
Principles of Computer Game
Design and Implementation

Lecture 23

We already learned

• Decision Tree

2

Outline for today

• Finite state machine

3

4

Creating & Controlling AI Behaviors
Behavior: A Sequence of Actions

The patrol and guard behavior is defined as a sequence of actions

Sense

Think

Act

296 Chapter 5 Decision Making

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree

Each choice is made based on the character’s knowledge. Because decision trees are often used
as simple and fast decision mechanisms, characters usually refer directly to the global game state
rather than have a representation of what they personally know.

The algorithm continues along the tree,making choices at each decision node until the decision
process has no more decisions to consider. At each leaf of the tree an action is attached. When the
decision algorithm arrives at an action, that action is carried out immediately.

Most decision treenodes make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3 the character
will choose to attack unless it can’t see the enemy or is flanked. The attack action is present at two
leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The path taken by
the algorithm is highlighted, showing the arrival at a single action, which may then be executed
by the character.

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain any Boolean
logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the character’s
knowledge, different kinds of tests may be possible. A representative set is given in the following
table, based on a game engine we’ve worked on:

So, Basically…

• An agent goes through a sequence of states
• Arrows indicate transitions

5

6

Finite-State Machine (FSMs)

• Abstract model of computation
– Formally:
• Set of states
• A starting state
• An input vocabulary
• A transition function that maps inputs and the current

state to a next state

7

FSMs In Game Development
Deviate from formal definition

1. States define behaviors (containing code)
• Wander, Attack, Flee
• As longer as an agent stays in a state, it carries on the same action

2. Transition function divided among states
• Keeps relation clear

3. Extra state information
• For example, health

Recall: User Control V Modelling

• In these examples, user controlled completely the
state of the world or there was no user input.
– How to mix user control and physical modelling?

• Game states

User Auto

Motion simulation stops

User initiates motion simulation
User controls
the world

8

9

Finite-State Machine:
UML Diagram

Wander Attack

Flee

See Enemy

Low
 H

eal
thNo Enemy

No Enemy

Initial state

State Actions

• Actions is what player sees
– Movement
– Animation

• Instead of one action can consider
– onEntry
• Executed when FSM enters the state

– onExit
– onUpdate
• Runs every tick while FSM is in the state

10

Sense

Think

Act

11

Finite-State Machine:
Approaches

• Three approaches
– Hardcoded (switch statement)
– Scripted
– Hybrid Approach

12

Hard-Coded FSM
enum State {wander, attack, flee};
State state;
…
switch (state)

{
case wander:

Wander();
if(SeeEnemy()) { state = State.attack; }
break;

case attack:
Attack();
if(LowOnHealth()) { state = State.flee; }
if(NoEnemy()) { state = State.wander; }
break;

case flee:
Flee();
if(NoEnemy()) { state = State.wander; }
break;

}

Hard-Coded FSM: Weaknesses

• Maintainability
– Language doesn’t enforce structure
– Can’t determine 1st time state is entered

• FSM change -> recompilation
– Critical for large projects
– Cannot be changed by game designers / players

• Harder to extend
– Hierarchical FSMs
– Probabilistic / fuzzy FSMs

13

14

Finite-State Machine:
Scripted with alternative language

BeginFSM
State(STATE_Wander)

OnEnter
Java code

OnUpdate
Java code

if(seeEnemy()) ChangeState(STATE_Attack);

OnExit
Java code

State(STATE_Attack)
OnEnter

Java code
OnUpdate

Java code to execute every tick
OnExit

EndFSM

15

Finite-State Machine:
Scripting Advantages

1. Structure enforced
2. Events can be handed as well as polling
3. OnEnter and OnExit concept exists
4. Can be authored by game designers
– Easier learning curve than straight C/C++

16

Finite-State Machine:
Scripting Disadvantages

• Not trivial to implement
• Several months of development
– Custom compiler

• With good compile-time error feedback

– Bytecode interpreter
• With good debugging hooks and support

• Scripting languages often disliked by users
– Can never approach polish and robustness of commercial

compilers/debuggers

17

Finite-State Machine:
Hybrid Approach

• Use a class and C-style macros to approximate a scripting
language

• Allows FSM to be written completely in C++ leveraging existing
compiler/debugger

• Capture important features/extensions
– OnEnter, OnExit
– Timers
– Handle events
– Consistent regulated structure
– Ability to log history
– Modular, flexible, stack-based
– Multiple FSMs, Concurrent FSMs

• Can’t be edited by designers or players

Transitions

• Internal
– Independent of environment
– E.g. out of ammo

• External
– Event-driven

• Immediate
• Deferred
– E.g. to wait till animation sequence stops

18

19

Transitions

20

Transitions

332 Chapter 5 Decision Making

Alert

Raise alarm

Defend

[Player in sight AND player is far away]

[Player in sight AND player is close by]

Figure 5.21 State machine without decision tree transitions

In this book we’ve labeled the decisions with the test that they perform, which is clearer for
our needs.

When in the “Alert” state, a sentry has only one possible transition: via the decision tree. It
quickly ascertains whether the sentry can see the player. If the sentry is not able to see the player,
then the transition ends and no new state is reached. If the sentry is able to see the player, then
the decision tree makes a choice based on the distance of the player. Depending on the result of
this choice, two different states may be reached: “Raise Alarm” or “Defend.” The latter can only be
reached if a further test (distance to the player) passes.

To implement the same state machine without the decision nodes, the state machine in
Figure 5.21 would be required. Note that now we have two very complex conditions and both
have to evaluate the same information (distance to the player and distance to the alarm point). If
the condition involved a time-consuming algorithm (such as the line of sight test in our example),
then the decision tree implementation would be significantly faster.

Pseudo-Code

We can incorporate a decision tree into the state machine framework we’ve developed so far.
The decision tree, as before, consists of DecisionTreeNodes. These may be decisions (using

the same Decision class as before) or TargetStates (which replace the Action class in the basic
decision tree). TargetStates hold the state to transition to and can contain actions. As before, if a
branch of the decision tree should lead to no result, then we can have some null value at the leaf
of the tree.

1 class TargetState (DecisionTreeNode):
2 getAction()
3 getTargetState()

The decision making algorithm needs to change. Rather than testing for Actions to return, it
now tests for TargetState instances:

• Compare

• With

Decision Trees in Transitions

21

5.3 State Machines 331

On the Website

Following hierarchical state machines, especially when they involve transitions across hierarchies,
can be confusing at first. We’ve tried to be as apologetic as possible for the complexity of the
algorithm, even though we’ve made it as simple as we can. Nonetheless, it is a powerful technique
to have in your arsenal and worth the effort to master.

The Hierarchical State Machine program that is available on the webiste lets you step through

Program

a state machine, triggering any transition at each step. It works in the same way as the State
Machine program, giving you plenty of feedback on transitions. We hope it will help give a clearer
picture, alongside the content of this chapter.

5.3.10 Combining Decision Trees and State Machines

The implementation of transitions bears more than a passing resemblance to the implementation
of decision trees. This is no coincidence, but we can take it even further.

Decision trees are an efficient way of matching a series of conditions, and this has application
in state machines for matching transitions.

We can combine the two approaches by replacing transitions from a state with a decision tree.
The leaves of the tree, rather than being actions as before, are transitions to new states.

A simple state machine might look like Figure 5.20.
The diamond symbol is also part of the UML state chart diagram format, representing a

decision. In UML there is no differentiation between decisions and transitions, and the decisions
themselves are usually not labeled.

Alert

Raise alarm

Defend

Can see
the player?

[Yes]

[Yes]

[No]

Player
nearby?

Figure 5.20 State machine with decision tree transitions

Computationally-
expensive test performed
twice

Computationally-
expensive test performed
once

Generalisation: Hierarchical FSM

• Often, there are several “levels” of behaviour
– Complications from “insignificant details”

22

Enemy dead

Enemy close

Defend
Attack

Reload, aim,
shoot Run, stub

Machine might be large. Very large.

Clean Up FSM Example

• A robot cleans a floor space

• Unless it recharges, it breaks
23

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Recharging Clean Up FSM Example

24

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Get power
[No power]

[No power]

[N
o

po
we

r]

But what to do after charging???

Recharging Cleaner FSM

25

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Three states just to
remember where to
come back

Hierarchical Approach

26

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Clean up

H

Hierarchical state

Get power
[No power]

[Recharged]

Hierarchical Recharge

27

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

[No trash]

Algorithm

• Based on the notion of a current state
– Every state stores the current state of its sub FSM

• Hierarchical evaluation
– If transition is applicable to higher-level current

state
• Change state

– Else
• Execute the OnStay method
• Apply transition to the sub FSM

28

Example

29

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

Clean up

H

[No power]

[Recharged]

H

Get power

Use mains Use solar

[Day]

[Night]

Events:
• No power
• Recharged
• Seen trash
• No power
• …

Stack-Based FSMs

• This idea can be extended to allow storing
past states using a stack

• Every time a machine is “suspended” the
current state is pushed into the stack

• Every time it is “resumed” the state is popped
from the stack
– E.g. several machines and a switch between them

30

31

Finite-State Machine In Game
Development: Summary

• Most common game AI software pattern
– Natural correspondence between states and behaviors
– Easy to diagram
– Easy to program
– Easy to debug
– Completely general to any problem

• Problems
– Explosion of states
– Too predictable
– Often created with ad hoc structure

