
Principles of Computer Game
Design and Implementation

Lecture 17

We already learned

• Collision response
– Newtonian mechanics
• An application of Newtonian dynamics in targeting

– Collision recipe
• Ball-plain bouncing problem

2

Outline for today

• Collision recipe
– Ball-ball collision problem

• Other physics simulation
– rigid-body physics, soft-body physics, fluid

mechanics, etc.

3

Ball-Ball Collision Recipe

• First, consider 1D case

– No roll
– No friction
– No energy loss

• Then 3D

4

V1 V2

X

Elastic collision

1D Ball-Ball Collision Laws

• Impulse conservation

• Energy conservation

5

m1 m2
V1 V2

After
collision

Before
collision

m1V1 +m2V2 = m1V
0
1 +m2V

0
2

m1V
2
1

2
+

m2V
2
2

2
=

m1V
0
1
2

2
+

m2V
0
2
2

2

X

1D Ball-Ball Collision: Different Masses

6

m1 m2
V1 V2

• Can be solved

V 0
1 =

V1(m1 �m2) + 2m2V2

m1 +m2

V 0
2 =

V2(m2 �m1) + 2m1V1

m1 +m2

X

1D Ball-Ball Collision: Same Mass

• If the balls have same mass (e.g. billiard balls)

7

V1 V2

Examples:
V1 = 10mph, V2 = 0 V’1 = 0, V’2 = 10mph
V1 = 10mph, V2 = -10mph V’1 = -10mph, V’2 =10mph
V1 = 10mph, V2 = 3mph V’1 = 3mph, V’2 =10mph

m1 m2
V1 V2

V 0
1 = V2 V 0

2 = V1

X

Negative speed
means that the
ball moves from
right to left

Ball-Ball Inter Penetration

• V1 = 10mph, V2 = -10mph V’1 = -10mph, V’2 =10mph
• V1 = -10mph, V2 = 10mph V’1 = 10mph, V’2 =-10mph
• V1 = 10mph, V2 = -10mph V’1 = -10mph, V’2 =10mph
• V1 = -10mph, V2 = 10mph V’1 = 10mph, V’2 =-10mph

Move nowhere!

8

V2 m2m1
V1V2

X

Ball-Ball Collision: Better Solution

• V1 = 10mph, V2 = -10mph V’1 = -10mph, V’2 =10mph
• V1 = -10mph, V2 = 10mph V’1 = 10mph, V’2 =-10mph
• V1 = 10mph, V2 = -10mph V’1 = -10mph, V’2 =10mph
• V1 = -10mph, V2 = 10mph V’1 = 10mph, V’2 =-10mph

9

V2 m2m1
V1V2

X

• If (V1 - V2 > 0)

• Else no change in velocities

V 0
1 = V2 V 0

2 = V1

V1N = (N�V1)N V2N = (N�V2)N
V1|| = V1 – V1N V2|| = V1 – V2N

V’1N = (N�V2)N V’2N = (N�V1)N
V’2 = V’1N + V1|| V’2 = V’2N + V2||

3D Ball-Ball Collision (Same Mass)

• Collision does not change the parallel
component of velocity

10

V2

N
V1

V
||

V N

X

Y

Z

Position vectors

P1

P2

N =
1

kP2 �P1k
(P2 �P1)

Penetration Handling

Same Mass Ball-Ball Collision jME code

11

Z

V2

N
V1

V
||

V N

X

Y
P1

P2

…
if(…) {
Vector3f n = ball2.getLocalTranslation().

subtract(ball1.getLocalTranslation()).
normalize();

float proj1V = velocity1.dot(n);
float proj2V = velocity2.dot(n);
Vector3f tan1 = velocity1.

subtract(n.mult(proj1V));
Vector3f tan2 = velocity2.

subtract(n.mult(proj2V));
if(proj1V – proj2V > 0) {

velocity1 = tan1.add(n.mult(proj2V));
velocity2 = tan2.add(n.mult(proj1V));

}
}
…

Recall: Main Loop
Naïve approach:

for(i=0;i<num_obj-1;i++)
for(j=i+1;j<num_obj;j++)

if(collide(i,j)){
react;

}

• Issues:
– How
– Can be very slow

12

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

Simple Newtonian Mechanics

• Accurate physical modelling can be quite
complicated

• We considered simplest possible behaviours
– Particle motion
– Ball-plain and ball-ball collision
• No friction, no properties of materials

13

Other Example: Box-Box collision

Hard to achieve a realistic behaviour without
considering rotation, deformation, friction

14

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

Boxes can interact in a number of ways

Other Physical Simulations

• Rigid body (no deformation) physics
– Rotation, friction, multiple collisions
– Joints and links
• Ragdoll physics

15

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

! The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

Center of Mass

worldX
worldZ

objectX
objectZ

402 Chapter 17 Putting It All Together

a driving game will model cones and fences, allowing them to break and be scattered
realistically, for example. In situations where different kinds of physical behavior need
to interact, there is little to substitute for a complete physics engine.

17.2.1 RAGDOLLS

Ragdolls are the hot physics application of the moment: characters that can be thrown
around and generate their own realistic animation using physics. They are part of
a wider move toward procedural animation: animation that doesn’t need an artist
creating keyframes.

A ragdoll is made up of a series of linked rigid bodies (see figure 17.2). These
rigid bodies are called “bones” (they roughly correspond to the bones used in skeletal
animation, although there can be a different number of ragdoll bones and rendering
bones). At their most complex, ragdolls can contain dozens of bones, essential for
getting a flexible spine or tail.

The bones are connected together with joints: constraints very much like those
we saw in chapter 7. Finally, in some games force generators are added to the joints to
simulate the way characters would move in flight: shielding their faces and trying to
brace their hands against the fall.

On the CD the ragdoll demo omits the force generators1 but includes the joints
to keep the bones together.

The constraints are implemented as contacts. In addition to the regular contact
generator, a list of joints is considered and contacts are generated to keep them to-

FIGURE 17.2 Screenshot of the ragdoll demo.

1. I left these out because there are some important complications in their implementation. These com-
plications arise from the way people move: it is a problem of AI rather than of physics.

More Physics

• Soft body physics (shapes can
change)
– Cloth, ropes, hair

• Fluid dynamics

16

Putting It All Together

17

17.2 Using the Physics Engine 401

Force/Torque
generators

Rigid-body
update

(Integrator)

Rigid-body
data

Apply forces
and torques

Write integrated
position
and velocity

Contact generator
(possibly with

pluggable
constraints)

Create contacts

Contact data

Contact
resolution

Write
postcollision

position
and velocity

1

2

3

4

FIGURE 17.1 Data flow through the physics engine.

Setting up new objects with the correct physics can be a challenge. In my experi-
ence it is invaluable to have a simple environment set up as part of the level-design
process where the physics of objects can be tested interactively. That way, as you de-
velop you can be sure that the object feels right in its environment and that no crucial
data is being left uninitialized.

17.2 USING THE PHYSICS ENGINE

We can now do almost anything we want with our physics engine. In this chapter I’ll
give you a taste of some of the most popular applications for physics: ragdolls, break-
able objects, and movie-style explosions. On the way we’ll look at some additional
techniques, force generators, and ways to configure the engine.

There is one important caveat to these applications, however. If you are building
your engine for a single purpose (to run off-road trucks or as part of a procedural
animation system, for example), then there may be faster ways to get there directly.

I am going to focus on using our generic engine to power these effects. If all you
need is a single-purpose physics system, there may be things we have put in our code
that aren’t needed. For example, for high-spec racing cars that don’t normally leave
the ground, you can omit all the rigid-body physics and build special-case spring code
to model how their suspension flexes and how it handles.

Our approach is to build a physical approximation of the object and simulate
it. Sometimes a better approach is to work out the desired behavior and program
that in explicitly. Having said that, the general-purpose versus special-case dilemma
is becoming increasingly moot. Modern games typically need several effects at once:

I. Millington. Game Physics Engine Development.

• Combine all aspects of a physical model

• Use hardware acceleration

Decoupling Physics and Graphics

• What if we need physics simulation for
something not shown?

• E.g. reconsider the targeting problem

18
S

V

Vh

Vv

Drag acts on the projectile

Computed trajectory (without drag)
Real trajectory

What Can We Do

• Euler steps give us the updated entity position
based on the interaction with other entities
and forces

• Analytical solution can be difficult to obtain
– Quadratic drag?
– Wind?
– Rocket-propelled grenade?

19

Interactive Approach

• Compute the initial velocity as if there is no
drag, wind, thrust,… (or simply pick a value)

• While not hit sufficiently close, repeat
– Use Euler steps to see where it gets
– If overshot, reduce speed
– If undershot, increase speed

Fun to watch, but does it solve our problem?

20

