
Principles of Computer Game
Design and Implementation

Lecture 13

We already knew

• Collision detection – overlap test and
intersection test

• Detailed view
• Mid-level view

2

Outline for today

• High-level view for collision detection
– Uniform grid

3

High-Level View

Too many objects in the world problem
• Divide the space into regions
• Check for collisions inside regions
• An approximation
• Spatial data structures needed

4

Moving objects

Stationary objects

Spatial Data Structures

• Uniform grids
– Implicit grids

• Non-uniform grids
• Arbitrary space partitions

Used for collision detection
and various other purposes

Camera
frustum

Example: Visibility check
as collision detection

5

Uniform Grid

• Split the volume into 3-
dimentional cells

• For a moving object
– Identify objects in

surrounding cells
– Test for collision with those

objects
From now on all pictures will be
in 2D. Same principles apply

6

Locating Objects

• i = (int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)
• Array of linked lists

– Test for collision for every element of the list at
grid(i,j,k)

i

j

0
0 Linked lists of objects

7

Ray Tracing

• Intersection of a ray with an object
– Computer graphics
– Shooting

8

?

Ray = “half-line”

Ray collision detection:
which object will it intersect with?

Ray Collision Detection

• One can define mathematically
– Ray to triangle collision
– Ray to box collision
– Ray to sphere collision
– …

9

Grid is ideally
suited for tracing
rays

Ray Collision Detection in jME

• jMonkeEngine can detect Ray-Geometry
collisions

• See Examples coming with the library

10

Explicit Uniform Grid
Advantages:
• Very fast
• Easy to implement (especially in C, C++)

Disadvantages
• May be difficult in Java (generic /non-generic

type mixes)
• Use a lot of memory (proportional to the number

of cells)

14

Spatial Hash

• Represent grids implicitly

i

j

0
0 Linked

lists of
objects

(i,j,k)
Hash

• i = (int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)
class Triple {int x,y,z; Triple(..){..}};
HashMap<Triple,LinkedList<Spatial>> grid;

15

Side Remark: Maps

• How to store associations of the form
(key, value)?

– For example,
(gav, 3)
(mike, 5)
(john, 1)

List them
l(gav, 3) (mike, 5) … l(john, 1)

As many elements as pairs 16

Maps As Lists

• Storing information in a list is memory
efficient…

• … but search is expensive

– Queries like “what age is john” potentially will go
through all the stored elements

17

l(gav, 3) (mike, 5) … l(john, 1)

Hash Function

• Let h(x) maps the key to a number between 0
and N
– E.g. name -> number of first letter in alphabet
• gav -> 7
• john -> 10
• mike -> 11 Bad idea!

18

Hash Map

Linked
lists of
objects

1

7

10

h

0

…

gav, 3

John, 1

ann,5 alice, 7

…

26 What’s john’s age?
What’s alice’s age?

Clash

19

Spatial Hash

• Represent grids implicitly

i

j

0
0 Linked

lists of
objects

(i,j,k)
Hash

• For example,
h(i,j,k) = i+j+k mod 100

20

Very bad choice

Good Hash Function
• Ideally, for two keys k1, k2 there shouldn’t be a

clash, that is,
h(k1) ≠ h(k2)

• This is impossible to achieve
• Writing a “good” hash function is hard

• Java has in-built support (but you may wish to
supply your own implementation of hash
function)

(see javadoc on HashMap)

21

Spatial Hash

Advantages
• Moderate memory use (proportional to the

number of objects)
• Fast access
• Easy in Java
Disadvantages
• Slower than array lookup
• Trickier in C/C++

22

Cell Size

• How fine should the grid be?

23

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

Too fine Too coarse Too coarse and
too fine?

Inadequate

Cell size should roughly be the size of an object.
• Works in some cases
• Does not work in others

Cell Size

• How fine should the grid be?

24

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

286 Chapter 7 Spatial Partitioning

(a) (b) (c) (d)

Figure 7.1 Issues related to cell size. (a) A grid that is too fine. (b) A grid that is too coarse
(with respect to object size). (c) A grid that is too coarse (with respect to object complexity).
(d) A grid that is both too fine and too coarse.

7.1.1 Cell Size Issues

In terms of performance, one of the most important aspects of grid-based methods
is choosing an appropriate cell size. There are four issues related to cell size that can
hamper performance (Figure 7.1).

1. The grid is too fine. If the cells are too small, a large number of cells must be updated
with associativity information for the object, which will take both extra time and
space. The problem can be likened to fitting elephant-size objects into matchbox-
size cells. Too fine of a grid can be especially bad for moving objects, due to the
number of object links that must be both located and updated.

2. The grid is too coarse (with respect to object size). If the objects are small and the grid
cells are large, there will be many objects in each cell. As all objects in a specific cell
are pairwise tested against each other, a situation of this nature can deteriorate to
a worst-case all-pairs test.

3. The grid is too coarse (with respect to object complexity). In this case, the grid cell
matches the objects well in size. However, the object is much too complex, affect-
ing the pairwise object comparison.The grid cells should be smaller and the objects
should be broken up into smaller pieces, better matching the smaller grid cell size.

4. The grid is both too fine and too coarse. It is possible for a grid to be both too fine and
too coarse at the same time. If the objects are of greatly varying sizes, the cells can
be too large for the smaller objects while too small for the largest objects.

Case 4 is addressed in more detail in Section 7.2, on hierarchical grids. Taking the
remaining cases into consideration, cell size is generally adjusted to be large enough
(but not much larger) to fit the largest object at any rotation. This way, the number
of cells an object overlaps is guaranteed to be no more than four cells (for a 2D grid;
eight for a 3D grid). Having objects overlap only a small number of cells is important.

Too fine Too coarse Too coarse and
too fine?

Inadequate

Cell size should roughly be the size of an object.
• Works in some cases
• Does not work in others

