Principles of Computer Game
Design and Implementation

Lecture 17

We already learned

* Collision response
— Newtonian mechanics
* An application of Newtonian dynamics in targeting

— Collision recipe

* Ball-plain bouncing problem

Outline for today

* Collision recipe
— Ball-ball collision problem

e Other physics simulation

— rigid-body physics, soft-body physics, fluid
mechanics, etc.

Ball-Ball Collision Recipe

* First, consider 1D case

X

— No roll
— No friction _ Elastic collision
— No energy loss

>

e Then 3D

1D Ball-Ball Collision Laws

* Impulse conservation

After
collision

/ /
Before ! m1V1 —+ m2V2 = lel -+ m2V2

collision

e Ene onservation

ml\/% n mg\/g mlvl

1D Ball-Ball Collision: Different Masses

 Can be solved

Vi(mi —msg) + 2moVs

Vll —
a1 -+ 19
v/ Vo(mg —my) +2my Vi
: mi + Mo

o o

1D Ball-Ball Collision: Same Mass

 |f the balls have same mass (e.g. billiard balls)

V! = Vs V=V,

Examples:
V,=10mph, V, =0 V', =0, V’,=10mph

V,=10mph, V, = -10mph] V', =-10mph, V', =10mph
V,=10 , V, =3mph V’; =3mph, V', =10mph

Negative speed

means that the
ball moves from Vi Vv,
right to left

e

>

Ball-Ball Inter Penetration

T

e,

V, =10mph, V, =-10mph
V, =-10mph, V, = 10mph
V, =10mph, V, =-10mph
V, =-10mph, V, = 10mph

>

V', =-10mph, V', =10mph
V’, =10mph, V', =-10mph
V', =-10mph, V', =10mph
V’; =10mph, V', =-10mph

Move nowhere!

Ball-Ball Collision: Better Solution

o If (V,-V,>0)
Vi =V Vo =W

s T
* V,=10mph, V, =-10mph V’; =-10mph, V', =10mph

* Else no change in velocities

>

* V,=10mph, V, =-10mph V’; =-10mph, V', =10mph

3D Ball-Ball Collision (Same Mass)

* Collision does not change the parallel
component of velocity

1

N —
[Py — Py

(P2 —Pq)

V,y = (N<V,N V,y = (NeV,)N
V1|| =V, =V, ;"fzi! =V, =V,

V', = (NV,)N V7 = (NeV,)N
V=V y+Vy V=V +V,,

Position vectors

Same Mass Ball-Ball Collision jME code

f(..) {
Vector3f n = ball2.getLocalTranslation().

subtract(balll.getLocalTranslation()).
normalize();
float projlv = velocityl.dot(n);
float proj2v = velocity2.dot(n);
Vector3f tanl = velocityl.
subtract(n.mult(projlv));
Vector3f tan2 = velocity?2.
subtract(n.mult(proj2v));
[if(prole — proj2v > 0)| {
velocityl =
velocity2 =

}

Penetration Handling 11

Recall: Main Loop

Initialise

Naive approach:

Aot PN,
for(j=i+1; j<num obj; j++)

if(collide(i,j)){

react ;: Draw Scene
* [ssues:
— How Cleanup

— Can be very slow

12

Simple Newtonian Mechanics

* Accurate physical modelling can be quite
complicated

* We considered simplest possible behaviours

— Particle motion

— Ball-plain and ball-ball collision
* No friction, no properties of materials

Other Example: Box-Box collision

Boxes can interact in a number of ways

ttttttt

ttttttt

Hard to achieve a realistic behaviour without
considering rotation, deformation, friction

Other Physical Simulations

* Rigid body (no deformation) physics
— Rotation, friction, multiple collisions

— Joints and links
* Ragdoll physics

15

More Physics

e Soft body physics (shapes can
change)

— Cloth, ropes, hair

* Fluid dynamics

16

Putting It All Together

 Combine all aspects of a physical model

oo~ N

Apply forces
and torges

Force/Torque
generators

igid-body
data

2
Rigid-body DX
update e
(Integrator) Q‘ \ o drated
(B
Q nd velocity Write
3 postcollision

Contact generator ®_. o ;\Jlgf;t(i;iatn
(possibly with [] y

Contact

@% Create contac
@ ' resolution

l. Millington. Game Physics Engine Development.

e Use hardware acceleration

17

Decoupling Physics and Graphics

 What if we need physics simulation for
something not shown?

* E.g. reconsider the targeting problem

Drag acts on the projectile

. Computed trajectory (without drag)
Real trajectory

18

What Can We Do

* Euler steps give us the updated entity position
based on the interaction with other entities

and forces
e Analytical solution can be difficult to obtain
— Quadratic drag?
— Wind?
— Rocket-propelled grenade?

Interactive Approach

 Compute the initial velocity as if there is no
drag, wind, thrust,... (or simply pick a value)
* While not hit sufficiently close, repeat
— Use Euler steps to see where it gets
— If overshot, reduce speed
— If undershot, increase speed

Fun to watch, but does it solve our problem?

