction
* |-Map, Perfect Map

* Reasoning Patterns (Causal Reasoning, Evidential Reasoning, Intercausal
Reasoning)




Recap: Local Independencies in a BN

* ABN G is a directed acyclic graph whose nodes represent random
variables X;,..,X,.

* Let Pa(X;) denote parents of X;in G
* Let Non-Desc(X;) denote variables in G that are not descendants of X;

* Then G encodes the following set of conditional independence
assumptions denoted /I(G)

* For each X:: (X; L Non-Desc(X;)| Pa(X)))
* Also known as Local Markov Independencies



Recap: Local Independencies

e Graph G with CPDs is equivalent to a set of independence assertions

P(D,I1,G,S,L)=P(D)P()P(G | D,[)P(SIDP(LIG) o=

e Local Conditional Independence Assertions (starting from leaf nodes):
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I(G)={(LL1,D,SIG), Lisconditionallyindependent of all other nodes given parent G

(SLD,G,LII), Sisconditionallyindependent of all other nodes given parent / Can we have the
(GLSID,1), Even given parents, G is NOT independent of descendant L following
(IL Dl g¢), Nodes with no parents are marginally independent conditional
(DLI1,S1¢)} D is independent of non-descendants 7 and § independence?
* Parents of a variable shield it from probabilistic influence DJ‘SlG
* Once value of parents known, no influence of ancestors D1S|I

* Information about descendants can change beliefs about a node D1S|G,I



Recap:
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intelligence

P(d’[g3)=0.629

P(i1[19)=0.14 P(it|1°,g3)=
A weak letter drastically After knowing low
decreases the grade, a weak letter
probability of high won’t make the IJ_L | G
intelligence probability of high

intelligence lower.



Independencies in Graphs

* A graph structure G encodes a set of conditional independence
assumptions /(G)

* Are there other independencies that we can read-off?

* i.e., are there other independencies that hold for every distribution that
factorizes over G?

e D-separation holds the key



Topics

* Why D-separation?
* What is D-separation?

* Algorithm for D-separation (extended materials)



Why D-separation?



Dependencies and Independencies

 Crucial for understanding network behaviour

* Independence properties are important for answering queries

e Exploited to reduce computation of inference
e Adistribution P that factorizes over G satisfies I(G)



What is D-separation?



D-separation

 Study independence properties for subgraphs (connected triples)

* Analyze complex cases in terms of triples along paths between
variables

* D-separation: a condition / algorithm for answering such queries

* Definition: A procedure d-sep(X_LY|Z) that given a DAG G, and
sets X, ¥, and Z returns either yes or no, where d-seps(X LY |Z) = Yes
iff (XLY|Z) follows from I(G)



Direct Connection between Xand Y

 Xand Y are correlated regardless of
any evidence about any other variables

* E.g., Feature Y and character X are

correlated
* Grade G and Letter L are correlated T T
* If Xand Y are directly connected we N ST
can get examples where they influence o TN
each other regardless of Z R B
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Indirect Connection between Xand Y

 Four cases where X and Y are connected via Z

* (a). Indirect causal effect x) ()
* (b). Indirect evidential effect
Z) xg z (X) Y)
* (c). Common cause |
* (d). Common effect gy @ & @O @
(a) (b) (c) (d)

* We will see that first three cases are similar while fourth case (V-
structure) is different



1. Indirect Causal Effect: X->Z->Y

o\
e Cause X cannot influence effect Yif Z I/
observed (2)
* Observed Z blocks influence
* If Grade observed then | does not influence L \(b)j

* Intelligence influences Letter if Grade is

unobserved
L 4 I Z = Grade
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Causal Chains

= This configuration is a “causal chain” Guaranteed X independent of Z given Y?

EL}»“'\ W | Y )f‘-j P(z|z,y) = PIEZ:?;/;)
= _ PONPWINP ()
TR ST

= P(z|y)

Yes!

P(CB, Yy, Z) — P(:B)P(y|:B)P(z|y) Evidence along the chain “blocks” the

influence (makes “inactive”)

X: Low pressure Y: Rain Z: Traffic



2. Indirect Evidential Effect: Y->Z->X

* Evidence X can influence Y via Z only if Zis unobserved
* Observed Z blocks influence

* If Grade unobserved, Letter influences assessment of Intelligence

* Dependency is a symmetric notion
 XLY does not hold then YLX does not hold either




3. Common Cause: X<-Z->Y

* X can influence Y if and only if Zis not observed
* Observed Z blocks

 Grade is correlated with SAT score

* But if Intelligence is observed then SAT provides no additional
information
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Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?

Y: Project Project P(z,y z)
Due! P . 'y I

@ P(Np(a:\@mzw)
1:5
X: Forums ] Yes!

pusy —E Z: Lab full

P(xz,y,z) = P(y)P(z|y) P(z|y)

Observing the cause blocks influence
between effects. (makes inactive)



4. Common Effect (V-structure) X->7<-Y

* Influence cannot flow on trail X->Z<-Y if Z is not observed
* Observed Z enables
e Opposite to previous 3 cases (Observed Z blocks)

* When G not observed / and D are independent

* When G is observed, | and D are correlated AL
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Common Effect

= Last configuration: two causes of one = Are Xand Y independent?

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

they are not correlated

X: Raining Y: Ballgame
[?L’SL ‘ﬁﬂ = Still need to prove they must be (try it!)

> = Are Xand Y independent given Z?

* No: seeing traffic puts the rain and the ballgame in
competition as explanation.

» This is backwards from the other cases

* Observing an effect activates influence between
possible causes. (makes active!)

Z: Traffic



Recall: Common in Human Reasoning

* Binary Variables
* Fever & Sore Throat can be caused by mono and flu

* When flu is diagnosed probability of mono is reduced (although mono
could still be present)

* It provides an alternative explanation of symptoms

P(m?[s')>P(m?[sf})

Fever &
Sore Throat
S



4. Common Effect (V-structure) X->7<-Y

e Grade is not observed

 Observe weak letter L
 Which indicates low Grade
e Suffices to correlate D and /

Not child, but
descendants
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Example: Common Effect

P(X)=0.8
X: Raining Y: Ballgame X Y Z P
P T | T[T 0.076
! T F | oo
N T|F|T 0.576
@ @ T|F|F 0.144
ﬁ{/l [v/ff Fl 1| 1] o162
Sz > F| T|F 0.002
[5 FlF|T 0.090
Z: Traffic Yy ’ F F F 0.009
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Example: Common Effect

P(X)
X: Raining Y: Ballgame

m &

w:g

©)

N

Z: Traffic ‘ !'

0.076

0.004

0.576

0.144

0.162

0.002

0.090
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Example: Common Effect

P(X) = 0.

X: Raining

#

Yy g

Z: Traffic

8

Y: Ballgame

@)

Y2

1.‘-1

0.076

0.004

0.576

0.144

0.018

0.002

0.090

MMM M M| A A | A A X

M| Al A M| | A H]| <

MmHA|mMm|A| mM|A| M| A N

0.009

P(X|Y) = 0.076+0.004
0.076+0.004+0.018+0.002

0.08/0.1
0.8

XandY are
independent!



But Suppose Also Know Z=T

P(X) =
X: Raining

Y: Ballgame

m &

Z: Traffic

{M:i'
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h’)f’

\u!l

x| v |z P
) erareroiaros | 1| T | T | oom
= 0.652/0.76 T|T|F| 0004
=0.858 T|F|T]| o057

T F|F| o144

FlT | 7| o018

P(X[Y,Z) = 0.076 F|T|F| 0002
0.076+ 0.018 F|F|T| o080

= 0.8085 FlF|F]| o000

X and Y are not independent given Z!




Summary of Indirect Connection

e Causal trail: X->Z->Y: active iff Z not observed
e Evidential Trail: X<-Z<-Y: active iff Z is not observed
e Common Cause: X<-Z->Y: active iff Z is not observed

e Common Effect: X->Z<-Y: active iff either Z or one of its descendants
is observed

What is the general case?



The General Case

* General question: in a given BN, are two variables independent (given
evidence)?

* Solution: analyze the graph

* Any complex example can be broken into repetitions of the three
canonical cases



D-Separation

o Query; X?, XJ|{X]€1, ceny an}?

* Check all (undirected) paths between X; and X
* |f one or more paths is active, then independence not guaranteed

Xi AX{ Xk, s Xi, }

e Otherwise (i.e. if all paths are inactive),
then “D-separated” = independence is guaranteed

Xil Xi{ Xwyy ey Xk, }




Active Trail

e When influence can flow from X to Y via Z then
trail X—Z—Y is active

* Example: Consider Trail D->G<-[->S

* When observed

* Z = {0} trail is inactive because v-structure D->G<-/is
inactive

« Z ={L}: active (D->G<-I active) since L is descendant of G
« Z ={L,I} :inactive because observing | blocks G<-I->S




D-separation definition

e Let X,Y and Z be three sets of nodes in G.

* X and Y are d-separated given Z denoted d-sepg (X LY|Z) if there is no
active trail between any node XeX and YEY given Z

* That is, nodes in X cannot influence nodes in Y

* Provides notion of separation between nodes in a directed graph
(“directed” separation)



Independencies from D-separation

* Definition 0 ‘
I(G) = {(XLY|Z) : d-seps(X LY|2)}

* Also called Global Markov independencies
* Note: Derived purely from graph (using trails) Q

* Example: Global independence using D-separation
« (LLI,D,S|G) € I(G)

 Compare with /local independencies 0
* For each X;: (X; L Non-Desc(X,) | Pa(X))
{(LLI, D, S|G),(SL1D,G,L|I),(G,S|D,I),(DLI, S|0)} € I(G)



Algorithm for D-Separation



Algorithm for D-Separation

* Enumerate all trails between X & Y is inefficient
* No. of trails is exponential with graph size

* Linear time algorithm has two phases
* Algorithm Reachable(G,X,Z) returns nodes reachable from X given Z
* Phase 1 (simple)

* Traverse bottom-up from leaves marking all nodes in Z or descendants in Z; to enable v-
structures

e Phase 2 (subtle)
* Traverse top-down from X to Y, stopping when blocked by a node



Structure Implications

* Given a Bayes net structure, can run d-separation algorithm to build a
complete list of conditional independences that are necessarily true
of the form

Xil Xi{ Xwyy -y Xk,

* This list determines the set of probability distributions that can be
represented



11 Il Phase |I: traverse active trails starting from X

12 L — {(X,1)} / (Nodedirection) to be visited

PS e u d O CO d e 13 V « (0 /I (Node,direction) marked as visited

14 R « @ /I Nodes reachable via active trail
. . 15 while L # 0
finding nodes reachable from 6 Siloct oume (Y, d) from L
. . . . 17 L~ L-{Y.,d
X given Z via active trails 18 if(Y.d) ¢ V
19 if Y ¢ Z then
20 R~ RU{Y} /'Y is reachable
Procedure Reachable ( 21 V — VU{(Y.d)} I Mark (Y,d) as visited
q' /I Bayesian network graph 22 ifd=1and Y & Z then // Trail up through Y active if Y not in Z
X, Il Source variable 23 for each Z € Pay
) & I/ Observations 24 L— LU{(Z,1)} /I Y’s parents to be visited from bottom
1 I/ Phase I: Insert all ancestors of Z into V & for cach Z € Chy
S o 26 L~ LU{(Z,])} IIY’s children to be visited from top
2 L «— Z |l Nodes to be visited ) )
3 Ae— 0 Jl Ancestors of Z 27 else if: d =| then // Trails down through Y
5 Select some Y from Z 29 /Il Downward trails to Y''s children are active
6 b= E={F) 30 for each Z € Chy
7 if Y ¢ A then 31 L — LU{(Z,|)} IIY’s children to be visited from top
8 L «— L UPay /I Y'’s parents need to be visited 32 if Y € A then // v-structure trails are active
9 A~ AU{Y} 1Y is ancestor of evidence 33 for each Z € Pay
34 L — LU{(Z,1)} Il Y’s parents to be visited from bottom

35 return R



Example for D-separation algorithm

e Task: Find all nodes reachable from X
 Assume that Yis observed, i.e., YEZ
e Assume algorithm first encounters Y via edge Y -> X

e Any extension of this trail is blocked by Y
* Trail X<-Z->Y<-W is not blocked by Y

* Thus when we encounter Y for the second time via the edge Z->Y we
should not ignore it

 Therefore after the first visit to Y we can mark it as visited

For trails coming from children of Y
Not for purpose of trails coming from parents of Y



l-Equivalence



-Equivalence

* Conditional independence assertion statements can be the same with
different structures

* Two graphs G; and G, are I- equivalent if I(G,)=I(G,)

 Skeleton of a BN graph G is an undirected graph with an edge for
every edge in G

* If two BN graphs have the same set of skeletons and v-structures then
they are l-equivalent

1V (x) () ( V (x) 7
7 X r X L
W) \Y) ) 4

Same skeleton
Same v-structure X=22Y€&Z



Bayes Nets Representation Summary

* Bayes nets compactly encode joint distributions

* Guaranteed independencies of distributions can be deduced from BN
graph structure

* D-separation gives precise conditional independence guarantees from
graph alone

* A Bayes’ net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its specific
distribution



