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Up to now, 

• Traditional Machine Learning Algorithms
• Deep learning
• Probabilistic Graphical Models
• Introduction
• I-Map, Perfect Map
• Reasoning Patterns (Causal Reasoning, Evidential Reasoning, Intercausal 

Reasoning)



Recap: Local Independencies in a BN 

• A BN G is a directed acyclic graph whose nodes represent random 
variables Xi,..,Xn. 
• Let Pa(Xi) denote parents of Xi in G 
• Let Non-Desc(Xi) denote variables in G that are not descendants of Xi

• Then G encodes the following set of conditional independence 
assumptions denoted Il(G) 
• For each Xi: (Xi ⊥ Non-Desc(Xi)| Pa(Xi)) 

• Also known as Local Markov Independencies 



Recap: Local Independencies 

• Graph G with CPDs  is equivalent to a set of independence assertions

• Local Conditional Independence Assertions (starting from leaf nodes):

• Parents of a variable shield it from probabilistic influence
• Once value of parents known, no influence of ancestors

• Information about descendants can change beliefs about a node 

Can we have the 
following 
conditional 
independence? 



P(i1)=0.3 P(i1|g3)=0.079 P(d1|g3)=0.629

P(i1|l0)=0.14 P(i1|l0,g3)=0.079

low grade drastically 
decreases the 
probability of high 
intelligence

low grade justifies the 
difficulty 

A weak letter drastically 
decreases the 
probability of high 
intelligence

After knowing low 
grade, a weak letter 
won’t make the 
probability of high 
intelligence lower.

Recap:



Independencies in Graphs 

• A graph structure G encodes a set of conditional independence 
assumptions I(G) 
• Are there other independencies that we can read-off? 
• i.e., are there other independencies that hold for every distribution that 

factorizes over G? 

• D-separation holds the key 



Topics 

• Why D-separation?
• What is D-separation?  
• Algorithm for D-separation (extended materials)



Why D-separation?



Dependencies and Independencies 

• Crucial for understanding network behaviour 
• Independence properties are important for answering queries 
• Exploited to reduce computation of inference 
• A distribution P that factorizes over G satisfies I(G) 



What is D-separation?



D-separation

• Study independence properties for subgraphs (connected triples) 
• Analyze complex cases in terms of triples along paths between 

variables
• D-separation: a condition / algorithm for answering such queries 

• Definition: A procedure               that given a DAG G, and 
sets X, Y, and Z returns either yes or no, where                                                  
iff follows from I(G)



Direct Connection between X and Y 

• X and Y are correlated regardless of 
any evidence about any other variables 
• E.g., Feature Y and character X are 

correlated 
• Grade G and Letter L are correlated 

• If X and Y are directly connected we 
can get examples where they influence 
each other regardless of Z 

Y

X



Indirect Connection between X and Y 

• Four cases where X and Y are connected via Z 
• (a). Indirect causal effect
• (b). Indirect evidential effect
• (c). Common cause 
• (d). Common effect

• We will see that first three cases are similar while fourth case (V-
structure) is different



1. Indirect Causal Effect: X->Z->Y

• Cause X cannot influence effect Y if Z 
observed 
• Observed Z blocks influence 

• If Grade observed then I does not influence L 
• Intelligence influences Letter if Grade is 

unobserved 



P(i1)=0.3 P(i1|g3)=0.079 P(d1|g3)=0.629

P(i1|l0)=0.14 P(i1|l0,g3)=0.079

low grade drastically 
decreases the 
probability of high 
intelligence

low grade justifies the 
difficulty 

A weak letter drastically 
decreases the 
probability of high 
intelligence

After knowing low 
grade, a weak letter 
won’t make the 
probability of high 
intelligence lower.

Recap:



Causal Chains 

Evidence along the chain “blocks” the 
influence (makes “inactive”) 



2. Indirect Evidential Effect: Y->Z->X 

• Evidence X can influence Y via Z only if Z is unobserved 
• Observed Z blocks influence

• If Grade unobserved, Letter influences assessment of Intelligence 
• Dependency is a symmetric notion 
• X⊥Y does not hold then Y⊥X does not hold either 



3. Common Cause: X<-Z->Y

• X can influence Y if and only if Z is not observed 
• Observed Z blocks 

• Grade is correlated with SAT score 
• But if Intelligence is observed then SAT provides no additional 

information 



Common Cause 

Observing the cause blocks influence 
between effects. (makes inactive) 



4. Common Effect (V-structure) X->Z<-Y 

• Influence cannot flow on trail X->Z<-Y if Z is not observed 
• Observed Z enables
• Opposite to previous 3 cases (Observed Z blocks) 

• When G not observed I and D are independent 
• When G is observed, I and D are correlated 



Common Effect 



Recall: Common in Human Reasoning 

• Binary Variables 
• Fever & Sore Throat can be caused by mono and flu 
• When flu is diagnosed probability of mono is reduced (although mono 

could still be present) 
• It provides an alternative explanation of symptoms 

P(m1|s1)>P(m1|s1,f1)



4. Common Effect (V-structure) X->Z<-Y 

• Grade is not observed 
• Observe weak letter L 
• Which indicates low Grade 
• Suffices to correlate D and I 

Not child, but 
descendants



Example: Common Effect 



Example: Common Effect 



Example: Common Effect 

X and Y are 
independent! 



But Suppose Also Know Z=T

X and Y are not independent given Z!



Summary of Indirect Connection

• Causal trail: X->Z->Y: active iff Z not observed 
• Evidential Trail: X<-Z<-Y: active iff Z is not observed
• Common Cause: X<-Z->Y: active iff Z is not observed
• Common Effect: X->Z<-Y: active iff either Z or one of its descendants 

is observed 

What is the general case? 



The General Case 

• General question: in a given BN, are two variables independent (given 
evidence)? 

• Solution: analyze the graph 

• Any complex example can be broken into repetitions of the three 
canonical cases 



D-Separation 

• Query:                                                 ?
• Check all (undirected) paths between        and
• If one or more paths is active, then independence not guaranteed 

• Otherwise (i.e. if all paths are inactive), 
then “D-separated” = independence is guaranteed 



Active Trail 

• When influence can flow from X to Y via Z then                                                          
trail X—Z—Y is active 

• Example: Consider Trail D->G<-I->S
• When observed 

• : trail is inactive because v-structure  D->G<-I is 
inactive 

• : active (D->G<-I active) since L is descendant of G 
• : inactive because observing I blocks G<-I->S 



D-separation definition 

• Let X,Y and Z be three sets of nodes in G. 
• X and Y are d-separated given Z denoted    if there is no 

active trail between any node X∈X and Y∈Y given Z 
• That is, nodes in X cannot influence nodes in Y 
• Provides notion of separation between nodes in a directed graph 

(“directed” separation) 

d-sepG(X?Y |Z)
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Independencies from D-separation 

• Definition 

• Also called Global Markov independencies
• Note: Derived purely from graph (using trails) 

• Example: Global independence using D-separation
•

• Compare with local independencies 
• For each Xi: (Xi ⊥ Non-Desc(Xi) | Pa(Xi))



Algorithm for D-Separation 



Algorithm for D-Separation 

• Enumerate all trails between X & Y is inefficient 
• No. of trails is exponential with graph size 

• Linear time algorithm has two phases 
• Algorithm Reachable(G,X,Z) returns nodes reachable from X given Z 
• Phase 1 (simple) 

• Traverse bottom-up from leaves marking all nodes in Z or descendants in Z; to enable v-
structures 

• Phase 2 (subtle) 
• Traverse top-down from X to Y, stopping when blocked by a node 



Structure Implications 

• Given a Bayes net structure, can run d-separation algorithm to build a 
complete list of conditional independences that are necessarily true 
of the form 

• This list determines the set of probability distributions that can be 
represented 



Pseudocode
finding nodes reachable from 
X given Z via active trails 



Example for D-separation algorithm 

• Task: Find all nodes reachable from X 
• Assume that Y is observed, i.e., Y ∈ Z 
• Assume algorithm first encounters Y via edge Y -> X
• Any extension of this trail is blocked by Y 
• Trail X<-Z->Y<-W is not blocked by Y 
• Thus when we encounter Y for the second time via the edge Z->Y we 

should not ignore it 
• Therefore after the first visit to Y we can mark it as visited 

For trails coming from children of Y
Not for purpose of trails coming from parents of Y 



I-Equivalence 



I-Equivalence 

• Conditional independence assertion statements can be the same with 
different structures 
• Two graphs G1 and G2 are I- equivalent if I(G1)=I(G2) 
• Skeleton of a BN graph G is an undirected graph with an edge for 

every edge in G 
• If two BN graphs have the same set of skeletons and v-structures then 

they are I-equivalent 



Bayes Nets Representation Summary 

• Bayes nets compactly encode joint distributions 

• Guaranteed independencies of distributions can be deduced from BN 
graph structure 

• D-separation gives precise conditional independence guarantees from 
graph alone 

• A Bayes’ net’s joint distribution may have further (conditional) 
independence that is not detectable until you inspect its specific 
distribution 


