
Principles of Computer Game
Design and Implementation

Lecture 26

Outline for today

• Steering behaviour

2

A Very Rough Structure of Game AI

3

Had a look at
this

Today

Game engine

The Problem

• Decision making: Actions to perform
• Game engine models the world
– One needs to link the levels

• Open space motion
– No / simple obstacles
– Select destination and move
• Bound to succeed

– Pathfinding

4

Pac-man: no pathfinding

CHARACTER MODEL
Motion

5

Character Position: 2D
public class Model {

Vector2f position;

float orientation;

…

}

• Robocode
• Real-time strategies
• Platformers

x

y

A

6

Character Position: D

• Full 3D position, but
• Orientation is a single value
– Character is upright

public class Model {

Vector3f position;

float orientation;

…

}

2 1
2

7
x

y

z

True 3D

• All 6 Degrees of freedom (6DOF) are seldom
used in practice
– Complicated maths
– Complicated controls
– Tilts can be implemented

in animation

• Flight simulators / space shooters

8

SIMPLE STEERING
Motion

9

Steering

• Two basic strategies
– Seek
• Move towards a target

– Flee
• Move from target

• Complex steering
– In terms of basic moves

10

target

Kinematics vs Dynamics

• Recall: in computer games

– Kinematics refers to non-realistic
behaviour

– Dynamics refers to physics-
based motion

11

x

target

y

Seek: Kinematics

• Direction
D = Ptar – Pveh

• Velocity

V = D.normalise() * maxSpeed

• Position
Pveh = Pveh + V*tpf

12

target

y

Pveh

Ptar

Flee: Kinematics

• Direction
D = -(Ptar – Pveh)

• Velocity

V = D.normalise() * maxSpeed

• Position
Pveh = Pveh + V*tpf

13

target

y

Pveh

Ptar

Seek: Dynamics
• Desired direction

D = Ptar – Pveh

• If differs from current direction,
apply a steering force towards the
target
– Use Euler steps
– When turning

• Consider torques
• Align vehicle with velocity vector

14

target

y

Pveh

Ptar

Curre
nt

dire
cti

on

De
sir

ed

di
re

ct
io

n

Steering force

Up to ε

Flee: Dynamics

• Desired direction
D = -(Ptar – Pveh)

• If differs from current direction,
apply steering force away from
the target

15

target

y

Pveh

Ptar

Curre
nt

dire
cti

on

De
sir

ed

di
re

ct
io

n

Steering force

Variation: Arriving

• Moving at high speed can overshoot
– No such problem with kinematics

• When close to the target, apply breaks

16

Variations: Aligning and Facing

• Motion control may need to
work closely with the physics
engine
– Aligning
• Match agent’s velocity with

target velocity (pursuing)
– Facing
• Arrive facing a direction

17

(X,Y)

Complex Behaviours

• Pursue / evade
• Wander
• Separation
• Path following

18

Defined in terms of
• Seek / Flee
• arriving, aligning, facing

Pursue or Intercept
• Go where target will be
– Assume target speed does not change
• Calculate time to get where the target currently is

• Calculate the target position
after this time passes

• Drive there
– Seek(p)

19

d

t = d/va

p = vTt

vT

v
a

p

Imprecise but simple

Evade
• Go away from where target will be
– Assume target speed does not change
• Calculate time to get where the target currently is

• Calculate the target position
after this time passes

• Drive from there
– Flee(p)

20

d

t = d/va

p = vTt

vT

v
a

p

Pursuing an Evading Target

Target’s speed is not constant
– Normally, cannot predict
• Recalculate position
• No point to use a “smarter”

technique

21

Interpose

• Steer to midpoint of line
connecting bodies
– Bodyguard taking a bullet
– Goalkeeper

• Similar to pursue

22

Opposite to Interpose

• Steer away from midpoint of
line connecting bodies
– Not standing in human player’s

line of view
– Not taking the lead
• Squad behaviour

• Similar to evade

23

Pursue / Interpose with Offset

24

d

offset

p

• Pass near but not directly
into a target
– Pursue within weapons

range
– Docking with a spaceship
– Follow a leader in a battle

formation

• Speed alignment might be
necessary

Wander

1. Random steering forces
– “wobble” around a straight line

2. Seek a randomly moving target

25

Target
moves
randomly

More interesting
behaviour

Steering
force

Following Paths

• Path: a series of waypoints
– Can be open or closed (looped)

– Locate the closest point p1

– Seek(p1)
– When close to p1

– Seek(p2)
– …

26

p1

p2

Following a racetrack

STEERING: COMBINING
BEHAVIOURS

Motion

27

Combining Steering Behaviours

• Police car:
– Pursue
– Avoid obstacles

• Animal
– Wander
– Avoid obstacles
– Evade predatorss

28

Techniques

29

Resulting steering force

• Blending
– Collect steering forces from all methods

F = w1F1 + w2F2 + …

• Priorities
– Sort steering methods by priority
– If higher priority method applies, use it and stop

evaluation
• Hacks

Blending Example: Flocking

• A combination of :
– Separation
– Alignment
– Aggregation

produces believable results

• “Batman returns” (bats & penguins) and
other movies

30

Separation: Boid Avoidance
Move away from the boids too close

31

Alignment
Move in the same direction and the same velocity as the
flock

32

Aggregation

Move towards the centre of mass of the flock

33

STEERING IN REAL WORLD
Motion

34

Collision Avoidance

• Cannot assume motion in open space
• Steer around obstacles
– Cast a ray in the direction of motion
– If collides with an obstacle
• Apply a steering force

– Flee until avoid collision

– Avoids nearest obstacle
– Won’t work in really complicated

environments

35

Ray Casting

• Single ray does not notice the obstacle

• Variations:
– Parallel side rays

– Whiskers

– Central ray + whiskers

36

Problems: Corner Trap

• Can happen with any
number of rays
– Adaptive fans
– Special treatment of

corners

37

Problems: Collisions with Other
Movables

• Cannot avoid collision based on
simple overlap test

• Collision prevention based on
the intersection test is needed

38

Jumping

• Shooter games often use kinematics rather
than dynamics for humanoids

• Jumping, however, is where this should not
happen

• Tasks:
– Locating a narrow passage to jump over
– Selecting direction of jumping
– Adjusting speed

39

Jump Points

• Level designer to
decide where to
jump
– Speed alignment
– Face
– Seek

• Landing pads

40

3.6 Jumping 135

3.6.1 Jump Points

The simplest support for jumps puts the onus on the level designer. Locations in the game
level are labeled as being jump points. These regions need to be manually placed. If charac-
ters can move at many different speeds, then jump points also have an associated minimum
velocity set. This is the velocity at which a character needs to be traveling in order to make
the jump.

Depending on the implementation, characters either may seek to get as near their target
velocity as possible or may simply check that the component of their velocity in the correct
direction is sufficiently large.

Figure 3.49 shows two walkways with a jump point placed at their nearest point. A character
that wishes to jump between the walkways needs to have enough velocity heading toward the
other platform to make the jump. The jump point has been given a minimum velocity in the
direction of the other platform.

In this case it doesn’t make sense for a character to try to make a run up in that exact direction.
The character should be allowed to have any velocity with a sufficiently large component in the
correct direction, as shown in Figure 3.50.

If the structure of the landing area is a little different, however, the same strategy would result
in disaster. In Figure 3.51 the same run up has disastrous results.

Jump point

Jump point

Minimum jump velocity

Figure 3.49 Jump points between walkways

Problems: Jump Links

• When pursuing a target,
have to move in a
different direction
– Jump links

41

Steering Fails: Narrow Doorways

42

102 Chapter 3 Movement

This problem is often seen in characters trying to move at acute angles through narrow
doorways, as shown in Figure 3.36. The obstacle avoidance behavior kicks in and can send the
character past the door, missing the route it wanted to take.

The problem of navigating into narrow passages is so perennial that many developers delib-
erately get their level designers to make wide passages where AI characters need to navigate.

Nearsightedness

Steering behaviors act locally. They make decisions based on their immediate surroundings only.
As human beings, we anticipate the result of our actions and evaluate if it will be worth it. Basic
steering behaviors can’t do this, so they often take the wrong course of action to reach their goal.

Figure 3.37 shows a character avoiding a wall using a standard wall avoidance technique. The
movement of the character catches the corner on just the wrong side. It will never catch the enemy
now, but it won’t realize that for a while.

There is no way to augment steering behaviors to get around this problem. Any behavior that
does not lookahead can be foiled by problems that are beyond its horizon. The only way to solve

Resulting acceleration

Collision
ray Route of character

Target

Figure 3.36 Missing a narrow doorway

Collision
ray

Route of character

Figure 3.37 Long distance failure in a steering behavior

Steering Fails: Long Distance

43

102 Chapter 3 Movement

This problem is often seen in characters trying to move at acute angles through narrow
doorways, as shown in Figure 3.36. The obstacle avoidance behavior kicks in and can send the
character past the door, missing the route it wanted to take.

The problem of navigating into narrow passages is so perennial that many developers delib-
erately get their level designers to make wide passages where AI characters need to navigate.

Nearsightedness

Steering behaviors act locally. They make decisions based on their immediate surroundings only.
As human beings, we anticipate the result of our actions and evaluate if it will be worth it. Basic
steering behaviors can’t do this, so they often take the wrong course of action to reach their goal.

Figure 3.37 shows a character avoiding a wall using a standard wall avoidance technique. The
movement of the character catches the corner on just the wrong side. It will never catch the enemy
now, but it won’t realize that for a while.

There is no way to augment steering behaviors to get around this problem. Any behavior that
does not lookahead can be foiled by problems that are beyond its horizon. The only way to solve

Resulting acceleration

Collision
ray Route of character

Target

Figure 3.36 Missing a narrow doorway

Collision
ray

Route of character

Figure 3.37 Long distance failure in a steering behavior

Summary

• Steering is a powerful motion control
mechanism

• Complex behaviours can be constructed from
simple ones

• In some circumstances characters need a path
to follow

44

