Principles of Computer Game Design and Implementation

Lecture 19

Game Artificial Intelligence

In computer games, AI refers to a collection of techniques that control the computer player

 AI is anything that contributes to the perceived intelligence of an entity, regardless of what 's under the hood

Outline for today

- Introduction
- Sense-Think-Act Cycle:
 - Sensing

Some History

- Initially, there was no computer player in games (Pong, Space Wars, *Tetris*)
- Early examples are not very smart
 - Pac-Man ghosts (chaise mode):
 - Plan just one step ahead
 - Never reverse the direction of travel
 - Certain tiles enforce certain behaviour
- AI and level developed together

- Target tile depends on the ghost *personality*
 - Move where the player is
 - Move where the player will be

No really intelligent behaviour

Requirements

- Be intelligent but **purposely** flawed
- Have no **unintended** weaknesses
- Perform within CPU and memory constraints

 Cheat! (but players don't like it. If they notice.)
- Be configurable by game designers /player
- Be visible

- Perception window can be very small

Be Visible

- Make sure player knows what agent is doing
 - Patrolling agent speaks on the radio
 - Changes in behaviour are easy to spot
- Eliminate invisible AI activity
 - "Level of detail": if player sees, show activity, else don't do it.

Example: 100% Optimisation

• That's what we perceive

Example: 100% Optimisation

- What happens:
 - Soldiers are spawned by the control system when needed
 - Helps with the CPU cycles

Traditional AI

Science and Engineering

- the science of understanding intelligent entities - of developing theories which attempt to explain and predict the nature of such entities;
- the *engineering* of intelligent entities.

Four Views of Al

- Systems that think like humans
 - cognitive science, expert systems
- Systems that act like humans
 - The Turing Test, chess programs
- Systems that think rationally
 - Approaches based on logic and mathematics
- Systems that act rationally
 - Contemporary agent based approaches

It's all about substance!

Game Al

It's all about *appearance*!

- Biased towards engineering: developing algorithms that *appear* to behave intelligently
 - human or animal like
- Sometimes these two approaches do overlap
 But not necessarily

Approaches to Game Al

- "Proper"
 - FSMs, planning, path finding, collision avoidance, expert systems, fuzzy logic...
- "Ad-Hoc"
 - Hacks
 - Animation can *show* more intelligence than algorithm
 - Heuristics
 - Choose most constraint option
 - Do most difficult thing first
 - Try the most promising thing first

Intelligent Entities

It is convenient to distinguish

- Game agents
 - autonomous entities that observe and act upon an environment.
 - Game characters
- Virtual Player
 - performs the same operations as the human player.
 - Chess

Agents and Virtual Player

• Agents, no virtual player

- Shooters, racing, ...

• Virtual player, no agents

– Chess, ...

• Both

– Strategy games, team sport games, ...

Agents

Act as

- enemies, allies, neutral characters

- Constantly go through a
 - Sense Think Act cycle
 - Sometimes can learn new behaviours
- Example: first-person shooter enemies, other car drivers, units in strategies

Sense-Think-Act Cycle: Sensing

- Agent can have access to **perfect** information of the game world
 - May be expensive/difficult to tease out useful info
- Game World Information
 - Complete terrain layout
 - Location and state of every game object
 - Location and state of player
- But isn't this cheating???

Sensing: Enforcing Limitations

- Human limitations?
- Limitations such as
 - Not knowing about unexplored areas
 - Not seeing through walls
 - Not knowing location or state of player
- Can only know about things seen, heard, or told about
- Must create a sensing model

Sensing:

Human Vision Model for Agents

- Get a list of all objects or agents; for each:
 - 1. Is it within the viewing distance of the agent?
 - How far can the agent see?
 - What does the code look like?
 - 2. Is it within the viewing angle of the agent?
 - What is the agent's viewing angle?
 - What does the code look like?
 - 3. Is it unobscured by the environment?
 - Most expensive test, so it is purposely last
 - What does the code look like?

Partial Visibility

• Check for bounding body visibility

- Expensive

• React to player motion

Corresponds nicely to the human perception

Sensing: Human Hearing Model

- Humans can hear sounds
 - Can recognize sounds
 - Knows what emits each sound
 - Can sense volume
 - Indicates distance of sound
 - Can sense pitch
 - Sounds muffled through walls have more bass
 - Can sense location
 - Where sound is coming from

Sensing: Modeling Hearing Efficiently

• Event-based approach

- When sound is emitted, it alerts interested agents

 Use distance and zones to determine how far sound can travel

Sensing: Communication

- Agents might talk amongst themselves!
 - Guards might alert other guards
 - Agents witness player location and spread the word
- Model sensed knowledge through communication
 - Event-driven when agents within vicinity of each other

Sensing: Reaction Times

- Agents shouldn't see, hear, communicate instantaneously
- Players notice!
- Build in artificial reaction times
 - Vision: ¼ to ½ second
 - Hearing: ¼ to ½ second
 - Communication: > 2 seconds