
Principles of Computer Game
Design and Implementation

Lecture 14

We already knew

• Collision detection – high-level view
– Uniform grid

2

Outline for today

• Collision detection – high level view
– Other data structures

3

Non-Uniform Grids

• Locating objects
becomes harder

• Cannot use
coordinates to identify
cells

• Use trees and navigate
them to locate the cell.

4

Idea: choose the cell size
depending on what is put
there
• Ideal for static objects

Quad- and Octrees

Quadtree: 2D space partitioning
• Divide the 2D plane into 4 (equal size)

quadrants
– Recursively subdivide the quadrants
– Until a termination condition is met

5

Quad- and Octrees

Octree: 3D space partitioning
• Divide the 3D volume into 8 (equal size) parts
– Recursively subdivide the parts
– Until a termination condition is met

6

Termination Conditions

• Max level reached
• Cell size is small enough
• Number of objects in any sell is small

7

ý ýý

ýý

k-d Trees

k-dimensional trees
• 2-dimentional k-d tree
– Divide the 2D volume into 2

parts vertically
• Divide each half into 2 parts

horizontally
– Divide each half into 2 parts

vertically
» Divide each half into 2 parts

horizontally
• Divide each half ….

8

1

1

3

2

2 3

k-d Trees vs (Quad-) Octrees

• For collision detection k-d trees can be used
where (quad-) octrees are used

• k-d Trees give more flexibility
• k-d Trees support other functions
– Location of points
– Closest neighbour

• k-d Trees require more computational
resources

9

Grid vs Trees

• Grid is faster
• Trees are more accurate
• Combinations can be used

10

322 Chapter 7 Spatial Partitioning

(a) (b)

Figure 7.15 (a) A grid of trees, each grid cell containing a separate tree. (b) A grid indexing
into a single tree hierarchy, each grid cell pointing into the tree at which point traversal
should start.

it suffices to locate the grid cell the object is inside and follow the pointer to the
correct tree node. Using a grid in this manner can help bypass a large portion of the
tree during queries.

To handle the case of going to the correct node when an object is on a grid cell
boundary overlapping two or more cells, the grid cells can be made loose, similar to
the nodes in a loose octree. The grid cell that encompasses the object is now used
to find the entry point into the tree structure.

7.4 Ray and Directed Line Segment Traversals

Particularly common in many applications, games in particular, are line pick tests.
These are queries involving rays or directed line segments. Typical uses include line-
of-sight tests and tests for whether or not a fired bullet hits an enemy. They can also
be used as the primary collision query. One such example could be performing line
picks down from the wheels of a vehicle to attach the vehicle to the terrain below.

To accelerate these queries, hierarchical structures are used to minimize the number
of objects that have to be intersected by the ray or segment. The key idea is to first
spatially partition the world into a number of cells. The ray is then traced through
those cells it pierces and intersected against any objects they might contain. The next
two sections illustrate how ray queries are performed on k-d trees and uniform grids.

7.4.1 k-d Tree Intersection Test

The basic idea behind intersecting a ray or directed line segment with a k-d tree is
straightforward. The segment S(t) = A+ t d is intersected against the node’s splitting
plane, and the t value of intersection is computed. If t is within the interval of the

Cell to tree Grid to tree

Binary Space Partitioning

• BSP tree: recursively partition tree w.r.t.
arbitrary dividing planes

11

350 Chapter 8 BSP Tree Hierarchies

A

A

+ –

+ –
A

+ –

B+
–

B+
–C+

–

A
+ –

+ – + –

+ – + – + –

A

B

A

BC

(a) (b) (c)

Figure 8.1 The successive division of a square into four convex subspaces and the cor-
responding BSP tree. (a) The initial split. (b) The first second-level split. (c) The second
second-level split.

Originally, BSP trees were developed for addressing the hidden-surface problem
[Fuchs80]. BSP trees solve this problem by allowing a scene to be view-independently
decomposed in a preprocessing phase. The resulting tree can then be traversed at
runtime to give the correct (back-to-front or front-to-back) sorting order of objects
or individual polygons from an arbitrary viewpoint.

BSP trees have found uses in such varied applications as ray tracing, constructive
solid geometry (CSG), and robot motion and path planning, to name a few. BSP trees
are also very versatile when it comes to collision detection as they can serve both as a
spatial partitioning (a nonboundary representation) and as a volume representation
(a boundary representation, for a solid object). As a spatial partitioning scheme,
BSP trees are very similar to quadtrees, octrees, and k-d trees, but BSP trees are
more general as they can emulate these other spatial data structures. As a volume
representation, BSP trees can be used to represent and distinguish the interiors of
polygons and polyhedra from their exteriors.

Figure 8.2 illustrates the use of BSP trees for spatial partitioning and volume rep-
resentation. Figure 8.2a shows how a space can be spatially partitioned to accelerate
collision queries against the objects of the space. Thanks to the hierarchy formed
by the BSP tree, with n objects in the tree only on the order of O(log n) objects are
typically tested by a query, in that half of the remaining objects can be expected to be
discarded by each successive test against a partitioning plane. (However, degenerate
situations may cause all n objects to be tested — for example, if the query object is
very large or if the tree is poorly built.)

Figure 8.2b shows how the dividing planes can be selected to coincide with the
faces of a polygonal object, thus allowing the exterior of the shape to be partitioned
from the interior of the shape. The spatial region associated with each leaf of this tree
lies either fully inside or fully outside the original shape.

350 Chapter 8 BSP Tree Hierarchies

A

A

+ –

+ –
A

+ –

B+
–

B+
–C+

–

A
+ –

+ – + –

+ – + – + –

A

B

A

BC

(a) (b) (c)

Figure 8.1 The successive division of a square into four convex subspaces and the cor-
responding BSP tree. (a) The initial split. (b) The first second-level split. (c) The second
second-level split.

Originally, BSP trees were developed for addressing the hidden-surface problem
[Fuchs80]. BSP trees solve this problem by allowing a scene to be view-independently
decomposed in a preprocessing phase. The resulting tree can then be traversed at
runtime to give the correct (back-to-front or front-to-back) sorting order of objects
or individual polygons from an arbitrary viewpoint.

BSP trees have found uses in such varied applications as ray tracing, constructive
solid geometry (CSG), and robot motion and path planning, to name a few. BSP trees
are also very versatile when it comes to collision detection as they can serve both as a
spatial partitioning (a nonboundary representation) and as a volume representation
(a boundary representation, for a solid object). As a spatial partitioning scheme,
BSP trees are very similar to quadtrees, octrees, and k-d trees, but BSP trees are
more general as they can emulate these other spatial data structures. As a volume
representation, BSP trees can be used to represent and distinguish the interiors of
polygons and polyhedra from their exteriors.

Figure 8.2 illustrates the use of BSP trees for spatial partitioning and volume rep-
resentation. Figure 8.2a shows how a space can be spatially partitioned to accelerate
collision queries against the objects of the space. Thanks to the hierarchy formed
by the BSP tree, with n objects in the tree only on the order of O(log n) objects are
typically tested by a query, in that half of the remaining objects can be expected to be
discarded by each successive test against a partitioning plane. (However, degenerate
situations may cause all n objects to be tested — for example, if the query object is
very large or if the tree is poorly built.)

Figure 8.2b shows how the dividing planes can be selected to coincide with the
faces of a polygonal object, thus allowing the exterior of the shape to be partitioned
from the interior of the shape. The spatial region associated with each leaf of this tree
lies either fully inside or fully outside the original shape.

350 Chapter 8 BSP Tree Hierarchies

A

A

+ –

+ –
A

+ –

B+
–

B+
–C+

–

A
+ –

+ – + –

+ – + – + –

A

B

A

BC

(a) (b) (c)

Figure 8.1 The successive division of a square into four convex subspaces and the cor-
responding BSP tree. (a) The initial split. (b) The first second-level split. (c) The second
second-level split.

Originally, BSP trees were developed for addressing the hidden-surface problem
[Fuchs80]. BSP trees solve this problem by allowing a scene to be view-independently
decomposed in a preprocessing phase. The resulting tree can then be traversed at
runtime to give the correct (back-to-front or front-to-back) sorting order of objects
or individual polygons from an arbitrary viewpoint.

BSP trees have found uses in such varied applications as ray tracing, constructive
solid geometry (CSG), and robot motion and path planning, to name a few. BSP trees
are also very versatile when it comes to collision detection as they can serve both as a
spatial partitioning (a nonboundary representation) and as a volume representation
(a boundary representation, for a solid object). As a spatial partitioning scheme,
BSP trees are very similar to quadtrees, octrees, and k-d trees, but BSP trees are
more general as they can emulate these other spatial data structures. As a volume
representation, BSP trees can be used to represent and distinguish the interiors of
polygons and polyhedra from their exteriors.

Figure 8.2 illustrates the use of BSP trees for spatial partitioning and volume rep-
resentation. Figure 8.2a shows how a space can be spatially partitioned to accelerate
collision queries against the objects of the space. Thanks to the hierarchy formed
by the BSP tree, with n objects in the tree only on the order of O(log n) objects are
typically tested by a query, in that half of the remaining objects can be expected to be
discarded by each successive test against a partitioning plane. (However, degenerate
situations may cause all n objects to be tested — for example, if the query object is
very large or if the tree is poorly built.)

Figure 8.2b shows how the dividing planes can be selected to coincide with the
faces of a polygonal object, thus allowing the exterior of the shape to be partitioned
from the interior of the shape. The spatial region associated with each leaf of this tree
lies either fully inside or fully outside the original shape.

How To Partition

• Depend on the task
– Originally for hidden-surface removal optimisation
– Used in ray tracing
– Used where octrees or k-d trees are used

• In many cases are precomputed in advance
– DOOM, Quake,… for collision detection (among

other things)

12

Solid-Leaf BSP Trees

• Build to represent “solid volume” occupied by
the geometry
– How to keep our hero in the room?

13

Floor plan

Space Partitioning

Y

15

X

Space Partitioning

X

Y

(0,0,0)

(0,0,0)
(0,1,0)

(0,0,0)
(-2,1,0)

(0,5,0)
(-1,1,0)

(0,5,0)
(-1,2,0)

Empty

Empty

Empty

Solid

Solid

Left branch: in front
Right branch: behind

1

4

3 2

1

2

4

3

16

+
-

+ -

(-1,2,0)

(0,1,0)

(0,5,0)
(-1,-1,0)

(-2,1,0)

BSP Code (1)

17

class Plain {
private Vector3f myPosition, myDirection;
public Plain(Vector3f position, Vector3f direction) {
myPosition = position;
myDirection = direction;

}

public boolean isInFront(Vector3f pos) {
if(pos.subtract(myPosition).dot(myDirection)>0) {
return true;
}
else {
return false;

}
}

}

Does not take the
boundary into account

BSP Code (2)

18

enum NodeType {solid, empty, internal};

class BSPTree {
NodeType myType;
Plain myPlain;
BSPTree myInfront, myBehind;
public BSPTree(NodeType t) {
// if((t != NodeType.empty) || (t != NodeType.solid))
// throw new Exception();
myType = t;
myPlain = null;
myInfront = null;
myBehind = null;

}

BSP Code (3)

19

public BSPTree(Plain p, BSPTree infront, BSPTree behind) {
myPlain = p;
myType = NodeType.internal;
myInfront = infront;
myBehind = behind;

}

BSP Code (4)

20

public boolean isSolid(Vector3f pos) {
if(myType == NodeType.solid) {
return true;

}
if(myType == NodeType.empty) {
return false;

}
if(myPlain.isInFront(pos)) {
return myInfront.isSolid(pos);

}
else {
return myBehind.isSolid(pos);

}
}

BSPTree solidT = new BSPTree(NodeType.solid);
BSPTree emptyT = new BSPTree(NodeType.empty)
t = new BSPTree(new Plain(new Vector3f(0,0,0), new Vector3f(0,1,0)),

new BSPTree(new Plain(new Vector3f(0,0,0),
new Vector3f(-2,1,0)),

new BSPTree(new Plain(new Vector3f(0,5,0),
new Vector3f(-1,2,0)),

new BSPTree(new Plain(new
Vector3f(0,5,0),

new
Vector3f(-1,1,0)),

emptyT,
solidT

),
solidT

),
emptyT

),
emptyT

);

X

Y

(0,0,0)

(0,5,0)

1

4

3 2

BSP Code (5)

21

1
2

4

3

BSP Code (6)

22

private AnalogListener analogListener = new
AnalogListener() {
public void onAnalog(String name,

float value, float tpf){
if(name.equals("Move right")){
Vector3f newPos =

(ball.getLocalTranslation().add(Vector3f.UN
IT_X.mult(10*tpf)));

if(t.isSolid(newPos)){
ball.setLocalTranslation(newPos);

}
}

Conclusion

• Hierarchical data structures help on both mid-
and high-level collision detection

• About 10% of console memory is spent on
collision detection data structures

• Collision detection is easy when the number
of entities is small, but becomes a challenge
when the number grows.

23

