Principles of Computer Game
Design and Implementation

Lecture 13



We already knew

* Collision detection — overlap test and
Intersection test

e Detailed view

e Mid-level view



Outline for today

* High-level view for collision detection
— Uniform grid



High-Level View

Too many objects in the world problem

* Divide the space into regions
* Check for collisions inside regions
* An approximation

e Spatial data structures needed %
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Stationary objects

Moving objects § —
De ©




Spatial Data Structures

e Uniform grids
— Implicit grids
- Used for collision detection

¢ NOn-UnifOrm gridS and various other purposes
* Arbitrary space partitions

Example: Visibility check
as collision detection
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Uniform Grid

* Split the volume into 3-
dimentional cells

* For a moving object

— |dentify objects in
surrounding cells
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— Test for collision with those
objects

From now on all pictures will be
in 2D. Same principles apply



Locating Objects
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Linked lists of objects

e i={(int) (x / CellSize); j=(int) (y / CellSize); k = (int) (z / CellSize)

e Array of linked lists

— Test for collision for every element of the list at
grid(i,j, k)



Ray Tracing

* |ntersection of a ray with an object
— Computer graphics

— Shooting
| - Ray = “half-line”
''m
BERE = Ray collision detection:
- s which object will it intersect with?
b )




Ray Collision Detection

* One can define mathematically
— Ray to triangle collision
— Ray to box collision
— Ray to sphere collision

Grid is ideally
suited for tracing
rays




Ray Collision Detection in jME

* jMonkeEngine can detect Ray-Geometry
collisions

* See Examples coming with the library



Explicit Uniform Grid

Advantages:
* Very fast
* Easy to implement (especially in C, C++)

Disadvantages

* May be difficult in Java (generic /non-generic
type mixes)

* Use alot of memory (proportional to the number
of cells)



Spatial Hash

* Represent grids implicitly
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b ........ : lists of
0 | objects

e i=(int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)
class Triple {int x,y,z; Triple(..){..}};
HashMap<Triple,LinkedList<Spatial>> grid;



Side Remark: Maps

e How to store associations of the form

— For example,

(key, value)?

(gav, 3)
(mike, 5)
(john, 1)
List them
(gav, 3) ——>{(mike, 5) —_— > ..

—>

(john, 1)

I

As many elements as pairs




Maps As Lists

e Storing information in a list is memory
efficient...

.. butsearch is expensive

— Queries like “what age is john” potentially will go
through all the stored elements

(gav, 3) ———> (mike, 5) —> .. —> (john, 1)




Hash Function

* Let h(x) maps the key to a number between O
and N

— E.g.[name -> number of first letter in alphabet J

* gav ->7/
e john > 10

* mike -> 11 Bad ideal!
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John, 1

26

\ Linked

lists of
objects

What’s john’s age?

What’s alice’s age?
19



Spatial Hash

* Represent grids implicitly

Hash 1 >

O

—>

* For example,

U

‘h(i,j,k) = it+j+k mod 100{
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Linked
lists of
objects

Very bad choice
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Good Hash Function

Ideally, for two keys k,, k,there shouldn’t be a
clash, that is,

h(k,) # h(k,)
This is impossible to achieve
Writing a “good” hash function is hard

Java has in-built support (but you may wish to
supply your own implementation of hash
function)

(see javadoc on HashMap)



Spatial Hash

Advantages

* Moderate memory use (proportional to the
number of objects)

* Fast access

* EasyinlJava
Disadvantages

* Slower than array lookup
e Trickierin C/C++



Cell Size

 How fine should the grid be?

Too fine Too coarse Too coarse and Inadequate
too fine?

Cell size should roughly be the size of an object.
e Works in some cases
e Does not work in others
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