Probability Foundation for Machine Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

In the last week's lectures,

- Module contents
- A few applications of machine learning
 - Representation of instances as vectors
- Learning basics
 - Supervised vs. unsupervised learning

Topics of today

- Probability foundations
 - Random Variables
 - Joint and Conditional Distributions
 - Independence and Conditional Independence
 - Querying Joint Probability Distributions
 - Probability query
 - MAP query

Random Variables

Random Variable

- We have a population of students
 - We want to reason about their grades
 - Random variable: Grade
 - *P(Grade)* associates a probability with each outcome *Val(Grade)=*{ *A, B, C* }

• If
$$k = |Va|\{X\}|$$
 then $\sum_{i=1}^{k} P(X = x^{i}) = 1$

- Distribution is referred to as a *multinomial*
- If *Val{X}={false,true}* then it is a *Bernoulli* distribution
- *P*(*X*) is known as the marginal distribution of *X*

Joint and Conditional Distributions

Recap: Marginal, joint, conditional probability

- Marginal probability: the probability of an event occurring P(A), it may be thought of as an unconditional probability. It is not conditioned on another event.
 - Example: the probability that a card drawn is red, i.e., P(red) = 0.5.
 - Another example: the probability that a card drawn is a 4, i.e., P(four)=1/13.
- Joint probability: P(A and B). The probability of event A and event B occurring. It is the probability of the intersection of two or more events. The probability of the intersection of A and B may be written $P(A \cap B)$.
 - Example: the probability that a card is a four and red, i.e., P(four and red) = 2/52=1/26. (There are two red fours in a deck of 52, the 4 of hearts and the 4 of diamonds).
- **Conditional probability**: P(A|B) is the probability of event A occurring, given that event B occurs.
 - Example: given that you drew a red card, what's the probability that it's a four, i.e., P(four|red)=2/26=1/13. So out of the 26 red cards (given a red card), there are two fours so 2/26=1/13.

Joint Distribution

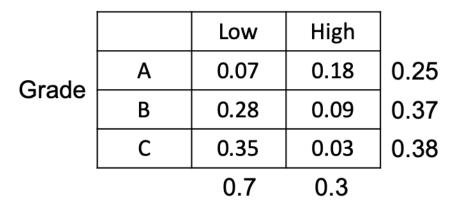
- We are interested in questions involving several random variables
 - Example event: *Intelligence=high* and *Grade=A*
 - Need to consider joint distributions
 - Over a set $\chi = \{X_1, ..., X_n\}$ denoted by $P(X_1, ..., X_n)$
 - We use ξ to refer to a full assignment to variables χ , i.e. $\xi \in Val(\chi)$
- Example of joint distribution
 - and marginal distributions

		Low	High
Grade	А	0.07	0.18
	В	0.28	0.09
	С	0.35	0.03

Intelligence

Conditional Probability

- P(Intelligence | Grade=A) describes the distribution over events describable by Intelligence given the knowledge that student's grade is A
 - It is not the same as the marginal distribution



Intelligence

P(Intelligence=high)=0.3

$$P(Intelligence=high|Grade=A)$$

=0.18/0.25
=0.72

Independence and Conditional Independence

Recap: Chain Rules

chain rule (also called the **general product rule**) permits the calculation of any member of the joint distribution of a set of <u>random variables</u> using only <u>conditional probabilities</u>.

$$\mathrm{P}(A_n,\ldots,A_1)=\mathrm{P}(A_n|A_{n-1},\ldots,A_1)\cdot\mathrm{P}(A_{n-1},\ldots,A_1)$$

 $P(A_4, A_3, A_2, A_1) = P(A_4 \mid A_3, A_2, A_1) \cdot P(A_3 \mid A_2, A_1) \cdot P(A_2 \mid A_1) \cdot P(A_1)$

Independent Random Variables

- We expect $P(\alpha | \beta)$ to be different from $P(\alpha)$
 - i.e., β is true changes our probability over α
- Sometimes equality can occur, i.e, $P(\alpha | \beta) = P(\alpha)$
 - i.e., learning that β occurs did not change our probability of α
 - We say event α is independent of event β , denoted

α⊥β

if $P(\alpha/\beta)=P(\alpha)$ or if $P(\beta)=0$

• A distribution *P* satisfies $(\alpha \perp \beta)$ if and only if $P(\alpha \land \beta) = P(\alpha)P(\beta)$

Conditional Independence

- While independence is a useful property, we don't often encounter two independent events
- A more common situation is when two events are independent given an additional event
 - Reason about student accepted at Stanford or MIT
 - These two are not independent
 - If student admitted to Stanford then probability of MIT is higher
 - If both based on GPA and we know the GPA to be A
 - Then the student being admitted to Stanford does not change probability of being admitted to MIT
 - *P*(*MIT*|*Stanford*,*Grade A*)=*P*(*MIT*|*Grade A*)
 - i.e., MIT is conditionally independent of Stanford given Grade A

Querying Joint Probability Distributions

Query Types

- Probability Queries
 - Given evidence (the values of a subset of random variables),
 - compute distribution of another subset of random variables
- MAP Queries
 - Maximum a posteriori probability
 - Also called MPE (*Most Probable Explanation*)
 - What is the most likely setting of a subset of random variables
 - Marginal MAP Queries
 - When some variables are known

Probability Queries

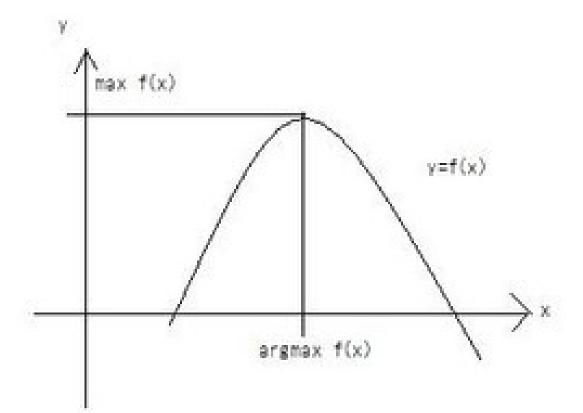
- Most common type of query is a probability query
- Query has two parts
 - *Evidence*: a subset *E* of variables and their instantiation *e*
 - *Query Variables*: a subset *Y* of random variables
- Inference Task: *P*(*Y*/*E=e*)
 - Posterior probability distribution over values y of Y
 - *Conditioned* on the fact *E=e*
 - Can be viewed as Marginal over Y in distribution we obtain by conditioning on e

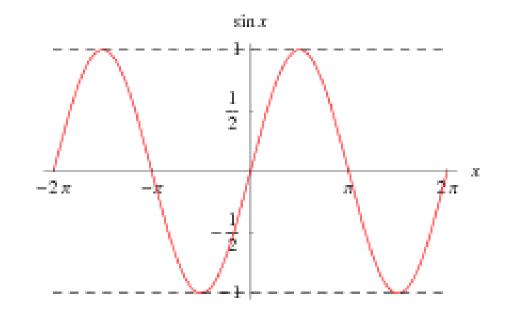
Probability Queries

• Marginal Probability Estimation

$$P(Y = y_i | E = e) = \frac{P(Y = y_i, E = e)}{P(E = e)}$$

Recap: max and argmax





Recap: Max vs. argmax

- Let x be in a range [a,b] and f be a function over [a,b], we have
 - max f(x) to represent the maximum value of f(x) as x varies through [a,b]
 - argmax f(x) to represent the value of x at which the maximum is attained
 - $\max_{x} \sin(x)$ = 1 • $\operatorname{argmax}_{x} \sin(x)$ = {(0.5+2n)*pi | n is integer } = {..., -1.5pi, 0.5pi, 2.5pi, ...}

MAP Queries (Most Probable Explanation)

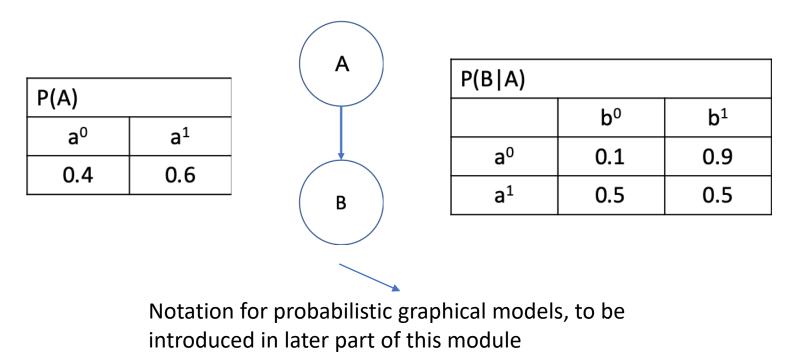
- Finding a high probability assignment to some subset of variables
- Most likely assignment to all non-evidence variables W = V E

 $MAP(W | e) = \arg \max_{w} P(w, e)$

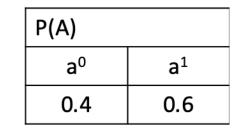
i.e., value of w for which P(w,e) is maximum

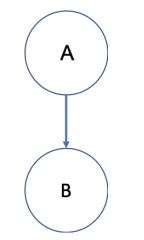
- Difference from probability query
 - Instead of a probability we get the most likely value for all remaining variables

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever



- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q1: Most likely disease MAP (A)?
- Q2: Most likely disease and symptom MAP(A,B)?
- Q3: Most likely symptom MAP(B)?





P(B A)				
	b ⁰	b1		
a ⁰	0.1	0.9		
a ¹	0.5	0.5		

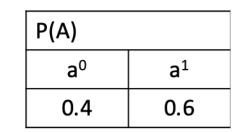
- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q1: Most likely disease MAP(A)?

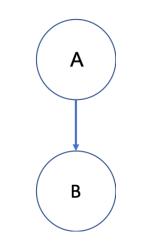
 $MAP(A) = \arg \max_a A = a^1$

P(A)	
a ⁰	a1
0.4	0.6

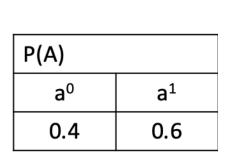
- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q2: Most likely disease and symptom *P(A,B)*?

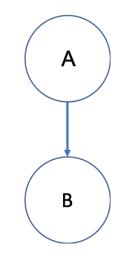
 $MAP(A, B) = \arg \max_{a,b} P(A, B)$





P(B A)				
	b ⁰	b1		
a ⁰	0.1	0.9		
a ¹	0.5	0.5		





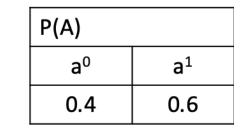
P(B A)		
	b ^o	b1
a ⁰	0.1	0.9
a1	0.5	0.5

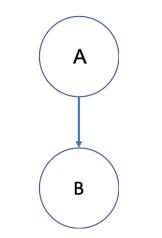
P(A,B)		
	b ^o	b1
a ⁰	0.04	0.36
a1	0.3	0.3

P(A,B) = P(B|A) P(A)

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q2: Most likely disease and symptom *P(A,B)*?

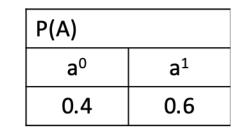
$$MAP(A, B) = \arg \max_{a,b} P(A, B)$$
$$= \arg \max_{a,b} P(B \mid A)P(A)$$
$$= \arg \max_{a,b} \{0.04, 0.36, 0.3, 0.3\}$$
$$= a^0, b^1$$

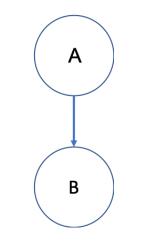




P(B A)			
	b ^o	b1	
a ^o	0.1	0.9	
a ¹	0.5	0.5	

• Q3: Most likely symptom MAP(B)?





P(B A)				
	b ⁰	b1		
a ⁰	0.1	0.9		
a ¹	0.5	0.5		

Marginal MAP Query

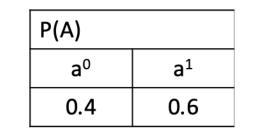
- We looked for highest joint probability assignment of disease and symptom
- Can look for most likely assignment of disease variable only
- Query is not all remaining variables but a subset of them
 - *Y* is query, evidence is *E=e* Task is to find most likely assignment to *Y*:

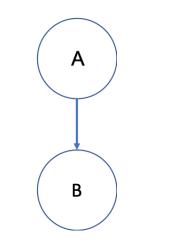
$$MAP(Y \mid e) = \arg \max_{y} P(y \mid e)$$

• If *Z=X-Y-E*

$$MAP(Y \mid e) = \arg \max_{y} \sum_{z} P(y, z \mid e)$$

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q3: Most likely symptom P(B)?





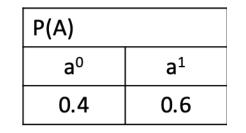
P(B A)				
	b ⁰	b1		
a ⁰	0.1	0.9		
a ¹	0.5	0.5		

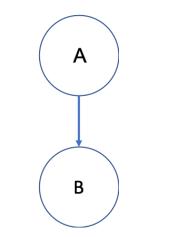
• Q3: Most likely symptom P(B)?

$$MAP(B) = \arg\max_{b} P(b) = \arg\max_{b} \sum_{a} P(a, b)$$
$$= \arg\max_{b} \{0.34, 0.66\} = b^{1}$$

P(A,B)		
	b ^o	b1
a ^o	0.04	0.36
a1	0.3	0.3

$$P(A,B) = P(A)P(B|A)$$





P(B A)				
	b ⁰	b1		
a ⁰	0.1	0.9		
a ¹	0.5	0.5		

Marginal MAP Assignments

- They are not monotonic
- Most likely assignment MAP(Y₁|e) might be completely different from assignment to Y₁ in MAP({Y₁,Y₂}|e)
 - Q1: Most likely disease MAP(A)?
 - A1: Flu
 - Q2: Most likely disease and symptom MAP(A,B)?
 - A2: Mono and Fever
- Thus we cannot use a MAP query to give a correct answer to a marginal MAP query

Marginal MAP more Complex than MAP

 Contains both summations (like in probability queries) and maximizations (like in MAP queries)

$$MAP(B) = \arg \max_{b} P(b) = \arg \max_{b} \sum_{a} P(a, b)$$
$$= \arg \max_{b} \{0.34, 0.66\} = b^{1}$$

Exercise 1

Joint distribution table as shown right

	B=1	B=2	B=3	B=4
A=1	0.12	0.18	0.24	0.08
A=2	0.06	0.09	0.12	0.03
A=3	0.02	0.03	0.04	0.01

Can you calculate the following:

```
P(A=1) =
P(A=2) =
P(B=3)=
P(B=4)=
P(A=1 | B=2)=
P(B=3 | A = 3) =
MAP(A | B=2) =
MAP(B | A =2) =
MAP(B) =
```

Exercise 2

Joint distribution table as shown right

	B=1	B=2	B=3	B=4
A=1	0.12	0.18	0.24	0.02
A=2	0.06	0.09	0.12	0.03
A=3	0.08	0.03	0.04	0.01

Can you calculate the following:

```
P(A=1) =
P(A=2) =
P(B=3)=
P(B=4)=
P(A=1 | B=2)=
P(B=3 | A = 3) =
MAP(A | B=2) =
MAP(B | A =2) =
MAP(B) =
```