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We already knew 

• Introduction to this module

• History of video

• High-level information of a game

• Designing information for a game (Overall 
architecture, Game structure, scripting 
language)
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Game Loop

3



Bird’s-Eye View of a Game

• 1. Game initialization
• 2. Main game loop

– Front-end initialisation
– Front-end loop (gather input, render screen,update front-

end state, trigger any state change)
– Front-end shutdown
– Level initialisation 
– Level game loop (gather input, run AI, run physics 

simulations, update game entities, send/receive network 
messages, update time step, update game state)

– Level shutdown

• 3. Game shutdown



Games and Time

• Most programs run slower than the 
underlying computer.

• Games run as quickly as possible.

• This is demanding on the processor and 
graphics capabilities.



The Importance of Frame Rate

• Frame rate is the speed at which the visual 
display updates.

• A faster frame rate leads to more fluid 
animation and is more computationally 
intensive.

• The goal is to have a fast, consistent frame 
rate.



Games and Space

• Games are often run in different display 
modes than typical programs.

• Games often use custom user interfaces.

• Games often take full control over the display 
and input devices



Event-driven Programming

• The program is event-driven
– Messages = events

• We need a loop to check all incoming events
• The Loop

– Check all incoming events (messages)
– Handle the events
– Check timing and do something in regular

• Incoming Events
– Interrupts
– System requests
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Event-driven Programming

• Timers (do something in regular timing)

– The sub-system to handle timing

– Must be precise to at least 1 ms or less

• Events

– Input devices
• Mouse

• Keyboard

– Something coming from network

– System requests
• Re-draw

• …
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Event-driven Programming

• Therefore, we have two types of jobs:
– In regular

• Timers callbacks

– By requests
• Input device callbacks

• Same as a game main program
– A game is an interactive application
– A game is time-bound

• Rendering in 30fps or 60fps
• Motion data in 30fps
• Game running in 30fps
• …
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Typical Game Architecture

Initialization/Cleanup

• The initialization step 
prepares everything that is 
necessary to start a part of 
the game

• The cleanup step undoes 
everything the initialization 
step did, but in reverse order
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Typical Game Architecture

Initialization/Cleanup

• Resource Acquisition Is 
Initialization
– A useful rule to minimize mismatch 

errors in the initialization and 
shutdown steps

– Means that creating an object 
acquires and initializes all the 
necessary resources, and destroying 
it destroys and shuts down all those 
resources
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Typical Game Architecture

Initialization/Cleanup

• Optimizations

– Fast shutdown

– Warm reboot
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Typical Game Architecture

Main Loop

• Games are driven by a game 
loop that performs a series of 
tasks every frame

• Some games have separate 
loops for the front and and the 
game itself

• Other games have a unified 
main loop
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Typical Game Architecture

Main Loop

• Tasks
– Handling time

– Gathering player input

– Networking

– Simulation

– Collision detection and response

– Object updates

– Rendering

– Other miscellaneous tasks
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Typical Game Architecture

Main Loop

• Structure

– Hard-coded loops

– Multiple game loops

• For each major game state

– Consider steps as tasks to be 
iterated through
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Execution order

• Most of the time it doesn't matter

• In some situations, execution order is 
important

• Can help keep player interaction seamless

• Can maximize parallelism

• Exact ordering depends on hardware
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Game Entities

• Game loop operates game entities

– Basically anything in a game world that can be 
interacted with

– More precisely, a self-contained piece of logical 
interactive content

– Only things we will interact with should become 
game entities
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Game Entities

• Organization

– Simple list

– Multiple databases

– Logical tree

– Spatial database
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Game Entities

• Updating

– Updating each entity once per frame can be too 
expensive

– Can use a tree structure to impose a hierarchy for 
updating

– Can use a priority queue to decide which entities 
to update every frame
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Game Entities

• Object creation

– Basic object factories

– Extensible object factories

– Using automatic registration

– Using explicit registration
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Game Entities

• Level instantiation

– Loading a level involves loading both assets and 
the game state

– It is necessary to create the game entities and set 
the correct state for them

– Using instance data vs. template data
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Game Entities

• Identification

– Strings

– Pointers

– Unique IDs or handles
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Game Entities

• Communication

– Simplest method is function calls

– Many games use a full messaging system

– Need to be careful about passing and allocating 
messages
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