Principles of Computer Game
Design and Implementation

Lecture 13

We already knew

* Collision detection — overlap test and
Intersection test

e Detailed view

e Mid-level view

Outline for today

* High-level view for collision detection
— Uniform grid

High-Level View

Too many objects in the world problem

* Divide the space into regions
* Check for collisions inside regions
* An approximation

e Spatial data structures needed %
/7
Stationary objects

Moving objects § —
De ©

Spatial Data Structures

e Uniform grids
— Implicit grids
- Used for collision detection

¢ NOn-UnifOrm gridS and various other purposes
* Arbitrary space partitions

Example: Visibility check
as collision detection

CameraQ

frustum

oA

Uniform Grid

* Split the volume into 3-
dimentional cells

* For a moving object

— |dentify objects in
surrounding cells

{)

\
NN NN
NI

— Test for collision with those
objects

From now on all pictures will be
in 2D. Same principles apply

Locating Objects

P I
@Y j @ \

Linked lists of objects

e i={(int) (x / CellSize); j=(int) (y / CellSize); k = (int) (z / CellSize)

e Array of linked lists

— Test for collision for every element of the list at
grid(i,j, k)

Ray Tracing

* |ntersection of a ray with an object
— Computer graphics

— Shooting
| - Ray = “half-line”
''m
BERE = Ray collision detection:
- s which object will it intersect with?
b)

Ray Collision Detection

* One can define mathematically
— Ray to triangle collision
— Ray to box collision
— Ray to sphere collision

Grid is ideally
suited for tracing
rays

Ray Collision Detection in jME

* jMonkeEngine can detect Ray-Geometry
collisions

* See Examples coming with the library

Explicit Uniform Grid

Advantages:
* Very fast
* Easy to implement (especially in C, C++)

Disadvantages

* May be difficult in Java (generic /non-generic
type mixes)

* Use alot of memory (proportional to the number
of cells)

Spatial Hash

* Represent grids implicitly

(=T T eI

e @] \

b : lists of
0 | objects

e i=(int) (x / CellSize); j = (int) (y / CellSize); k = (int) (z / CellSize)
class Triple {int x,y,z; Triple(..){..}};
HashMap<Triple,LinkedList<Spatial>> grid;

Side Remark: Maps

e How to store associations of the form

— For example,

(key, value)?

(gav, 3)
(mike, 5)
(john, 1)
List them
(gav, 3) ——>{(mike, 5) —_— > ..

—>

(john, 1)

I

As many elements as pairs

Maps As Lists

e Storing information in a list is memory
efficient...

.. butsearch is expensive

— Queries like “what age is john” potentially will go
through all the stored elements

(gav, 3) ———> (mike, 5) —> .. —> (john, 1)

Hash Function

* Let h(x) maps the key to a number between O
and N

— E.g.[name -> number of first letter in alphabet J

* gav ->7/
e john > 10

* mike -> 11 Bad ideal!

10+

John, 1

26

\ Linked

lists of
objects

What’s john’s age?

What’s alice’s age?
19

Spatial Hash

* Represent grids implicitly

Hash 1 >

O

—>

* For example,

U

‘h(i,j,k) = it+j+k mod 100{

o] 6\\ii:::\

Linked
lists of
objects

Very bad choice

20

Good Hash Function

Ideally, for two keys k,, k,there shouldn’t be a
clash, that is,

h(k,) # h(k,)
This is impossible to achieve
Writing a “good” hash function is hard

Java has in-built support (but you may wish to
supply your own implementation of hash
function)

(see javadoc on HashMap)

Spatial Hash

Advantages

* Moderate memory use (proportional to the
number of objects)

* Fast access

* EasyinlJava
Disadvantages

* Slower than array lookup
e Trickierin C/C++

Cell Size

 How fine should the grid be?

Too fine Too coarse Too coarse and Inadequate
too fine?

Cell size should roughly be the size of an object.
e Works in some cases
e Does not work in others

Cell Size

 How fine should the grid be?

Too fine Too coarse Too coarse and Inadequate
too fine?

Cell size should roughly be the size of an object.
e Works in some cases
e Does not work in others

