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Decision Tree up to now,

* Decision tree representation

* A general top-down algorithm
* How to do splitting on numeric features
e Occam’s razor



Today’s Topics

* Entropy and information gain

* Types of decision-tree splits

 Stopping criteria of decision trees

e Accuracy of decision trees

e Overfitting

 VVariants of decision trees (extended material)



Information theory background

e consider a problem in which you are using a code to communicate
information to a receiver

e example: as bikes go past, you are communicating the manufacturer
of each bike

[




Information theory background

e suppose there are only four types of bikes
e we could use the following code

type code

Trek 11

Specialized 10

Cervelo 01 1><2—|—1><2—|—1><2—|—1><2—2
4 4 4 4 B

Serrota 00

* expected number of bits we have to communicate:
* 2 bits/bike



Information theory background

e we can do better if the bike types aren’t equiprobable

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000



Information theory background

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000

* expected number of bits we have to communicate

0.5 x1+025x2+0.120 x3+0.125 x3=1.7T5 < 2



Information theory background

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000

0.0xXx14025%x2+0.125 x3+0.125 x3=1.75 < 2
= 0.5 X log, 0.5 4+ 0.25 X log, 0.25 4 0.125 X log, 0.125 4 0.125 X log, 0.125

= — Y P(y)log, P(y)

yevalues(Y)



Information theory background

— > P(y)log, P(y)

yevalues(Y)

* optimal code uses -log,P(y) bits for event with probability P(y)



Entropy

* entropy is a measure of uncertainty associated with a random
variable

* defined as the expected number of bits required to communicate the

value of the variable entropy function for

binary variable
A
1.0

H(Y)=~ 2 P(y)log, P(y)
yevalues(Y) HX) o5 +

0

Y

() (.5 ].0)

P(Y =1)



Conditional entropy

 conditional entropy (or equivocation) quantifies the amount of
information needed to describe the outcome of a random variable
given that the value of another random variable is known.

 What's the entropy of Y if we condition on some other variable X?

(Y| X) xev%()(g JH(Y | )\ similar as the
expected

¢ Where HY|X =z) = — Z PY =y|X =z)logy, P(Y = y| X = x) value?

yEvalues(Y')
\ Similar as

entropy



Example

PlayTennis: training examples

Day Outlook  Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




Example

* Let X = Outlook and Y = PlayTennis

e Can you compute H(Y|X)?

H(Y|X)

Yes

No

P(X = Sunny)H (Y |X = Sunny)

P(X = Overcase)H(Y|X = Overcast)

P(X = Rain)H (Y |X = Rain)

_I_

Sunny 2/14 3/14
Overcast 4/14 0
Rain 3/14 2/14
_|_




Example

* Let X = Outlook and Y = PlayTennis
e Can you compute H(Y|X)?

X = Sunny)
X = Overcast)
X = Rain)

0

/\E/-\
<<=

Yes

No

Sunny 2/14 3/14
Overcast 4/14 0
Rain 3/14 2/14

—2/5log2/5 —3/5log3/5

—3/5log3/5 —2/5log?2/5




Information gain (a.k.a. mutual information)

* choosing splits in ID3: select the split S that most reduces the
conditional entropy of Y for training set D

InfoGain(D,S)=H ,(Y)- H,(Y |S)

~/

D indicates that we're calculating
probabilities using the specific sample D




Relations between the concepts

H(X)

H(X,Y)

https://en.wikipedia.org/wiki/Mutual_information



Example

PlayTennis: training examples

Day Outlook  Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




Information gain example

* What'’s the information gain of splitting on Humidity?

D: [9+, 5-] InfoGain(D, Humidity) = H, (Y)- H (¥ | Humidity)

Humidity

hmm‘a' InfoGain(D,S)=H,(Y)- H(Y|S)

D: [3+,4-] D: [6+, 1-]




Information gain example

D: [9+, 5-]

9 9 5 5
Humidity H,(Y)= -EIDEE[EJ-EIOEE(H)-U.%U
hmmml
D: [3+,4-] D: [6+, 1-]

H(Y)=- Y P(»)log,P()

yevalues(Y)



Information gain example

D: [9+, 5-]

Humidity H (Y | Humidity) = P(Humidity=high)H(Y | Humidity=high) +
hmrmal P(Humidity=normal)H(Y |Humidity=normal)
D: [3+, 4-] D: [6+, 1-] HY | X)= ZggX:x)H(Y|X:x)
H, (Y | hi ——glu EJ—ilu (i)
p(Y | high) = 7 2 7 7 g 7
=0.985

o)

=0.592
HY|X=z)=- )  PY=y|X=2z)log, P(Y =y|X ==z
yEvalues(Y)



Information gain example

D: [9+, 5-]
Humidity InfoGain(D, Humidity) = H ,(Y) — H (Y | Humidity)

hmﬂnal =0.940 - [% (0.985) + %(0.592)]

D: [3+, 4-] D: [6+, 1-] =0.151




Information gain example

* |s it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+, 5-]
Humidity Wind
hmrmal wemong
D: [3+, 4-] D: [6+, 1-] D: [6+, 2-] D: [3+, 3-]

H (Y |weak)=0.811 H (Y |strong)=1.0

v InfoGain(D, Humidity) = 0.940 — [1—74- (0.985) + 114(0.592)]
=0.151
. . 8 6
InfoGain(D, Wind) = 0.940 - -~ (0.811)+ - (1.0)

=0.048



One limitation of information gain

* information gain is biased towards tests with many outcomes

e e.g. consider a feature that uniquely identifies each training instance

* splitting on this feature would result in many branches, each of which is
“pure” (has instances of only one class)

* maximal information gain!



Gain ratio

* to address this limitation, C4.5 uses a splitting criterion called gain
ratio

 gain ratio normalizes the information gain by the entropy of the split
being considered

InfoGain(D, .S) _ H,(Y)- H,(Y|S)
H,(S) H,(S)

GainRatio(D, S) =



Exercise

* Compute the following:

GainRatio( D, Humidity)
GainRatio(D, Wind)
GainRatio( D, Outlook)



Step (3): Stopping criteria



Stopping criteria

* We should form a leaf when
* all of the given subset of instances are of the same class
* we've exhausted all of the candidate splits




Accuracy of Decision Tree



Definition of Accuracy and Error

* Given a set D of samples and a trained model M, the accuracy is the
percentage of correctly labeled samples. That is,

Accuracy(D, M) = {M(z) :|g|| xz € D}

Where [, is the true label of sample & and M (x) gives the predicted label of T
by M

* Error is a dual concept of accuracy. But, what is D?

Error(D,M) =1 — Accuracy(D, M)



How can we assess the accuracy of a tree?

e Can we just calculate the fraction of training instances that are
correctly classified?

* Consider a problem domain in which instances are assigned labels at
random with P(Y =t) = 0.5

* how accurate would a learned decision tree be on previously unseen
instances?

e Can never reach 1.0.

* how accurate would it be on its training set?
e Can be arbitrarily close to, or reach, 1.0 if model can be very large.



How can we assess the accuracy of a tree?

* to get an unbiased estimate of a learned model’s accuracy, we must
use a set of instances that are held-aside during learning

e this is called a test set

all instances

test

train



Overfitting



Overfitting

* consider error of model M over
* training data: Error(Diraining, M)
* entire distribution of data: Error(Dyyye, M)

* model M € H overfits the training data if there is an alternative
model M’ € H such that

Perform better on
Error(Dtraining, M) < Error(Diraining, M ’)/ training dataset

Error(Dirye, M) > Error(Dirye, Mf)\ Perform worse on

true distribution



Example 1: overfitting with noisy data

* suppose
e the target conceptis ¥ = X1 A X5
* there is noise in some feature values
* we're given the following training set

x | x, | x | x, | x Y
t t t t t t
t t f f t t
t 5 f t t f t
t [ f f t f f
t f t f f f
f t t f t f

\ noisy value



Example 1: overfitting with noisy data

tree that fits noisy training data

correct tree X,
T F

X; p Y = Xl A Xg
/X
X, :
/\ t 2 A noisy data:
X, =t
t f X, = f

w

< X X X

T (02 I S

ot | I T
- ~+ e+

—
—h




Example 1: overfitting with noisy data

correct tree

Y =X AN X5
XI

/X

X, f
/\ X; X; X; Xy Y
¢ ¢ ¢ ¢ - -

t f

¢ ¢ f f t t
, { £ t ¢ f t
 What is the accuracy? : //’ - - , : -
* Accur‘acy(Dtraining'IVI) = 5/6 t f t f f f
* Accuracy(D;, M) = 100% £ { { f t f

\noisy value



Example 1: overfitting with noisy data

tree that fits noisy training data

Y = X1 ANXs
x, | x, | x, | x Y
t t t t t t
t t £ £ { {
, t £ t t £ {
 What is the accuracy? : //’ - - , : -
* Accur‘acy(Dtraining'IVI) =100% t f t f f f
* Accuracy(D;, .,M) < 100% £ { { f t f

\noisy value



Example 1: overfitting with noisy data

Training set
True accuracy
accuracy
ct tr
5/6 100%
Ml
fi train I\/Iz IS
overfitting!

M, 100% <100 %




Example 2: overfitting with noise-free data

* suppose
* the target conceptis Y = X7 A X5
* P(X; =1)=0.5 for both classes
* P(Y=1)=0.66
* we're given the following training set

X, X, X, X, X, Y
t t t t i t
t t t f i t
t t f t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

X,
/ F ]
t T
M 1 M 2
X, X, X, X, X, Y
t t t t t t
t t t f t t
t t t t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

A Y — X1 A Xg
>N
t \ﬂ P(X,=t)=0.5
P(Y=t) = 0.66
* What is the accuracy? X X, X; X, X
* Accuracy(DyiningsM) = 100%
* Accuracy(D;, ,M) = 50%

= [ | =+ | =+ | =+

t
f
t
t
f

-y [+ | =+ | =+ | e+
- [ | =+ | = | e+
= [y | =y | =+ |

e i R e e K




Example 2: overfitting with noise-free data

Y=XAKX
ALY
P(X;=t)=0.5
P(Y=t) = 0.66
* What is the accuracy? X X; X; X, | X, Y
* Accuracy(DyiningsM) = 60% t t t t t t
* Accuracy(D;, ,M) = 66% t t t f t t
t t t t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

Training set
True accuracy
accuracy
X,
M / F 100% 50%
{ ‘ M, is
overfitting!
M, 60% 66%

* because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance



Variant: Regression Trees



Regression trees

* in a regression tree, leaves have functions that predict numeric values
instead of class labels

* the form of these functions depends on the method
* CART uses constants
* some methods use linear functions

X,> 10 X, > 10
ul r=3.2 X Y=3.2
Y=5 X;> 2.1 Y=2X,+5 X,>21

r=3.J Y=24 Y=I Y=3X,+X,




Regression trees in CART

* CART does least squares regression which tries to minimize

D

2=y
i=1
target value for i \/ \_/ value predicted by tree for i training
training instance instance (average value of y for
training instances reaching the leaf)
= > X00-50)

Leleaves iel

 at each internal node, CART chooses the split that most reduces this
guantity



Variant: Probability estimation trees



Probability estimation trees

* in a PE tree, leaves estimate the probability of each class

e could simply use training instances at a leaf to estimate probabilities,
but ...

e smoothing is used to make estimates less extreme (we’ll revisit this
topic when we cover Bayes nets)

X;>10
__— T—_ ppnod
X; P(Y=pos) = 0.8
P(Y=neg) = 0.2
D: [3+, 3-]/\& [0+, 8-]
P(Y=pos) = 0.5 P(Y=pos) = 0.1

P(Y=neg) = 0.5 P(Y=neg) = 0.9




Variant: m-of-n splits



m-of-n splits

* a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]

5 of {ROI[13] > 1.07,
vs_Yen_future < 0.39,
interest_rate[ 1] = false,
vs_Dem_future[2] > 0.17,
vs_Dem_future[3] < 0.17,
vs_SFr_future < 0.39,
Dem_USD_ex[8] < -1.02,
Dem_future[5] > -1.38,
Dem_USD_ex|[3] < -0.10,
vs_SFr_future < 0.16}

e each split is constructed using a
heuristic search process

e this can result in smaller, easier to
comprehend trees

test is satisfied if 5 of 10 /T

conditions are true

tree for exchange rate prediction
[Craven & Shavlik, 1997]

\F

vs_Dem_future[2] < -0.32

vs_SFr_future < 0.06

0\
=

vs_SFr_future < -0.21

A &

/

Dem_future[5] < 0.37

&

down



Searching for m-of-n splits

* m-of-n splits are found via a hill-climbing search
* initial state: best 1-of-1 (ordinary) binary split
 evaluation function: information gain

¢ operators:
* m-of-n => m-of-(n+1)
1 of { X;=t, X5=f } => 1of { X;=t, X;=f, X;=t }
m-of-n =>(m+1)-of-(n+1)
1 of { X;=t, X;=f } => 2 of { X;=t, X;=f, X,=t }



Variant: Lookahead



Lookahead

* most DT learning methods use a hill-climbing search

* a limitation of this approach is myopia: an important feature may not
appear to be informative until used in conjunction with other features

* can potentially alleviate this limitation by using a lookahead search
[Norton ‘89; Murphy & Salzberg ‘95]

* empirically, often doesn’t improve accuracy or tree size



Choosing best split in ordinary DT learning

* OrdinaryFindBestSplit (set of training instances D, set of candidate
splits C)
maxgain = -0
foreach split S'in C
gain = InfoGain(D, S)
if gain > maxgain
maxgain = gain
Sbest =

return §,_,,



Choosing best split with lookahead (part 1)

* LookaheadFindBestSplit (set of training instances D, set of candidate
splits C)
maxgain = -0

foreach split Sin C
gain = EvaluateSplit(D, C, S)
if gain > maxgain
maxgain = gain
Stese =19

return §, .,



Choosing best split with lookahead (part 2)

EvaluateSplit(D, C, S)
if a split on S separates instances by class (i.e. H, (Y |S5)=0)
// no need to split further
return H,(Y)- H, (Y |S)
else
for each outcome & of §
// see what the splits at the next level would be
D, = subset of instances that have outcome &
S, = OrdinaryFindBestSplit(D,, C — S)
I/ return information gain that would result from this 2-level subtree

UM (1)- (; l%"Hﬂk (Y|S= k,Sk]



Calculating information gain with lookahead

* Suppose that when considering Humidity as a split, we find that Wind
and Temperature are the best features to split on at the next level
D: [12-, 11+4]
Humidity

D: [6-, 8+] | Wind Temperature | D: [6-, 3+]

strur/ \weak h|g/\

D: [2-, 34] D: [4-, 5+] D: [2-,2+]

* We can assess value of choosing Humidity as our split by

H,(Y)- [; H (Y| Humidity = high,Wind) + %H ,(Y'| Humidity = Inw,Temperature)]



Calculating information gain with lookahead

e Using the tree from the previous slide:

% H (Y| Humidity = high, Wind) + %H , (¥ | Humidity =low, Temperature)
" %HD(Y | Humidity = high, Wind = strong) +
29_3 H,(Y | Humidity = high,Wind = weak) +
24—3H »(¥Y'| Humidity = low, Temperature = high) +
25—3 »(Y'| Humidity = low, Temperature =low)

2
H (Y | Humidity = high,Wind = strong) = _%log(g) _ 53 1og(§ )



Comments on decision tree learning

e widely used approach

* many variations

 provides humanly comprehensible models when trees not too big
* insensitive to monotone transformations of numeric features

e standard methods learn axis-parallel hypotheses*

e standard methods not suited to on-line setting™®

 usually not among most accurate learning methods

* although variants exist that are exceptions to this



