
Principles of Computer Game 
Design and Implementation

Lecture 28



Outline for today

• Pathfinding 2

2



Tackling Paths

• Characters “live” in a 
computer world
– Even developers may not 

know exact location
• Physics simulations

3

• Pathfinders operate on 
discrete structures



World Representation
To use pathfinding

• Division Scheme
– Quantisation and Localisation

• Converting positions into nodes and back
– Generation

• Who and how define the mapping
– Validity

• Being able to fulfil the plan

4



Bad Quantisation

• Errors in quantisation can lead to invalid plans 

• Plans have to agree with steering

5

4.4 World Representations 239

Figure 4.22 Two poor quantizations show that a path may not be viable

A division scheme is valid if all points in two connected regions can be reached from each
other. In practice, most division schemes don’t enforce validity. There can be different levels of
validity, as Figure 4.22 demonstrates.

In the first part of the figure, the issue isn’t too bad. An “avoid walls” algorithm (see Chapter 3)
would easily cope with the problem. In the second figure with the same algorithm, it is terminal.
Using a division scheme that gave the second graph would not be sensible. Using the first scheme
will cause fewer problems. Unfortunately, the dividing line is difficult to predict, and an easily
handled invalidity is only a small change away from being pathological.

It is important to understand the validity properties of graphs created by each division scheme;
at the very least it has a major impact on the types of character movement algorithm that can be
used.

So, let’s look at the major division schemes used in games.

4.4.1 Tile Graphs

Tile-based levels, in the form of two-dimensional (2D) isometric graphics, have almost disap-
peared from mainstream games. The tile is far from dead, however. Although strictly not made
up of tiles, a large number of games use grids in which they place their three-dimensional (3D)
models. Underlying the graphics is still a regular grid.

This grid can be simply turned into a tile-based graph. Many real-time strategy (RTS) games
still use tile-based graphs extensively, and many outdoor games use graphs based on height and
terrain data.

Tile-based levels split the whole world into regular,usually square, regions (although hexagonal
regions are occasionally seen in turn-based war simulation games).

Division Scheme

Nodes in the pathfinder’s graph represent tiles in the game world. Each tile in the game world
normally has an obvious set of neighbors (the eight surrounding tiles in a rectangular grid, for
example). The connections between nodes connect to their immediate neighbors.



Tile-Based Graphs

• tileX = (int) (x/tileSize) 
tileY = (int) (y/tileSize)

6

Works in square worlds



Tile-Based Graphs: Validity

• If wall are not parallel to tiles

• Will steering succeed?

• Not widely used in 3D games

7

4.4 World Representations 241

Valid partial blockage Invalid partial blockage

Figure 4.23 Tile-based graph with partially blocked validity

When the plans returned by the pathfinder are drawn on the graph (using localization for
each node in the plan), they can appear blocky and irregular. Characters following the plan will
look strange. This is illustrated in Figure 4.24.

While this is a problem with all division schemes, it is most noticeable for tile-based graphs
(see Section 4.4.7 on path smoothing for an approach to solving this problem).

4.4.2 Dirichlet Domains

A Dirichlet domain, also referred to as a Voronoi polygon in two dimensions, is a region around
one of a finite set of source points whose interior consists of everywhere that is closer to that
source point than any other.

Division Scheme

Pathfinding nodes have an associated point in space called the characteristic point, and the quan-
tization takes place by mapping all locations in the point’s Dirichlet domain to the node. To
determine the node for a location in the game, we find the characteristic point that is closest.

The set of characteristic points is usually specified by a level designer as part of the level data.
You can think of Dirichlet domains as being cones originating from the source point. If you

view them from the top, as in Figure 4.25, the area of each cone that you see is the area that
“belongs” to that source point. This is often a useful visualization for troubleshooting.

The basic idea has been extended to use different falloff functions for each node, so some
nodes have a larger “pull” than others in the quantization step. This is sometimes called a weighted
Dirichlet domain: each point has an associated weight value that controls the size of its region.
Changing the weight is equivalent to changing the slope on the cone; squatter cones end up with
larger regions. But care needs to be taken. Once you change the slope, you can get strange effects.



Waypoints

Locations on map + edges
• Identified by designers
• Computed automatically
– Corner waypoints
– Points of visibility

8

246 Chapter 4 Pathfinding

Connection between nodes

Key

Figure 4.28 Points of visibility graph bloat

In addition, if Dirichlet domains are used for quantization, points quantized to two connected
nodes may not be able to reach each other. As we saw in Dirichlet domains above, this means that
the graph is strictly invalid.

Usefulness

Despite its major shortcomings, a points of visibility approach is a relatively popular method for
automatic graph generation.

However, we think the results are not worth the effort. In our experience a lot of fiddling and
clearing up by hand is needed, which defeats the object. We’d recommend looking at navigation
meshes instead.

Some AI developers will passionately disagree, however, and swear by points of visibility.

4.4.4 Navigation Meshes

Tile-based graphs, Dirichlet domans, and points of visibility are all useful division schemes to have
in your toolbox, but the majority of modern games use navigation meshes (often abbreviated to
“navmesh”) for pathfinding.

Popular game AI technique
• Half-life 



Navigation Mashes

• In modern games models are built from 
polygons (triangles)

9

4.4 World Representations 247

The navigation mesh approach to pathfinding takes advantage of the fact that the level designer
already needs to specify the way the level is connected, the regions it has, and whether there is any
AI in the game or not. The level itself is made up of polygons connected to other polygons. We
can use this graphical structure as the basis of a pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as a node in
the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called a navigation
mesh, or just “navmesh.”

Nodes are connected if their corresponding polygons share an edge. Floor polygons are typi-
cally triangles, but may be quads. Nodes therefore have either three or four connections.

Creating a navigation mesh usually involves the artist labeling particular polygons as floor
in their modeling package. They may need to do this anyway to specify sound effects or grip
characteristics. Navigation meshes require less artist intervention than other approaches, with the
exception of tile-based graphs.

Key
Edge of a floor polygon
Connection between nodes

Figure 4.29 Polygonal mesh graph

• A character can 
always pass between 
adjacent polygons 

• Fully automated 
generation of graphs



Correct Quantisation

• Several levels in the model
– Take elevations into account

when mapping to 
a graph node

10

248 Chapter 4 Pathfinding

Quantization and Localization

A position is localized into the floor polygon that contains it. We could search a large number of
polygons to find the right one, or we could use a coherence assumption.

Coherence refers to the fact that, if we know which location a character was in at the previous
frame, it is likely to be in the same node or an immediate neighbor on the next frame. We can
check these nodes first.

This approach is useful in lots of division schemes, but is particular crucial when dealing with
navigation maps.

The only wrinkle occurs when a character is not touching the floor. We can simply find the
first polygon below it and quantize it to that. Unfortunately, it is possible for the character to be
placed in a completely inappropriate node as it falls or jumps. In Figure 4.30, for example, the
character is quantized to the bottom of the room, even though it is actually using the walkways
above. This may then cause the character to replan its route as if it were in the bottom of the
room; not the desired effect.

Localization can choose any point in the polygon, but normally uses the geometric center
(the average position of its vertices). This works fine for triangles. For quads or polygons with
more sides, the polygon must be convex for this to work. Geometric primitives used in graphics
engines have this requirement anyway. So if we are using the same primitives used for rendering,
we are safe.

Figure 4.30 Quantization into a gap



Validity of Plans

• Character can always pass between adjacent 
polygons

• No direct pass between
A and B

• Floor plan is done by 
designers and they avoid this

11

A

B



Chunky Paths

• Pathfinding may not produce a
natural movement

• After a path is found
– It needs to be smoothed

12

4.4 World Representations 247

The navigation mesh approach to pathfinding takes advantage of the fact that the level designer
already needs to specify the way the level is connected, the regions it has, and whether there is any
AI in the game or not. The level itself is made up of polygons connected to other polygons. We
can use this graphical structure as the basis of a pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as a node in
the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called a navigation
mesh, or just “navmesh.”

Nodes are connected if their corresponding polygons share an edge. Floor polygons are typi-
cally triangles, but may be quads. Nodes therefore have either three or four connections.

Creating a navigation mesh usually involves the artist labeling particular polygons as floor
in their modeling package. They may need to do this anyway to specify sound effects or grip
characteristics. Navigation meshes require less artist intervention than other approaches, with the
exception of tile-based graphs.

Key
Edge of a floor polygon
Connection between nodes

Figure 4.29 Polygonal mesh graph

A

B



String Pulling

• Move A – B – C
– If C can be seen from A, drop B

13

A

B

C A

B

C

A

B

C
No change



Example

14

A

B

• Extreme case

• Even if there are 
obstacles, string pulling 
gives better paths

4.4 World Representations 247

The navigation mesh approach to pathfinding takes advantage of the fact that the level designer
already needs to specify the way the level is connected, the regions it has, and whether there is any
AI in the game or not. The level itself is made up of polygons connected to other polygons. We
can use this graphical structure as the basis of a pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as a node in
the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called a navigation
mesh, or just “navmesh.”

Nodes are connected if their corresponding polygons share an edge. Floor polygons are typi-
cally triangles, but may be quads. Nodes therefore have either three or four connections.

Creating a navigation mesh usually involves the artist labeling particular polygons as floor
in their modeling package. They may need to do this anyway to specify sound effects or grip
characteristics. Navigation meshes require less artist intervention than other approaches, with the
exception of tile-based graphs.

Key
Edge of a floor polygon
Connection between nodes

Figure 4.29 Polygonal mesh graph



Splines

• Chunky paths can be further smoothed by 
converting them to splines
– Curves that approximate paths
• Some maths required (see wikipedia)

15



Passable Edges
• Not every agent can pass

• Need to adapt graphs for agents
16



Following Paths

• We assume that if a move is planned it can be 
executed
– Validity of a division scheme

• What is the world changes
– Other agents move about?

17



Possible Solutions

• Leave space between agents
– Different pathfinding graphs for different agents
• L

– Centralised pathfinding 
– May not be natural (e.g. tanks)

• Assume there is no path
–L

• Navigate around the obstacle
– Steering / Pathfinding

18



Beware of the Pit

• Pathfinder requires to move X è Y
– Steering can fail
• Navigation meshes are much better

– Easier to re-plan (full information about passable areas)

• Hierarchical pathfinding

19

X Y

Dynamic
obstacle



Hierarchical Pathfinding

20

256 Chapter 4 Pathfinding

This is a very efficient way of pathfinding. To start with, we plan the abstract route, take the
first step of that plan, find a route to complete it, and so on down to the level where we can actually
move. After the initial multi-level planning, we only need to plan the next part of the route when
we complete a previous section. When we arrive at the bottom of the stairs, on our way to the
parking lot (and from there to the London office), we plan our route through the lobby. When we
arrive at our car, we then have completed the “get to the car” stage of our more abstract plan, and
we can plan the “drive to the airport” stage.

The plan at each level is typically simple, and we split the pathfinding problem over a long
period of time, only doing the next bit when the current bit is complete.

4.6.1 The Hierarchical Pathfinding Graph

To be able to pathfind at higher levels we can still use the A* algorithm and all its optimizations.
In order to support hierarchical pathfinding, we need to alter the graph data structure.

Nodes

This is done by grouping locations together to form clusters. The individual locations for a whole
room, for example, can be grouped together. There may be 50 navigation points in the room, but
for higher level plans they can be treated as one. This group can be treated as a single node in the
pathfinder, as shown in Figure 4.37.

This process can be repeated as many times as needed. The nodes for all the rooms in one
building can be combined into a single group, which can then be combined with all the buildings
in a complex, and so on. The final product is a hierarchical graph. At each level of the hierarchy,
the graph acts just like any other graph you might pathfind on.

Figure 4.37 Hierarchical nodes
May not discover shortest path



Other Pathfinding Topics

• Cooperative pathfinding
– Finding a path for a group of agents

• Variable terrain cost
– Penalise paths near existing units

• Pathfinding using the GPU
• Pathfinding in dynamic environments
• …

21



Pathfinding: Summary

• Algorithmically, not very difficult
– A*
– Choice of heuristics is important
• Do not fear inadmissible heuristics!

• Linking model and graph can be tricky
– A number of methods
– Trend towards navigational meshes
• Some developers disagree

• Paths often require smooting

22


