Decision Tree Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Decision Tree up to now,

- Decision tree representation
- A general top-down algorithm
- How to do splitting on numeric features
- Occam's razor

Today's Topics

- Entropy and information gain
- Types of decision-tree splits
- Stopping criteria of decision trees
- Accuracy of decision trees
- Overfitting
- Variants of decision trees (extended material)

- consider a problem in which you are using a code to communicate information to a receiver
- example: as bikes go past, you are communicating the manufacturer of each bike

- suppose there are only four types of bikes
- we could use the following code

type	code
Trek	11
Specialized	10
Cervelo	01
Serrota	00

- expected number of bits we have to communicate:
 - 2 bits/bike

• we can do better if the bike types aren't equiprobable

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

• expected number of bits we have to communicate

 $0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75 < 2$

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

 $0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75 < 2$

 $= 0.5 \times \log_2 0.5 + 0.25 \times \log_2 0.25 + 0.125 \times \log_2 0.125 + 0.125 \times \log_2 0.125$

$$= -\sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)$$

$$-\sum_{y\in \text{values}(Y)} P(y) \log_2 P(y)$$

• optimal code uses $-\log_2 P(y)$ bits for event with probability P(y)

Entropy

- entropy is a measure of uncertainty associated with a random variable
- defined as the expected number of bits required to communicate the value of the variable
 entropy function for

$$H(Y) = -\sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)$$

Conditional entropy

- conditional entropy (or equivocation) quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known.
- What's the entropy of Y if we condition on some other variable X?

• Where
$$H(Y|X) = \sum_{x \in \text{values}(X)} P(X = x) + (Y|X = x)$$

$$H(Y|X = x) = -\sum_{y \in \text{values}(Y)} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

Similar as entropy

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Let X = Outlook and Y = PlayTennis
- Can you compute H(Y|X)?

	Yes	No
Sunny	2/14	3/14
Overcast	4/14	0
Rain	3/14	2/14

$$\begin{array}{lll} H(Y|X) &=& P(X=Sunny)H(Y|X=Sunny) &+\\ && P(X=Overcase)H(Y|X=Overcast) &+\\ && P(X=Rain)H(Y|X=Rain) \end{array}$$

• Let X = Outlook and Y = PlayTennis

	Yes	No
Sunny	2/14	3/14
Overcast	4/14	0
Rain	3/14	2/14

• Can you compute H(Y|X)?

$$\begin{array}{rcl} H(Y|X = Sunny) &=& -2/5 \log 2/5 - 3/5 \log 3/5 \\ H(Y|X = Overcast) &=& 0 \\ H(Y|X = Rain) &=& -3/5 \log 3/5 - 2/5 \log 2/5 \end{array}$$

Information gain (a.k.a. mutual information)

 choosing splits in ID3: select the split S that most reduces the conditional entropy of Y for training set D

nfoGain
$$(D,S) = H_D(Y) - H_D(Y|S)$$

D indicates that we're calculating
probabilities using the specific sample

Relations between the concepts

https://en.wikipedia.org/wiki/Mutual_information

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

• What's the information gain of splitting on Humidity?

InfoGain(D, Humidity) = $H_D(Y) - H_D(Y | \text{Humidity})$

 $InfoGain(D,S) = H_D(Y) - H_D(Y|S)$

$$H_D(Y) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940$$

$$H(Y) = -\sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)$$

 $H_D(Y | \text{Humidity}) = P(\text{Humidity=high})H_D(Y | \text{Humidity=high}) + P(\text{Humidity=normal})H_D(Y | \text{Humidity=normal})$

$$H(Y \mid X) = \sum_{x \in \text{values}(X)} P(X = x) H(Y \mid X = x)$$

$$H_D(Y | \text{high}) = -\frac{3}{7} \log_2\left(\frac{3}{7}\right) - \frac{4}{7} \log_2\left(\frac{4}{7}\right) = 0.985$$

$$H_{D}(Y | \text{normal}) = -\frac{6}{7} \log_{2}\left(\frac{6}{7}\right) - \frac{1}{7} \log_{2}\left(\frac{1}{7}\right)$$

= 0.592
$$H(Y | X = x) = -\sum_{y \in \text{values}(Y)} P(Y = y | X = x) \log_{2} P(Y = y | X = x)$$

InfoGain(D, Humidity) = $H_D(Y) - H_D(Y | \text{Humidity})$ = 0.940 - $\left[\frac{7}{14}(0.985) + \frac{7}{14}(0.592)\right]$ = 0.151

• Is it better to split on Humidity or Wind?

One limitation of information gain

- information gain is biased towards tests with many outcomes
- e.g. consider a feature that uniquely identifies each training instance
 - splitting on this feature would result in many branches, each of which is "pure" (has instances of only one class)
 - maximal information gain!

Gain ratio

- to address this limitation, C4.5 uses a splitting criterion called *gain* ratio
- gain ratio normalizes the information gain by the entropy of the split being considered

$$GainRatio(D,S) = \frac{InfoGain(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

Exercise

• Compute the following:

GainRatio(D, Humidity) =GainRatio(D, Wind) =GainRatio(D, Outlook) =

Step (3): Stopping criteria

Stopping criteria

- We should form a leaf when
 - all of the given subset of instances are of the same class
 - we've exhausted all of the candidate splits

Accuracy of Decision Tree

Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the percentage of correctly labeled samples. That is,

$$Accuracy(D, M) = \frac{|\{M(x) = l_x \mid x \in D\}|}{|D|}$$

Where l_x is the true label of sample \mathcal{X} and M(x) gives the predicted label of \mathcal{X} by M

• Error is a dual concept of accuracy.

But, what is D?

$$Error(D, M) = 1 - Accuracy(D, M)$$

How can we assess the accuracy of a tree?

- Can we just calculate the fraction of training instances that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = t) = 0.5
 - how accurate would a learned decision tree be on previously unseen instances?
 - Can never reach 1.0.
 - how accurate would it be on its training set?
 - Can be arbitrarily close to, or reach, 1.0 if model can be very large.

How can we assess the accuracy of a tree?

- to get an unbiased estimate of a learned model's accuracy, we must use a set of instances that are held-aside during learning
- this is called a *test set*

Overfitting

Overfitting

- consider error of model M over
 - training data: $Error(D_{training}, M)$
 - entire distribution of data: $Error(D_{true}, M)$
- model $M \in H$ overfits the training data if there is an alternative model $M' \in H$ such that

 $Error(D_{training}, M) < Error(D_{training}, M')$

Perform better on training dataset

 $Error(D_{true}, M) > Error(D_{true}, M')$

Perform worse on true distribution

Example 1: overfitting with noisy data

• suppose

- the target concept is $\,Y=X_1\wedge X_2\,$
- there is noise in some feature values
- we're given the following training set

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	•••	Y	
t	t	t	t	t		t	
t	t	f	f	t		t	
t	f	t	t	f		t	
t	f	f	t	f		f	
t	f	t	f	f		f	
f	t	t	f	t		f	
	noisy value						

Example 1: overfitting with noisy data

tree that fits noisy training data

Example 1: overfitting with noisy data

correct tree

- What is the accuracy?
 - Accuracy(D_{training}, M) = 5/6
 - Accuracy(D_{true} , M) = 100%

noisy value

 $Y = X_1 \wedge X_2$
Example 1: overfitting with noisy data

tree that fits noisy training data

 $Y = X_1 \wedge X_2$

X ₁	<i>X</i> ₂	X ₃	X ₄	X ₅	 Y
t	t	t	t	t	 t
t	t	f	f	t	 t
t	f	t	t	f	 t
t	f	f	t	f	 f
t	f	t	f	f	 f
f	t	t	f	t	 f

🔨 noisy value

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true} , M) < 100%

Example 1: overfitting with noisy data

- suppose
 - the target concept is $\ \ Y = X_1 \wedge X_2$
 - $P(X_3 = t) = 0.5$ for both classes
 - P(Y = t) = 0.66
 - we're given the following training set

<i>X</i> ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

 M_1

 M_2

t

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

$$Y = X_1 \wedge X_2$$

P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true},M) = 50%

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

t

$$Y = X_1 \wedge X_2$$

P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 60%
 - Accuracy(D_{true},M) = 66%

X ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

 because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance

Variant: Regression Trees

Regression trees

- in a regression tree, leaves have functions that predict numeric values instead of class labels
- the form of these functions depends on the method
 - CART uses constants
 - some methods use linear functions

Regression trees in CART

• CART does *least squares regression* which tries to minimize

 at each internal node, CART chooses the split that most reduces this quantity

Variant: Probability estimation trees

Probability estimation trees

- in a PE tree, leaves estimate the probability of each class
- could simply use training instances at a leaf to estimate probabilities, but ...
- *smoothing* is used to make estimates less extreme (we'll revisit this topic when we cover Bayes nets)

Variant: m-of-n splits

m-of-n splits

- a few DT algorithms have used m-of-n splits [Murphy & Pazzani '91]
- each split is constructed using a heuristic search process
- this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10 conditions are true

tree for exchange rate prediction [Craven & Shavlik, 1997]

Searching for m-of-n splits

- m-of-n splits are found via a hill-climbing search
- initial state: best 1-of-1 (ordinary) binary split
- evaluation function: information gain
- operators:
 - m-of-n => m-of-(n+1)
 - 1 of { X₁=t, X₃=f } => 1 of { X₁=t, X₃=f, X₇=t }
 - m-of-n => (m+1)-of-(n+1)
 - 1 of { X₁=t, X₃=f } => 2 of { X₁=t, X₃=f, X₇=t }

Variant: Lookahead

Lookahead

- most DT learning methods use a hill-climbing search
- a limitation of this approach is myopia: an important feature may not appear to be informative until used in conjunction with other features
- can potentially alleviate this limitation by using a *lookahead* search [Norton '89; Murphy & Salzberg '95]
- empirically, often doesn't improve accuracy or tree size

Choosing best split in ordinary DT learning

 OrdinaryFindBestSplit (set of training instances D, set of candidate splits C)

 $maxgain = -\infty$

for each split S in C gain = InfoGain(D, S)if gain > maxgain maxgain = gain $S_{best} = S$ return S_{hast}

Choosing best split with lookahead (part 1)

 LookaheadFindBestSplit (set of training instances D, set of candidate splits C)

```
maxgain = -\infty
```

```
for each split S in C

gain = EvaluateSplit(D, C, S)

if gain > maxgain

maxgain = gain

S_{best} = S
```

return S_{best}

Choosing best split with lookahead (part 2)

EvaluateSplit(D, C, S)

if a split on *S* separates instances by class (i.e. $H_D(Y|S) = 0$) // no need to split further return $H_D(Y) - H_D(Y|S)$

else

for each outcome k of S

// see what the splits at the next level would be D_k = subset of instances that have outcome k S_k = OrdinaryFindBestSplit(D_k , C-S) // return information gain that would result from this 2-level subtree return $H_D(Y) - \left(\sum_k \frac{|D_k|}{|D|} H_{D_k}(Y | S = k, S_k)\right)$

Calculating information gain with lookahead

• Suppose that when considering Humidity as a split, we find that Wind and Temperature are the best features to split on at the next level

• We can assess value of choosing Humidity as our split by $H_D(Y) - \left(\frac{14}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind}) + \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature})\right)$

Calculating information gain with lookahead

• Using the tree from the previous slide:

$$\begin{aligned} \frac{14}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind}) + \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature}) \\ &= \frac{5}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{strong}) + \\ &= \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{weak}) + \\ &= \frac{4}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature} = \text{high}) + \\ &= \frac{5}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature} = \text{low}) \end{aligned}$$

$$H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{strong}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right)$$

Comments on decision tree learning

- widely used approach
- many variations
- provides humanly comprehensible models when trees not too big
- insensitive to monotone transformations of numeric features
- standard methods learn axis-parallel hypotheses*
- standard methods not suited to on-line setting*
- usually not among most accurate learning methods
- * although variants exist that are exceptions to this