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Decision Tree up to now, 

• Decision tree representation

• A general top-down algorithm

• How to do splitting on numeric features

• Occam’s razor 



Today’s Topics

• Entropy and information gain 

• Types of decision-tree splits 

• Stopping criteria of decision trees

• Accuracy of decision trees

• Overfitting 

• Variants of decision trees (extended material)



Information theory background 

• consider a problem in which you are using a code to communicate 
information to a receiver 

• example: as bikes go past, you are communicating the manufacturer 
of each bike 



Information theory background 

• suppose there are only four types of bikes 

• we could use the following code 

• expected number of bits we have to communicate: 
• 2 bits/bike 



Information theory background 

• we can do better if the bike types aren’t equiprobable 



Information theory background 

• expected number of bits we have to communicate



Information theory background 

=



Information theory background 

• optimal code uses -log2P(y) bits for event with probability P(y) 



Entropy 

• entropy is a measure of uncertainty associated with a random 
variable 

• defined as the expected number of bits required to communicate the 
value of the variable 



Conditional entropy 

• conditional entropy (or equivocation) quantifies the amount of 
information needed to describe the outcome of a random variable 
given that the value of another random variable is known.

• What’s the entropy of Y if we condition on some other variable X? 

• Where 

similar as the 
expected 
value?

Similar as 
entropy



Example 



Example

• Let X = Outlook and Y = PlayTennis

• Can you compute H(Y|X)?

Yes No

Sunny 2/14 3/14

Overcast 4/14 0

Rain 3/14 2/14



Example

• Let X = Outlook and Y = PlayTennis

• Can you compute H(Y|X)?

Yes No

Sunny 2/14 3/14

Overcast 4/14 0

Rain 3/14 2/14



Information gain (a.k.a. mutual information) 

• choosing splits in ID3: select the split S that most reduces the 
conditional entropy of Y for training set D 



Relations between the concepts 

https://en.wikipedia.org/wiki/Mutual_information



Example 



Information gain example 

• What’s the information gain of splitting on Humidity? 



Information gain example 



Information gain example 

= P(Humidity=high)HD(Y|Humidity=high) + 
P(Humidity=normal)HD(Y|Humidity=normal)



Information gain example 



Information gain example 

• Is it better to split on Humidity or Wind? 



One limitation of information gain 

• information gain is biased towards tests with many outcomes 

• e.g. consider a feature that uniquely identifies each training instance 
• splitting on this feature would result in many branches, each of which is 

“pure” (has instances of only one class) 

• maximal information gain! 



Gain ratio 

• to address this limitation, C4.5 uses a splitting criterion called gain 
ratio 

• gain ratio normalizes the information gain by the entropy of the split 
being considered 



Exercise

• Compute the following:  



Step (3): Stopping criteria 



Stopping criteria 

• We should form a leaf when 
• all of the given subset of instances are of the same class 

• we’ve exhausted all of the candidate splits 



Accuracy of Decision Tree



Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the 
percentage of correctly labeled samples. That is, 

Where     is the true label of sample     and           gives the predicted label of      
by 

• Error is a dual concept of accuracy.  But, what is D?



How can we assess the accuracy of a tree? 

• Can we just calculate the fraction of training instances that are 
correctly classified? 

• Consider a problem domain in which instances are assigned labels at 
random with P(Y = t) = 0.5 
• how accurate would a learned decision tree be on previously unseen 

instances? 
• Can never reach 1.0. 

• how accurate would it be on its training set? 
• Can be arbitrarily close to, or reach, 1.0 if model can be very large. 



How can we assess the accuracy of a tree? 

• to get an unbiased estimate of a learned model’s accuracy, we must 
use a set of instances that are held-aside during learning 

• this is called a test set



Overfitting



Overfitting 

• consider error of model M over 
• training data: 

• entire distribution of data: 

• model               overfits the training data if there is an alternative 
model such that 

Perform better on 
training dataset

Perform worse on 
true distribution



Example 1: overfitting with noisy data 

• suppose 
• the target concept is 

• there is noise in some feature values 

• we’re given the following training set 



Example 1: overfitting with noisy data 

A noisy data:
X1 = t
X2 = f
X3 = t
X4 = t
X5 = f
Y = t



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 5/6

• Accuracy(Dtrue,M) = 100%



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) < 100%



Example 1: overfitting with noisy data 
Training set 
accuracy

True accuracy

5/6 100%

100% < 100 %

M2 is 
overfitting!

M1

M2



Example 2: overfitting with noise-free data 

• suppose 
• the target concept is

• P(X3 = t) = 0.5 for both classes 

• P(Y = t) = 0.66 

• we’re given the following training set 



Example 2: overfitting with noise-free data 

M1 M2



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) = 50%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 60%

• Accuracy(Dtrue,M) = 66%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• because the training set is a limited sample, there might be 
(combinations of) features that are correlated with the target concept 
by chance 

Training set 
accuracy

True accuracy

100% 50%

60% 66%

M1

M2

M1 is 
overfitting!



Variant: Regression Trees



Regression trees 

• in a regression tree, leaves have functions that predict numeric values 
instead of class labels 

• the form of these functions depends on the method 
• CART uses constants 

• some methods use linear functions 



Regression trees in CART 

• CART does least squares regression which tries to minimize 

• at each internal node, CART chooses the split that most reduces this 
quantity 



Variant: Probability estimation trees 



Probability estimation trees 

• in a PE tree, leaves estimate the probability of each class 

• could simply use training instances at a leaf to estimate probabilities, 
but ... 

• smoothing is used to make estimates less extreme (we’ll revisit this 
topic when we cover Bayes nets) 



Variant: m-of-n splits 



m-of-n splits 

• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91] 

• each split is constructed using a                                                                       
heuristic search process 

• this can result in smaller, easier to                                                  
comprehend trees 

test is satisfied if 5 of 10 
conditions are true 

tree for exchange rate prediction 
[Craven & Shavlik, 1997] 



Searching for m-of-n splits 

• m-of-n splits are found via a hill-climbing search 

• initial state: best 1-of-1 (ordinary) binary split 

• evaluation function: information gain 

• operators: 
• m-of-n  =>  m-of-(n+1) 

• 1 of { X1=t, X3=f }   =>  1 of { X1=t, X3=f, X7=t } 

• m-of-n  => (m+1)-of-(n+1)

• 1 of { X1=t, X3=f }  =>  2 of { X1=t, X3=f, X7=t } 



Variant: Lookahead



Lookahead 

• most DT learning methods use a hill-climbing search 

• a limitation of this approach is myopia: an important feature may not 
appear to be informative until used in conjunction with other features 

• can potentially alleviate this limitation by using a lookahead search 
[Norton ‘89; Murphy & Salzberg ‘95] 

• empirically, often doesn’t improve accuracy or tree size 



Choosing best split in ordinary DT learning 

• OrdinaryFindBestSplit (set of training instances D, set of candidate 
splits C) 



Choosing best split with lookahead (part 1) 

• LookaheadFindBestSplit (set of training instances D, set of candidate 
splits C) 



Choosing best split with lookahead (part 2) 



Calculating information gain with lookahead 

• Suppose that when considering Humidity as a split, we find that Wind 
and Temperature are the best features to split on at the next level 

• We can assess value of choosing Humidity as our split by 



Calculating information gain with lookahead 

• Using the tree from the previous slide: 



Comments on decision tree learning 

• widely used approach 

• many variations 

• provides humanly comprehensible models when trees not too big 

• insensitive to monotone transformations of numeric features 

• standard methods learn axis-parallel hypotheses* 

• standard methods not suited to on-line setting* 

• usually not among most accurate learning methods 

* although variants exist that are exceptions to this 


