
Principles of Computer Game
Design and Implementation

Lecture 25

Outline for today

• planning

2

Combining Actions

• In previous lectures, behaviour of game
entities was defined by the AI developer

• Behaviour trees can be seen as reactive plans
– React to changes in the environment
– Options are prescribed

• In traditional AI, computer is asked to find
sequences of actions

3

AI Planning

• Planning in AI is the problem of finding a
sequence of primitive actions to achieve some
goal.

• The sequence of actions is the system’s plan
which then can be executed.

• Planning requires the following:
– representation of goal to achieve;
– knowledge about what actions can be performed; and
– knowledge about state of the world.

4

Architecture of a Planner

5
Boris Konev

Architecture of a Planner

Planner

goal environment
state of

possible actions

plan to achieve goal

COMP210: Artificial Intelligence. Lecture 25. AI applications: Planning – p. 4/27

Planning in Games

• A character may have one or more goal
(motives)

• Every goal has insistence – a number
• Actions fulfil goals (to some extent)

• Actions can be combined into a PLAN

6

GOB vs GOAP

• Goal-oriented behaviour (GOB)
• Main problem: selecting an action
– Restricts design decisions

• Goal-oriented action planning (GOAP)
• Main problem: finding a sequence of actions
– Often considered to be too complicated for

games
• But F.E.A.R. !

7

Boris Konev

Planning vs Search I

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

COMP210: Artificial Intelligence. Lecture 25. AI applications: Planning – p. 5/27

Boris Konev

Planning vs Search I

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

COMP210: Artificial Intelligence. Lecture 25. AI applications: Planning – p. 5/27

GOB: Simple Selection

8

• Choose the most
pressing goal;

• Find an action that
most fulfils it

Works reasonably well when actions do not have side effects

• Goals:
– Eat = 4; Sleep = 3

• Actions:
– Get-Raw-Food (Eat - 3)
– Get-Snack (Eat – 2)
– Sleep-in-Bed (Sleep – 4)
– Sleep-on-Sofa (Sleep – 2)

• Goals:
– Eat = 4; Bathroom = 3

• Actions:
– Drink-Soda (Eat – 2; Bathroom + 3)
– Visit-Bathroom (Bathroom – 4)

GOB: Overall Utility

9

Discontentment = insistence
X

goals

D = 8 D = 4

Soda Bathroom

D = 7

Works well when actions dependency is limited

• Goals:

– Eat = 4 + 4 per hour;

– Bathroom = 3 + 2 per hour

• Actions:

– Drink-Soda (Eat – 2; Bathroom + 3; 15 min)

– Visit-Bathroom (Bathroom – 4; 15 min)

– Cook-meal (Eat – 5; 2h)

Overall Utility: Discontentment + Timing

10

Discontentment = insistence

X

goals

D = 9.5 D = 4.5

Soda

Bathroom

D = 7

Works well when actions dependency is limited

D = 14

Meal

Actions Available
• Actions defined centrally are too inflexible
• Smart object insert actions into AI entities
– Oven offers a cook action
– Meat offers an eat action

• But how to locate such objects?

• “Smelly GOB”
– Actions smell with the goal it achieves

• cook smells of Eat
– Smells spread
– Agents follow smell towards greatest concentration

11

• Goals:
– Heal = 4; Kill-Ogre = 3

• Actions:
– Fireball (Kill-Ogre – 2); 3 Energy slots
– Lesser-Healing (Heal – 2); 2 Energy slots
– Greater-Healing (Heal – 4); 3 Energy slots

Where GOB Fails

12

Does not work due to one action prohibiting another!

Energy level = 5

Planning in Games
• AI Behaviour
– FSM used in F.E.A.R.

13

Goto Animate

Use
Smart
Object

But goto where???
Use what???

F.E.A.R. uses
planning to
answer these
questions

Jeff Orkin. GDC’06 “Three States and a Plan: The A.I. of F.E.A.R.”

Planning in F.E.A.R.

Design principle:
– Create interesting

spaces for combat and
let the AI act

14Jeff Orkin. GDC’06 “Three States and a Plan: The A.I. of F.E.A.R.”

AI Agents:
• Dodge
• Take cover
• …

• Dodge roll
• Ambush

STRIPS Planning Language

• STanford Research Institute Problems Solver
• Uses predicate logic language to represent
– state of environment;
– goal to be achieved;
– actions available to agents.

15

Example: Monkey, Box and Banana

• fdfdsa

16

A monkey is at the door into a room. A banana hangs from the ceiling in
the middle of the room. The monkey wants the banana, but is not tall
enough to get it. There is a box at the window which the monkey can
climb on to get at the banana.

First-Order Predicates

• States can be described using:
– MonkeyAt(x) Monkey is at location x
– BoxAt(x) Box is at location x
– BananaAt(x) Banana is at location x
– StandsOn(x) Monkey stands on x
– hasBanana True if Monkey has Banana

17

0-ary predicate
(proposition)

State Description

• State is a conjunction of ground and function-
free atoms

• MonkeyAt(middle) � BoxAt(window) �
BananaAt(middle) ��StandsOn(floor)

18door windowmiddle

Closed world assumption:
¬hasBanana
¬MonkeyAt(window), …

not stated – not true

Initial State

• State in which planning starts
• MonkeyAt(door) � BoxAt(window) �

BananaAt(middle) ��StandsOn(floor)

19door windowmiddle

Goal State
• Goal is a particular state:

hasBanana
• A state S satisfies goal G if S contains all atoms

from G (and possibly more)

hasBanana�MonkeyAt(door)
hasBanana�MonkeyAt(middle) � BoxAt(middle)
hasBanana�MonkeyAt(middle) �StandsOn(box)

• All satisfy the goal

20

Actions

• Each action has
– a name: which may have arguments;
– a pre-condition list: list of facts which must be true

for action to be executed;
– a delete list: list of facts that are no longer true

after action is performed;
– an add list: list of facts made true by executing the

action.
• Each of these may contain variables.

21

Example: Walk

• Walk(x,y):
– pre: MonkeyAt(x)

– del: MonkeyAt(x)

– add: MonkeyAt(y)

• Action instantiation:
– x = door

– y = window

22

door windowmiddle
x y

Walk(door,window)

Example: Other Actions
• ClimbUp(x)

– pre: MonkeyAt(x), BoxAt(x), BananaAt(x),
StandsOn(floor)

– del: StandsOn(floor)
– add: StandsOn(box)

• MoveBox(x, y)
– pre: MonkeyAt(x), BoxAt(x)
– del: MonkeyAt(x), BoxAt(x)
– add: MonkeyAt(y), BoxAt(y)

• TakeBanana(x)
– pre: MonkeyAt(x), BoxAt(x), BananaAt(x),

StandsOn(box)
– del: -
– add: hasBanana

23Instead of �

Action Effect

• The result of executing action A in state S is a state S’
such that

• S’ is identical to S except
– Any atom from the add list of A is added to S’
– Any atom from the delete list of A is deleted from S’
– All other atoms do not change their value!

24

Frame condition

STRIPS Plan

• A sequence (list) of actions with variables
replaced with values
– Move(door,window)
– MoveBox(window, middle)
– ClimbUp(middle)
– TakeBanana(middles)

25

door windowmiddle

Planning Algorithm

• There are numerous
approaches to planning
– Progressive/regressive

planning
– Partial planning
– Graphplan
– Reduction to sat
– …
• There is a planner competition

26

Boris Konev

Architecture of a Planner

Planner

goal environment
state of

possible actions

plan to achieve goal

COMP210: Artificial Intelligence. Lecture 25. AI applications: Planning – p. 4/27

Planning in F.E.A.R. (1)

• States represented as arrays
– One value per predicate

[door, window, middle, floor, false]

27door windowmiddle

MonkeyAt
enum

BoxAt
enum

BananaAt
enum

StandsOn
enum

hasBanana
Boolean

Goal:
[_, _, _, _, true]

Planning in F.E.A.R. (2)

• Procedural pre, add and del

• E.g.
– Walk(x,y):

if (state[0]== x) {

state[0] = y;

}

28

[door, window, middle, floor, false]

Planning in F.E.A.R. (3)

• Assign costs to actions
– Walk costs 1
– MoveBox costs 2
– ClimbUp costs 0.5
– TakeBanana costs 0.1

• Use A* search algorithm to find a plan
– Heuristic needed

29

Example

30

door windowmiddle

x
0 1-1

Heuristic:
monkey-middle distance +
box-middle distance

[d, w, m, f, F]

[m, w, m, f, F]

Walk(door,middle)

[w, w, m, f, F]
(1)+(0+1) = 2 1+(1+1) = 3

Walk(middle,window)

[m, w, m, f, F]
(1+1)+(1+1)=4

[w, w, m, b, F]
✗

Walk(window,middle)

MoveBox(window,door)

[m, w, m, f, F]

[m, m, m, f, F]

[d, d, m, f, F]

(1+1)+(0+1)=3

(1+2)+(0+0)=3

(1+2)+(1+1)=5
[m, m, m, b, F]
(1+2+0.5)+(0+0)=3.5

[m, m, m, b, T]

Walk(door,window)

ClimbUp(window)

MoveBox(window,middle)

Climb(middle)

TakeBanana

[d, w, m, f, F]
(1+1+1)+(1+1)=5

Walk(middle,door)

Planning in Games

• Quite an effort even with A*
• Most time spent on pathfinding
– Where to go rather than what goal to pursue
• Will address the pathfinding problem next

• Hierarchical plans:
– In order to carry out a higher-level plan, the

planner must first refine the plan in order to
produce a complete plan in terms of ground-level
operations.

31

Hierarchical Task Network (HTN)

• use abstract operators to incrementally
decompose a planning problem from a high-
level goal statement to a primitive plan
network

• Primitive operators represent actions that are
executable, and can appear in the final plan

• Non-primitive operators represent goals
(equivalently, abstract actions) that require
further decomposition to be executed

32

HTN operator: Example
OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS:

Length (Frame) <= Length (Foundation),
Strength (Foundation) > Wt(Frame) + Wt(Roof)

+ Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)

Build (Frame)
PARALLEL

Build (Roof)
Build (Walls)

END PARALLEL
Build (Interior)

33

HTN planning: Example

34

Some Games Using GOAP
Architectures

• F.E.A.R. 2005
• Condemned: Criminal Origins 2005
• S.T.A.L.K.E.R.: Shadow of Chernobyl 2007
• Ghostbusters 2008
• Silent Hill: Homecoming 2008
• Fallout 3 2008
• Empire: Total War 2009
• F.E.A.R. 2: Project Origin 2009
• Demigod, 2009
• Just Cause 2 2010
• Transformers: War for Cybertron 2010

35
http://web.media.mit.edu/~jorkin/goap.html

http://web.media.mit.edu/~jorkin/goap.html

