
Principles of Computer Game
Design and Implementation

Lecture 27

Outline for today

• pathfinding

2

The Problem
Pathfinding
• Given the current position and the target

position
– Calculate a sequence of positions (path)
• Can follow with steering
• Shortest / lowest cost path

3

Pathfinding In Games

• Initially the concept was only used in RTS
• Now the most important AI technique
– (probably)

• Still can be buggy. See
– http://www.ai-blog.net/archives/000152.html
– http://www.youtube.com/watch?v=lw9G-

8gL5o0&feature=player_embedded

4

http://www.ai-blog.net/archives/000152.html
http://www.youtube.com/watch?v=lw9G-8gL5o0&feature=player_embedded

Tackling Paths

• Characters “live” in a
computer world
– Even developers may not

know exact location
• Physics simulations

5

• Pathfinders operate on
discrete structures

Remember This?

6

Romania Map

7

Task:
navigate
from A to B

From COMP219:

• A search algorithm can solve the navigation
problem

• Simple algorithms
– Breadth-first, depth-first, unit cost,…

do not work in real-world problems

• A* is the best we have

8

So

• A* works on weighted graphs
– Pathfinding graphs
– Explicitly or implicitly represented
• Romania map: explicit representation
• Many games do not store full graphs

– Generate nodes when necessary

– GraphNode

9

Recall: Search Tree

10

29

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

Figure 3.24 FILES: figures/astar-progress.eps (Tue Nov 3 16:22:24 2009). Stages in an A∗ search
for Bucharest. Nodes are labeled with f = g + h. The h values are the straight-line distances to
Bucharest taken from Figure 3.20.

• An imaginary tree showing all possible states reachable from
the initial state

• Search strategy defines an expansion order

Recall: A* Search (Strategy)

• Combine uniform cost search and greedy
search.

• Uses heuristic f:
f(n) = g(n) + h(n),

• where
– g(n) is path cost of n;
– h(n) is expected cost of cheapest solution from n.

11

Recall: General Algorithm for A* Search

agenda = initial state;
while agenda not empty do

take node from agenda such that
f(node) = min { f(n) | n in agenda}
where f(n) = g(n) + h(n)

if node is goal state then
return solution;
new nodes = apply operations to node;
add new nodes to the agenda;

12

Theory V Practice:
Visiting nodes twice

The general framework allows to visit nodes
more than once

• Closed nodes list: already visited nodes

13

A

B C D1 D2 D3 …

Theory V Practice:
Admissible and Inadmissible Heuristics
• A* is guided by heuristic
• If heuristic is too high (overestimates)
– It’s inadmissible
– A* is not guaranteed to find best path

– Does not mean you cannot use it!
• Faster search vs better paths balance

– Closed nodes can be “reopened”

14

A* Requires

• To store the agenda
– Open nodes list

• To store the
– Closed nodes list

• For every open node: costs so far and
estimated costs

• For every closed node the connection (edge)
leading to it

15

Pathfinding Algorithm

16

while lowest rank in open is not goal
current = remove lowest rank item from open;
closed.add(current);
for neighbors of current:
Ncost = g(current) + cost(current, neighbor);
if (open.contains(neighbor)&&Ncost<g(neighbor))

open.remove(neighbor)
if (closed.contains(neighbor)&&Ncost<g(neighbor))

closed.remove(neighbor)
if (!open.contains(neighbor)&&

!closed.contains(neighbor))
g(neighbor) = Ncost
open.add(neighbour)
neighbor.connection = current

Good Practice: Class GraphNode

public class GraphNode {

// link to game world

Vector<Edge> edges

}

public class Edge {

GraphNode from, to;

float cost;

}

17

Good Practice: NodeRecord

public class NodeRecord {

GraphNode node;

Edge connection;

float costSoFar;

float estimatedGoalCost;

float currentCost;

}

18

Data Structures

• Closed: unsorted list of NodeRecord
• Open
– Unsorted list of NodeRecord
• Insert: easy (just append)
• Take: hard (loop through all of them)

– Priority queue of NodeRecord
• Insert: medium (balancing)
• Take: medium

19

4.3 A* 225

3 8

5 10 94

76

2

2 3 8 4 5 10 9 6 7

Tree representation

Layers fill
left to right

Right children connections

Left children connections

Array representation

Figure 4.15 Priority heap

The tree is balanced, so that no branch is more than one level deeper than any other. In
addition, it fills up each level from the left to the right. This is shown in Figure 4.15.

This structure is useful because it allows the tree to be mapped to a simple array in memory:
the left and right children of a node are found in the array at position 2i and 2i + 1, respectively,
where i is the position of the parent node in the array. See Figure 4.15 for an example, where the
tree connections are overlaid onto the array representation.

With this ultra-compact representation of the heap, the well-known sorting algorithm heap-
sort can be applied, which takes advantage of the tree structure to keep nodes in order. Finding the
smallest element takes constant time (it is always the first element: the head of the tree). Removing
the smallest element, or adding any new element, takes O(log n), where n is the number of elements
in the list.

The priority heap is a well-known data structure commonly used for scheduling problems
and is the heart of an operating system’s process manager.

Bucketed Priority Queues

Bucketed priority queues are more complex data structures that have partially sorted data. The
partial sorting is designed to give a blend of performance across different operations, so adding
items doesn’t take too long and removing them is still fast.

The eponymous buckets are small lists that contain unsorted items within a specified range
of values. The buckets themselves are sorted, but the contents of the buckets aren’t.

To add to this kind of priority queue, you search through the buckets to find the one your
node fits in. You then add it to the start of the bucket’s list. This is illustrated in Figure 4.16.

The buckets can be arranged in a simple list, as a priority queue themselves, or as a fixed array.
In the latter case, the range of possible values must be fairly small (total path costs often lie in a
reasonably small range). Then the buckets can be arranged with fixed intervals: the first bucket
might contain values from 0 to 10, the second from 10 to 20, and so on. In this case the data
structure doesn’t need to search for the correct bucket. It can go directly there, speeding up node
adding even more.

Simplicity Rules

• On a grid-like graph
– One take per 8 inserts

• With a good heuristics
– A simple unsorted list might be more efficient

than a sophisticated Priority Queue!

20

Tile-Based Games

• A vast majority of RTS games are tile-based
– Every unit occupies (one or more) tile
– Every tile can accommodate ≤ 1 unit

• A tile is either blocked or passable

21

Tile Shapes

• Different games use different tiles

22

Nodes

• A node is uniquely identified with (x,y)
coordinates

• No need to store neighbour nodes
– Easily compute when necessary

23

Heuristics

• Manhattan block distance: Δx + Δy

Trouble: too many paths of same value
24

Δy

Δx

Breaking Ties

• Breaking ties is one of the reasons to consider an
inadmissible heuristics:
– Biased towards pursuing the goal
– A* can run faster
– If it is just slightly higher, A* will still find best paths

• Other reason?
– Distance in hours, heuristics in km
– Computational complexity

25

Heuristics

• Diagonal moves allowed: Δx + Δy

26

Δy

Δx

Heuristics

• Euclidian distance:

27

Δy

Δx

(Δx)2 + (Δy)2

Worst Possible Case

• Worst possible case for any search algorithm
– No path

– Will explore all available space

28

Updated Pathfinding

• Check if Start and Finish are valid locations
– If Finish is not valid, no path
– If Start is not valid
• Something goes wrong
• Delete agent?
• Move to a valid location?
• …

29

S

F

Zone Mapping

• Every tile belongs to a zone
– 0 – impassable
– Same number –

can pass

– Zone equivalence array
• Hovercraft[0]=0; Hovercraft[1]=0; Hovercraft[2]=0

30

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

0 2 2 2 2

0 2 2 2 2

Zone Equivalence Array

• For every zone number and
• Every vehicle class
– ZEA[zone number]
• Either zone itself
• Or the smallest equivalent zone number

• If (ZEA[S.zone] == ZEA[F.zone])
– Call the pathfinder

31

Pathfinding Pool

• Running an A* algorithm takes time
• In RTS games there are dozens of characters
• If every one of them starts A*…
– A pool of pathfinders
– A queue of agents waiting for paths

– Start moving / play animation while waiting

32

