
Principles of Computer Game 
Design and Implementation

Lecture 4



We already knew 

• Introduction to this module

• History of video

• High-level information of a game

• Designing information for a game (Overall 
architecture, Game structure, scripting 
language)

2



Game Loop

3



Bird’s-Eye View of a Game

• 1. Game initialization
• 2. Main game loop

– Front-end initialisation
– Front-end loop (gather input, render screen,update front-

end state, trigger any state change)
– Front-end shutdown
– Level initialisation 
– Level game loop (gather input, run AI, run physics 

simulations, update game entities, send/receive network 
messages, update time step, update game state)

– Level shutdown

• 3. Game shutdown



Games and Time

• Most programs run slower than the 
underlying computer.

• Games run as quickly as possible.

• This is demanding on the processor and 
graphics capabilities.



The Importance of Frame Rate

• Frame rate is the speed at which the visual 
display updates.

• A faster frame rate leads to more fluid 
animation and is more computationally 
intensive.

• The goal is to have a fast, consistent frame 
rate.



Games and Space

• Games are often run in different display 
modes than typical programs.

• Games often use custom user interfaces.

• Games often take full control over the display 
and input devices



Event-driven Programming

• The program is event-driven
– Messages = events

• We need a loop to check all incoming events
• The Loop

– Check all incoming events (messages)
– Handle the events
– Check timing and do something in regular

• Incoming Events
– Interrupts
– System requests

8



Event-driven Programming

• Timers (do something in regular timing)

– The sub-system to handle timing

– Must be precise to at least 1 ms or less

• Events

– Input devices
• Mouse

• Keyboard

– Something coming from network

– System requests
• Re-draw

• …

9



Event-driven Programming

• Therefore, we have two types of jobs:
– In regular

• Timers callbacks

– By requests
• Input device callbacks

• Same as a game main program
– A game is an interactive application
– A game is time-bound

• Rendering in 30fps or 60fps
• Motion data in 30fps
• Game running in 30fps
• …

10



Typical Game Architecture

Initialization/Cleanup

• The initialization step 
prepares everything that is 
necessary to start a part of 
the game

• The cleanup step undoes 
everything the initialization 
step did, but in reverse order

11

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Typical Game Architecture

Initialization/Cleanup

• Resource Acquisition Is 
Initialization
– A useful rule to minimize mismatch 

errors in the initialization and 
shutdown steps

– Means that creating an object 
acquires and initializes all the 
necessary resources, and destroying 
it destroys and shuts down all those 
resources

12

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Typical Game Architecture

Initialization/Cleanup

• Optimizations

– Fast shutdown

– Warm reboot

13

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Typical Game Architecture

Main Loop

• Games are driven by a game 
loop that performs a series of 
tasks every frame

• Some games have separate 
loops for the front and and the 
game itself

• Other games have a unified 
main loop

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Typical Game Architecture

Main Loop

• Tasks
– Handling time

– Gathering player input

– Networking

– Simulation

– Collision detection and response

– Object updates

– Rendering

– Other miscellaneous tasks

15

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Typical Game Architecture

Main Loop

• Structure

– Hard-coded loops

– Multiple game loops

• For each major game state

– Consider steps as tasks to be 
iterated through

16

Start

Initialise

Update Game

Draw Scene

Are we 
done?

Cleanup 

End



Execution order

• Most of the time it doesn't matter

• In some situations, execution order is 
important

• Can help keep player interaction seamless

• Can maximize parallelism

• Exact ordering depends on hardware

17



Game Entities

• Game loop operates game entities

– Basically anything in a game world that can be 
interacted with

– More precisely, a self-contained piece of logical 
interactive content

– Only things we will interact with should become 
game entities

18



Game Entities

• Organization

– Simple list

– Multiple databases

– Logical tree

– Spatial database

19



Game Entities

• Updating

– Updating each entity once per frame can be too 
expensive

– Can use a tree structure to impose a hierarchy for 
updating

– Can use a priority queue to decide which entities 
to update every frame

20



Game Entities

• Object creation

– Basic object factories

– Extensible object factories

– Using automatic registration

– Using explicit registration

21



Game Entities

• Level instantiation

– Loading a level involves loading both assets and 
the game state

– It is necessary to create the game entities and set 
the correct state for them

– Using instance data vs. template data

22



Game Entities

• Identification

– Strings

– Pointers

– Unique IDs or handles

23



Game Entities

• Communication

– Simplest method is function calls

– Many games use a full messaging system

– Need to be careful about passing and allocating 
messages

24


