Principles of Computer Game Design and Implementation

Lecture 30

Principles of Computer Game Design and Implementation

Lecture 30

"Am I a Game Developer Now?"

• Who am I to say?

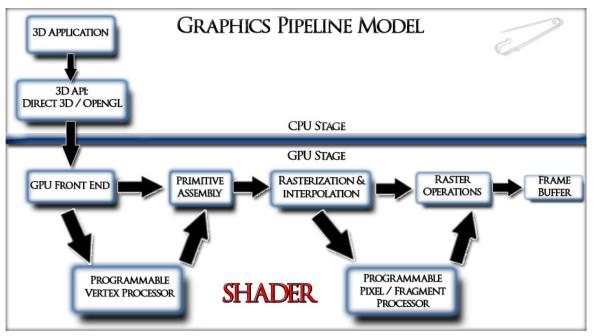
- We looked at
 - Game architecture
 - 3D game engines
 - including maths required
 - Some physics
 - -AI

Learning Outcomes

At the end of the module, the student will have:

- An understanding of different design issues related to computer games development: game structure, game engine, physics engine;
- 2. An appreciation of the fundamental concepts associated with game development: game physics, game artificial intelligence, content generation;
- 3. The ability to implement a simple game using an existing game engine.

Game Architecture


- Game Design
 - Think movies
 - Idea \rightarrow Design \rightarrow lots of work \rightarrow final product
- More arts than technology
 - One can study approaches to design
 - Vast area
- Nothing beats a clear good idea

3D Game Engines

• Graphics

Rendering pipeline

Shadows, water, sky, transparent and translucent objects,...

http://www.iamthomasvogel.de/?page_id=85

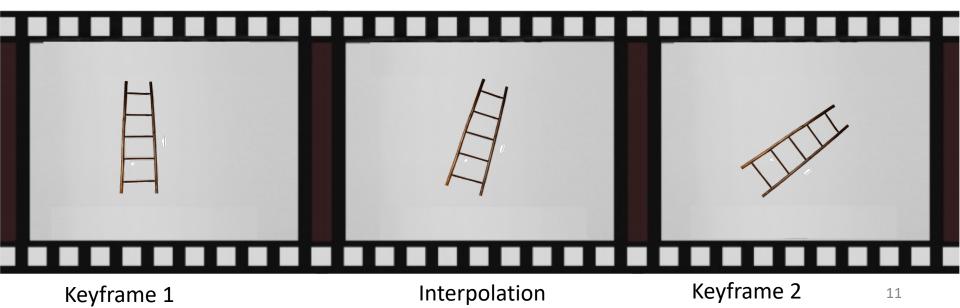
Styled Graphics

- Photo-realistic 3D graphics does not sell
 ???
- Moody atmospheric graphics

3D Modelling

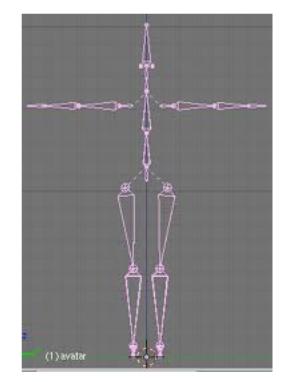
- We combined geometries within game engine
- 3D Modelling tools
 - Autodesk Maya
 - Autodesk 3ds Max
 - Blender
 - Integration with

Physics


- A tighter integration of physics and game engines
 - Drawing fur, grass, etc
 - Particles
 - Flame
 - ...

Animation in Games

- We modelled object motion
 - a kind of animations
- Characters should move realistically
 - Modelled in a 3D modelling tool (blender)
 - Provide "hooks" to play sequence from game
- Motion capture
 - Play the sequence


Keyframe Animation

- Storing (and processing) each frame is too expensive
- Keyframe animation: store a (relatively small) number of keyframes and *interpolate*

Animation of Models

- Rigid body animation
 - Body is immutable
 - Sequence of keyframes
- Skeletal animation
 - Bones
 - Skin
 - Follows the skeleton

Inverse Kinematics

Normally, animation is forward kinematics
– Sequence of keyframes specifying bone motion

- Inverse kinematics
 - Specify where you want a bone to move
 - Animate the model
 - Pick up an object
 - Limits have to be set!

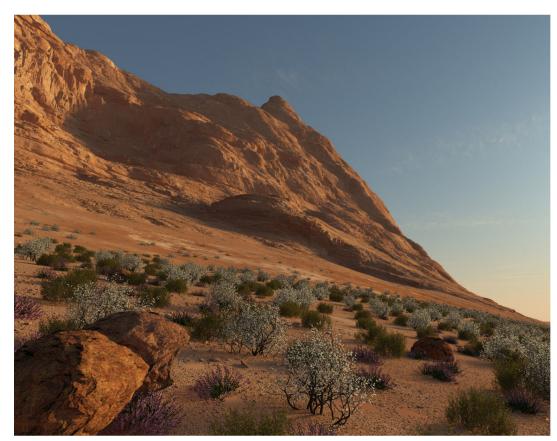
Content Generation

- Modern games are (by in large) about *assets*
 - Worlds to explore
 - Enemies to kill
 - Friends to make
- Level designers

Procedural Content Generation (1)

Assets generated by an algorithm

As a tool for game developers



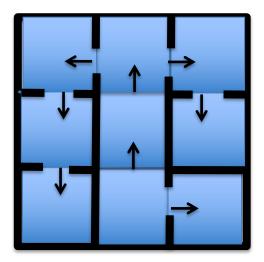
www.speedtree.com

Procedural Content Generation (2)

• Terragen

http://planetside.co.uk

Procedural Content Generation (3)


- Assets generated by an algorithm on the fly
- Map generation
 - Dungeon generation in 2D
 - Problems with 3d
 - Too slow
 - Too dull
 - Verification required

Example: A Growing Tree Algorithm

2D maze generation

- Pick a maze cell
- See if there's space to grow into
 - Random direction
- Carve into the space
- Repeat until finished

Procedural Content Generation (3)

- Assets *tuned* by an algorithm
- Face Instances

- Borderlands
 - Combinations of guns
- Spore
 - Combinations of features

Procedural Content Generation (4)

Procedural population

- S.T.A.L.K.E.R.: Shadow of Chernobyl
 - Dynamical placement of characters
 - Artificial Life
- Left4Dead
 - In addition to placement, adaptive pacing
 - If intensity is too high, remove major threats for a while

Conclusion

- These are just some of directions
- Lots of further info online
 - <u>www.gamasutra.com</u>
 - aigamedev.com
 - www.gamedev.net

— ...

- Tons of books
- Experiment yourself!